Execution on n0161.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:42.471 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test36
#
# CH4, T2^-1 photoionization, using output from GAMESS
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatEng 15.8 # list of scattering energies
InitSym 'A1' # Initial state symmetry
InitSpinDeg 1 # Initial state spin degeneracy
OrbOccInit 2 2 6 # Orbital occupation of initial state
OrbOcc 2 2 5 # occupation of the orbital groups of target
SpinDeg 1 # Spin degeneracy of the total scattering state (=1 singlet)
TargSym 'T2' # Symmetry of the target state
TargSpinDeg 2 # Target spin degeneracy
IPot 14.2 # ionization potentail
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test36.gms.dat' 'gamess'
GetBlms
ExpOrb
ScatSym 'T2' # Scattering symmetry of total final state
ScatContSym 'T1' # Scattering symmetry of continuum electron
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
Exit
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 15.8
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 6
+ Data Record OrbOcc - 2 2 5
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'T2'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 14.2
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test36.gms.dat' 'gamess'
----------------------------------------------------------------------
GamessCnv - read input from Gamess .dat output with PLTORB information
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Time Now = 0.0146 Delta time = 0.0146 End GamessCnv
Atoms found 5 Coordinates in Angstroms
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = 0.6254701047 -0.6254701047 -0.6254701047
Z = 1 ZS = 1 r = -0.6254701047 0.6254701047 -0.6254701047
Z = 1 ZS = 1 r = -0.6254701047 -0.6254701047 0.6254701047
Z = 1 ZS = 1 r = 0.6254701047 0.6254701047 0.6254701047
Maximum distance from expansion center is 1.0833460000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Td
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup D2
Time Now = 0.0442 Delta time = 0.0296 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.57735 -0.57735 -0.57735 1 1.08335
3 -0.57735 0.57735 -0.57735 1 1.08335
4 -0.57735 -0.57735 0.57735 1 1.08335
5 0.57735 0.57735 0.57735 1 1.08335
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 0.81650 0.40825 0.40825
3 0.81650 0.40825 -0.40825
4 0.81650 -0.40825 0.40825
5 0.81650 -0.40825 -0.40825
Computed default value of LMaxA = 13
Determining angular grid in GetAxMax LMax = 15 LMaxA = 13 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 -1 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Td
LMax 15
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) E ( 2) T1 ( 3) T2 ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
8 11 14
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 15 1 1 1
A2 1 2 7 1 1 1
E 1 3 20 1 1 1
E 2 4 20 1 1 1
T1 1 5 27 -1 -1 1
T1 2 6 27 -1 1 -1
T1 3 7 27 1 -1 -1
T2 1 8 36 -1 -1 1
T2 2 9 36 -1 1 -1
T2 3 10 36 1 -1 -1
Time Now = 0.1895 Delta time = 0.1453 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 1) 2( 1) 3( 2) 4( 3) 5( 3) 6( 4) 7( 5) 8( 6) 9( 7)
10( 8) 11( 9) 12( 11) 13( 12)
A2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 2)
10( 3) 11( 3) 12( 4) 13( 5)
E 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
E 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
T1 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T2 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 3 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2
LMax 30
The dimension of each irreducable representation is
A ( 1) B1 ( 1) B2 ( 1) B3 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
