Execution on n0161.lr6

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2022-01-14  17:34:42.471 (GMT -0800)
Using    20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test36
#
# CH4,  T2^-1 photoionization, using output from GAMESS
#
  LMax   15     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential
  ScatEng  15.8    # list of scattering energies

 InitSym 'A1'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit 2 2 6  # Orbital occupation of initial state

 OrbOcc  2 2 5     # occupation of the orbital groups of target
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'T2'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 IPot 14.2         # ionization potentail

Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test36.gms.dat' 'gamess'
GetBlms
ExpOrb

 ScatSym     'T2'  # Scattering symmetry of total final state
 ScatContSym 'T1'  # Scattering symmetry of continuum electron

GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro

Exit
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 15.8
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 6
+ Data Record OrbOcc - 2 2 5
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'T2'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 14.2

+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test36.gms.dat' 'gamess'

----------------------------------------------------------------------
GamessCnv - read input from Gamess .dat output with PLTORB information
----------------------------------------------------------------------

Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Time Now =         0.0146  Delta time =         0.0146 End GamessCnv

Atoms found    5  Coordinates in Angstroms
Z =  6 ZS =  6 r =   0.0000000000   0.0000000000   0.0000000000
Z =  1 ZS =  1 r =   0.6254701047  -0.6254701047  -0.6254701047
Z =  1 ZS =  1 r =  -0.6254701047   0.6254701047  -0.6254701047
Z =  1 ZS =  1 r =  -0.6254701047  -0.6254701047   0.6254701047
Z =  1 ZS =  1 r =   0.6254701047   0.6254701047   0.6254701047
Maximum distance from expansion center is    1.0833460000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Td
Reduce angular grid using nthd =  1  nphid =  4
Found point group for abelian subgroup D2
Time Now =         0.0442  Delta time =         0.0296 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
  2  0.57735 -0.57735 -0.57735   1  1.08335
  3 -0.57735  0.57735 -0.57735   1  1.08335
  4 -0.57735 -0.57735  0.57735   1  1.08335
  5  0.57735  0.57735  0.57735   1  1.08335
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
  2  0.81650  0.40825  0.40825
  3  0.81650  0.40825 -0.40825
  4  0.81650 -0.40825  0.40825
  5  0.81650 -0.40825 -0.40825
Computed default value of LMaxA =   13
Determining angular grid in GetAxMax  LMax =   15  LMaxA =   13  LMaxAb =   30
MMax =    3  MMaxAbFlag =    1
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  -1  -1
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   3   3
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
  20  21  22  23  24  25  26  27  28  29  30
For axis     2  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     3  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     4  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
For axis     5  mvals:
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Td
LMax    15
 The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     8    11    14
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A1        1         1         15       1  1  1
 A2        1         2          7       1  1  1
 E         1         3         20       1  1  1
 E         2         4         20       1  1  1
 T1        1         5         27      -1 -1  1
 T1        2         6         27      -1  1 -1
 T1        3         7         27       1 -1 -1
 T2        1         8         36      -1 -1  1
 T2        2         9         36      -1  1 -1
 T2