4 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
irep = 1 sym =A 1 eigs = 1 1 1 1
irep = 2 sym =B1 1 eigs = 1 1 -1 -1
irep = 3 sym =B2 1 eigs = 1 -1 1 -1
irep = 4 sym =B3 1 eigs = 1 -1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A 1 1 241 1 1 1
B1 1 2 240 1 -1 -1
B2 1 3 240 -1 1 -1
B3 1 4 240 -1 -1 1
Time Now = 0.1935 Delta time = 0.0040 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 13.0181031605 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 13.01810 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 13.01810 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.33980E+05
2 Center at = 1.08335 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.28707E-03 0.00230
2 8 16 0.30604E-03 0.00474
3 8 24 0.37726E-03 0.00776
4 8 32 0.57239E-03 0.01234
5 8 40 0.91002E-03 0.01962
6 8 48 0.14468E-02 0.03120
7 8 56 0.23002E-02 0.04960
8 8 64 0.36571E-02 0.07886
9 8 72 0.58142E-02 0.12537
10 8 80 0.92438E-02 0.19932
11 8 88 0.11380E-01 0.29036
12 8 96 0.12337E-01 0.38905
13 8 104 0.11857E-01 0.48391
14 8 112 0.11284E-01 0.57418
15 8 120 0.11908E-01 0.66944
16 8 128 0.13884E-01 0.78051
17 8 136 0.13776E-01 0.89072
18 8 144 0.87733E-02 0.96090
19 8 152 0.55766E-02 1.00552
20 8 160 0.38388E-02 1.03623
21 8 168 0.32048E-02 1.06187
22 8 176 0.26851E-02 1.08335
23 8 184 0.30552E-02 1.10779
24 8 192 0.32571E-02 1.13384
25 8 200 0.40150E-02 1.16596
26 8 208 0.60918E-02 1.21470
27 8 216 0.96851E-02 1.29218
28 8 224 0.15398E-01 1.41536
29 8 232 0.24481E-01 1.61121
30 8 240 0.33415E-01 1.87853
31 8 248 0.38959E-01 2.19021
32 8 256 0.46359E-01 2.56107
33 8 264 0.58081E-01 3.02573
34 8 272 0.61727E-01 3.51954
35 8 280 0.64635E-01 4.03662
36 8 288 0.66998E-01 4.57261
37 8 296 0.68947E-01 5.12418
38 8 304 0.70575E-01 5.68878
39 8 312 0.71953E-01 6.26441
40 8 320 0.73130E-01 6.84945
41 8 328 0.74146E-01 7.44262
42 8 336 0.75030E-01 8.04286
43 8 344 0.75805E-01 8.64930
44 8 352 0.76489E-01 9.26121
45 8 360 0.77097E-01 9.87799
46 8 368 0.77640E-01 10.49911
47 8 376 0.78128E-01 11.12414
48 8 384 0.78569E-01 11.75269
49 8 392 0.78969E-01 12.38444
50 8 400 0.79208E-01 13.01810
Time Now = 0.2274 Delta time = 0.0339 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 13
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 13
Actual value of lmasym found = 13
Number of regions of the same l expansion (NAngReg) = 12
Angular regions
1 L = 2 from ( 1) 0.00029 to ( 7) 0.00201
2 L = 4 from ( 8) 0.00230 to ( 15) 0.00444
3 L = 5 from ( 16) 0.00474 to ( 31) 0.01177
4 L = 6 from ( 32) 0.01234 to ( 47) 0.02975
5 L = 7 from ( 48) 0.03120 to ( 55) 0.04730
6 L = 8 from ( 56) 0.04960 to ( 63) 0.07520
7 L = 9 from ( 64) 0.07886 to ( 71) 0.11955
8 L = 11 from ( 72) 0.12537 to ( 79) 0.19008
9 L = 12 from ( 80) 0.19932 to ( 87) 0.27898
10 L = 13 from ( 88) 0.29036 to ( 119) 0.65753
11 L = 15 from ( 120) 0.66944 to ( 240) 1.87853
12 L = 13 from ( 241) 1.91749 to ( 400) 13.01810
There are 2 angular regions for computing spherical harmonics
1 lval = 13
2 lval = 15
Maximum number of processors is 49
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 72
Proc id = 1 Last grid point = 96
Proc id = 2 Last grid point = 112
Proc id = 3 Last grid point = 128
Proc id = 4 Last grid point = 144
Proc id = 5 Last grid point = 160
Proc id = 6 Last grid point = 176
Proc id = 7 Last grid point = 192
Proc id = 8 Last grid point = 208
Proc id = 9 Last grid point = 224
Proc id = 10 Last grid point = 240
Proc id = 11 Last grid point = 256
Proc id = 12 Last grid point = 272
Proc id = 13 Last grid point = 288
Proc id = 14 Last grid point = 312
Proc id = 15 Last grid point = 328
Proc id = 16 Last grid point = 344
Proc id = 17 Last grid point = 368
Proc id = 18 Last grid point = 384
Proc id = 19 Last grid point = 400
Time Now = 0.2360 Delta time = 0.0086 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = 0.000000 A1 1 at max irg = 64 r = 0.07886
2 Orig 2 Eng = 0.000000 A1 1 at max irg = 128 r = 0.78051
3 Orig 3 Eng = 0.000000 T2 1 at max irg = 152 r = 1.00552
4 Orig 4 Eng = 0.000000 T2 2 at max irg = 152 r = 1.00552
5 Orig 5 Eng = 0.000000 T2 3 at max irg = 152 r = 1.00552
Rotation coefficients for orbital 1 grp = 1 A1 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A1 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 T2 1
1 1.0000000000 2 -0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 4 grp = 3 T2 2
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 5 grp = 3 T2 3
1 0.0000000000 2 -0.0000000000 3 1.0000000000
Number of orbital groups and degeneracis are 3
1 1 3
Number of orbital groups and number of electrons when fully occupied
3
2 2 6
Time Now = 0.2943 Delta time = 0.0583 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 3
Orbital 1 of A1 1 symmetry normalization integral = 0.99999991
Orbital 2 of A1 1 symmetry normalization integral = 0.99997961
Orbital 3 of T2 1 symmetry normalization integral = 0.99997457
Time Now = 0.8687 Delta time = 0.5744 End ExpOrb
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'T1'
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 3
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - A1 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 1 name - A1 1
Set 3 has degeneracy 3
Orbital 1 is num 3 type = 8 name - T2 1
Orbital 2 is num 4 type = 9 name - T2 2
Orbital 3 is num 5 type = 10 name - T2 3
Orbital occupations by degenerate group
1 A1 occ = 2
2 A1 occ = 2
3 T2 occ = 5
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) E ( 2) T1 ( 3) T2 ( 3)
Symmetry of the continuum orbital is T1
Symmetry of the total state is T2
Spin degeneracy of the total state is = 1
Symmetry of the target state is T2
Spin degeneracy of the target state is = 2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is = 1
Orbital occupations of initial state by degenerate group
1 A1 occ = 2
2 A1 occ = 2
3 T2 occ = 6
Open shell symmetry types
1 T2 iele = 5
Use only configuration of type T2
MS2 = 1 SDGN = 2
NumAlpha = 3
List of determinants found
1: 1.00000 0.00000 1 2 3 4 5
2: 1.00000 0.00000 1 2 3 4 6
3: 1.00000 0.00000 1 2 3 5 6
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3 4 5
Configuration 2
1: 1.00000 0.00000 1 2 3 4 6
Configuration 3
1: 1.00000 0.00000 1 2 3 5 6
Each irreducable representation is present the number of times indicated
T2 ( 1)
representation T2 component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 5 6
representation T2 component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3 4 6
representation T2 component 3 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 4 5
Open shell symmetry types
1 T2 iele = 5
2 T1 iele = 1
Use only configuration of type T2
Each irreducable representation is present the number of times indicated
A2 ( 1)
E ( 1)
T1 ( 1)
T2 ( 1)
representation T2 component 1 fun 1
Symmeterized Function from AddNewShell
1: 0.50000 0.00000 1 2 3 4 5 11
2: 0.50000 0.00000 1 2 3 4 6 12
3: -0.50000 0.00000 1 2 4 5 6 8
4: -0.50000 0.00000 1 3 4 5 6 9
representation T2 component 2 fun 1
Symmeterized Function from AddNewShell
1: 0.50000 0.00000 1 2 3 4 5 10
2: 0.50000 0.00000 1 2 3 5 6 12
3: -0.50000 0.00000 1 2 4 5 6 7
4: -0.50000 0.00000 2 3 4 5 6 9
representation T2 component 3 fun 1
Symmeterized Function from AddNewShell
1: 0.50000 0.00000 1 2 3 4 6 10
2: -0.50000 0.00000 1 2 3 5 6 11
3: -0.50000 0.00000 1 3 4 5 6 7
4: 0.50000 0.00000 2 3 4 5 6 8
Open shell symmetry types
1 T2 iele = 5
Use only configuration of type T2
MS2 = 1 SDGN = 2
NumAlpha = 3
List of determinants found
1: 1.00000 0.00000 1 2 3 4 5
2: 1.00000 0.00000 1 2 3 4 6
3: 1.00000 0.00000 1 2 3 5 6
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3 4 5
Configuration 2
1: 1.00000 0.00000 1 2 3 4 6
Configuration 3
1: 1.00000 0.00000 1 2 3 5 6
Each irreducable representation is present the number of times indicated
T2 ( 1)
representation T2 component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 5 6
representation T2 component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3 4 6
representation T2 component 3 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 4 5
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 9 10 14
2: 0.70711 0.00000 1 2 3 4 6 7 8 9 10 11
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 9 10 15
2: 0.70711 0.00000 1 2 3 4 6 7 8 9 10 12
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 9 10 16
2: 0.70711 0.00000 1 2 3 4 6 7 8 9 10 13
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 14
2: -0.70711 0.00000 1 2 3 4 5 7 8 9 10 11
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 15
2: -0.70711 0.00000 1 2 3 4 5 7 8 9 10 12
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 16
2: -0.70711 0.00000 1 2 3 4 5 7 8 9 10 13
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 14
2: 0.70711 0.00000 1 2 3 4 5 6 8 9 10 11
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 15
2: 0.70711 0.00000 1 2 3 4 5 6 8 9 10 12
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 16
2: 0.70711 0.00000 1 2 3 4 5 6 8 9 10 13
Closed shell target
Time Now = 0.8736 Delta time = 0.0050 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: 0.50000 0.00000 1 2 3 4 5 6 7 8 9 15
2: 0.50000 0.00000 1 2 3 4 5 6 7 8 10 16
3: -0.50000 0.00000 1 2 3 4 5 6 8 9 10 12
4: -0.50000 0.00000 1 2 3 4 5 7 8 9 10 13
Configuration 2
1: 0.50000 0.00000 1 2 3 4 5 6 7 8 9 14
2: 0.50000 0.00000 1 2 3 4 5 6 7 9 10 16
3: -0.50000 0.00000 1 2 3 4 5 6 8 9 10 11
4: -0.50000 0.00000 1 2 3 4 6 7 8 9 10 13
Configuration 3
1: 0.50000 0.00000 1 2 3 4 5 6 7 8 10 14
2: -0.50000 0.00000 1 2 3 4 5 6 7 9 10 15
3: -0.50000 0.00000 1 2 3 4 5 7 8 9 10 11
4: 0.50000 0.00000 1 2 3 4 6 7 8 9 10 12
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 9 10 14
2: 0.70711 0.00000 1 2 3 4 6 7 8 9 10 11
Direct product Configuration Cont sym = 2 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 9 10 15
2: 0.70711 0.00000 1 2 3 4 6 7 8 9 10 12
Direct product Configuration Cont sym = 3 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 9 10 16
2: 0.70711 0.00000 1 2 3 4 6 7 8 9 10 13
Direct product Configuration Cont sym = 1 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 14
2: -0.70711 0.00000 1 2 3 4 5 7 8 9 10 11
Direct product Configuration Cont sym = 2 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 15
2: -0.70711 0.00000 1 2 3 4 5 7 8 9 10 12
Direct product Configuration Cont sym = 3 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 16
2: -0.70711 0.00000 1 2 3 4 5 7 8 9 10 13
Direct product Configuration Cont sym = 1 Targ sym = 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 14
2: 0.70711 0.00000 1 2 3 4 5 6 8 9 10 11
Direct product Configuration Cont sym = 2 Targ sym = 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 15
2: 0.70711 0.00000 1 2 3 4 5 6 8 9 10 12
Direct product Configuration Cont sym = 3 Targ sym = 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 16
2: 0.70711 0.00000 1 2 3 4 5 6 8 9 10 13
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 4
Symmetry of target = 5
Symmetry of total states = 5
Total symmetry component = 1
Cont Target Component
Comp 1 2 3
1 0.00000000E+00 0.00000000E+00 0.00000000E+00
2 0.00000000E+00 0.00000000E+00 -0.70710678E+00
3 0.00000000E+00 0.70710678E+00 0.00000000E+00
Total symmetry component = 2
Cont Target Component
Comp 1 2 3
1 0.00000000E+00 0.00000000E+00 -0.70710678E+00
2 0.00000000E+00 0.00000000E+00 0.00000000E+00
3 -0.70710678E+00 0.00000000E+00 0.00000000E+00
Total symmetry component = 3
Cont Target Component
Comp 1 2 3
1 0.00000000E+00 0.70710678E+00 0.00000000E+00
2 0.70710678E+00 0.00000000E+00 0.00000000E+00
3 0.00000000E+00 0.00000000E+00 0.00000000E+00
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
One electron matrix elements between initial and final states
1: -1.000000000 0.000000000 < 6| 13>
2: 1.000000000 0.000000000 < 7| 12>
Reduced formula list
3 3 2 -0.1000000000E+01
2 3 3 0.1000000000E+01
Time Now = 0.8742 Delta time = 0.0006 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 2
Symmetry of the continuum orbital (iContSym) = 4 or T1
Symmetry of total final state (iTotalSym) = 5 or T2
Symmetry of the initial state (iInitSym) = 1 or A1
Symmetry of the ionized target state (iTargSym) = 5 or T2
List of unique symmetry types
In the product of the symmetry types T2 A1
Each irreducable representation is present the number of times indicated
T2 ( 1)
In the product of the symmetry types T2 A1
Each irreducable representation is present the number of times indicated
T2 ( 1)
Unique dipole matrix type 1 Dipole symmetry type =T2
Final state symmetry type = T2 Target sym =T2
Continuum type =A1
In the product of the symmetry types T2 A2
Each irreducable representation is present the number of times indicated
T1 ( 1)
In the product of the symmetry types T2 E
Each irreducable representation is present the number of times indicated
T1 ( 1)
T2 ( 1)
Unique dipole matrix type 2 Dipole symmetry type =T2
Final state symmetry type = T2 Target sym =T2
Continuum type =E
In the product of the symmetry types T2 T1
Each irreducable representation is present the number of times indicated
A2 ( 1)
E ( 1)
T1 ( 1)
T2 ( 1)
Unique dipole matrix type 3 Dipole symmetry type =T2
Final state symmetry type = T2 Target sym =T2
Continuum type =T1
In the product of the symmetry types T2 T2
Each irreducable representation is present the number of times indicated
A1 ( 1)
E ( 1)
T1 ( 1)
T2 ( 1)
Unique dipole matrix type 4 Dipole symmetry type =T2
Final state symmetry type = T2 Target sym =T2
Continuum type =T2
In the product of the symmetry types T2 A1
Each irreducable representation is present the number of times indicated
T2 ( 1)
In the product of the symmetry types T2 A1
Each irreducable representation is present the number of times indicated
T2 ( 1)
In the product of the symmetry types T2 A1
Each irreducable representation is present the number of times indicated
T2 ( 1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is 1
In the product of the symmetry types T2 A1
Each irreducable representation is present the number of times indicated
T2 ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
2 ( 0.00000000E+00, 0.00000000E+00)
3 ( 0.00000000E+00, 0.00000000E+00)
Vector of the total symmetry
ie = 2 ij = 1
1 ( 0.00000000E+00, 0.00000000E+00)
2 ( 0.10000000E+01, 0.00000000E+00)
3 ( 0.00000000E+00, 0.00000000E+00)
Vector of the total symmetry
ie = 3 ij = 1
1 ( 0.00000000E+00, 0.00000000E+00)
2 ( 0.00000000E+00, 0.00000000E+00)
3 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Component Dipole Op Sym = 2 goes to Total Sym component 2 phase = 1.0
Component Dipole Op Sym = 3 goes to Total Sym component 3 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 1.00000000 0.00000000 0.00000000
sym comp = 2
coefficients = 0.00000000 1.00000000 0.00000000
sym comp = 3
coefficients = 0.00000000 0.00000000 1.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 3 Orb 4 Coef = -1.0000000000
2 Cont comp 2 Orb 5 Coef = 1.0000000000
Symmetry type to write out (SymTyp) =T1
Time Now = 16.2301 Delta time = 15.3559 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 9.00000000
Time Now = 16.2396 Delta time = 0.0095 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.90000000E+01 facnorm = 0.10000000E+01
Time Now = 16.2529 Delta time = 0.0134 Electronic part
Time Now = 16.2544 Delta time = 0.0015 End StPot
+ Command PhIon
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.15800000E+02 eV ( 0.58063935E+00 AU)
Time Now = 16.2659 Delta time = 0.0115 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 11
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 27
Number of asymptotic solutions on the right (NAsymR) = 15
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 21
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 10
Maximum number of asymptotic partial waves = 183
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 11
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 21
Time Now = 16.2711 Delta time = 0.0052 Energy independent setup
Compute solution for E = 15.8000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.19428903E-15 Asymp Coef = -0.15184124E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.21507609E-19 Asymp Moment = -0.35677486E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13721110E-18 Asymp Moment = 0.22761001E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.25287983E-04 Asymp Moment = 0.76452562E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.98402591E+02 -0.20000000E+01 stpote = -0.50305172E-17
i = 2 exps = -0.98402591E+02 -0.20000000E+01 stpote = -0.50434921E-17
i = 3 exps = -0.98402591E+02 -0.20000000E+01 stpote = -0.50552788E-17
i = 4 exps = -0.98402591E+02 -0.20000000E+01 stpote = -0.50655066E-17
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.48032715E-01 Asymp Coef = 0.37538645E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.35867136E-04 Asymp Moment = -0.59497511E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.20707900E-04 Asymp Moment = 0.34350904E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.38695728E-05 Asymp Moment = -0.11698788E+00 (e Angs^(n-1))
For potential 5
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.48032715E-01 Asymp Coef = 0.37538645E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.35867136E-04 Asymp Moment = 0.59497511E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.20707900E-04 Asymp Moment = 0.34350904E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.38695728E-05 Asymp Moment = -0.11698788E+00 (e Angs^(n-1))
For potential 6
i = 1 lval = 1 1/r^n n = 2 StPot(RMax) = 0.97163808E-03 Asymp Moment = -0.74286547E-01 (e Angs^(n-1))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.10006150E-03 Asymp Moment = -0.16598511E+00 (e Angs^(n-1))
i = 3 lval = 3 1/r^n n = 4 StPot(RMax) = -0.27879505E-05 Asymp Moment = 0.84287448E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.21595372E-05 Asymp Moment = -0.65288777E-01 (e Angs^(n-1))
For potential 7
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.72049072E-01 Asymp Coef = -0.56307967E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.53800704E-04 Asymp Moment = -0.89246267E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.31061851E-04 Asymp Moment = -0.51526356E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.58043593E-05 Asymp Moment = 0.17548182E+00 (e Angs^(n-1))
For potential 8
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.48032715E-01 Asymp Coef = 0.37538645E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.16656639E-20 Asymp Moment = -0.27630547E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.41415801E-04 Asymp Moment = -0.68701808E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.38695728E-05 Asymp Moment = -0.11698788E+00 (e Angs^(n-1))
For potential 9
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.72049072E-01 Asymp Coef = -0.56307967E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.24984959E-20 Asymp Moment = 0.41445820E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.62123701E-04 Asymp Moment = 0.10305271E+00 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.58043593E-05 Asymp Moment = 0.17548182E+00 (e Angs^(n-1))
For potential 10
i = 1 lval = 1 1/r^n n = 2 StPot(RMax) = 0.97163808E-03 Asymp Moment = -0.74286547E-01 (e Angs^(n-1))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.10006150E-03 Asymp Moment = -0.16598511E+00 (e Angs^(n-1))
i = 3 lval = 3 1/r^n n = 4 StPot(RMax) = -0.27879505E-05 Asymp Moment = 0.84287448E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.21595372E-05 Asymp Moment = -0.65288777E-01 (e Angs^(n-1))
Number of asymptotic regions = 251
Final point in integration = 0.32023773E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 46.5435 Delta time = 30.2725 End SolveHomo
Final Dipole matrix
ROW 1
(-0.46193501E+00, 0.97262850E-01) (-0.91356756E-01, 0.41554716E-01)
(-0.29253441E-02,-0.19495242E-02) (-0.77360490E-02, 0.28112151E-02)
( 0.62217266E-03,-0.16316182E-03) ( 0.97112415E-03,-0.61081637E-03)
(-0.23683474E-04,-0.15380240E-04) ( 0.50141481E-05,-0.40441740E-04)
(-0.54507069E-05, 0.11119662E-05) ( 0.46026745E-04,-0.11401496E-04)
( 0.40162120E-05,-0.64942392E-06) ( 0.33919069E-05,-0.21203875E-05)
(-0.20189643E-06, 0.25683997E-07) ( 0.44468736E-07, 0.24036673E-07)
( 0.11592782E-06, 0.14499306E-06)
ROW 2
(-0.43723681E+00, 0.92438522E-01) (-0.91133400E-01, 0.39566764E-01)
(-0.21206404E-02,-0.20477225E-02) (-0.71545600E-02, 0.26636916E-02)
( 0.47384181E-03,-0.15240756E-03) ( 0.95130680E-03,-0.58371155E-03)
(-0.20293598E-05,-0.17852141E-04) ( 0.20698767E-04,-0.36616850E-04)
(-0.41455655E-05, 0.14944635E-05) ( 0.27810714E-04,-0.10206426E-04)
( 0.21290250E-05,-0.55291088E-06) ( 0.19236124E-05,-0.17958776E-05)
(-0.93117277E-07, 0.17175431E-07) ( 0.12772316E-07, 0.30307870E-07)
( 0.93982413E-07, 0.11279406E-06)
MaxIter = 5 c.s. = 0.44265891 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.33904965E-09
Time Now = 50.7020 Delta time = 4.1584 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 50.7025 Delta time = 0.0005 End CnvIdy
Found 1 energies :
15.80000000
List of matrix element types found Number = 1
1 Cont Sym T1 Targ Sym T2 Total Sym T2
Keeping 1 energies :
15.80000000
Time Now = 50.7025 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 14.2000 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
30.0000 0.13192639E+01
Sigma MIXED at all energies
Eng
30.0000 0.11350632E+01
Sigma VELOCITY at all energies
Eng
30.0000 0.97668132E+00
Beta LENGTH at all energies
Eng
30.0000 0.49995720E+00
Beta MIXED at all energies
Eng
30.0000 0.49996386E+00
Beta VELOCITY at all energies
Eng
30.0000 0.49996843E+00
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 30.0000 1.3193 1.1351 0.9767 0.5000 0.5000 0.5000
Time Now = 50.7117 Delta time = 0.0092 End CrossSection
+ Command Exit
Time Now = 50.7120 Delta time = 0.0003 Finalize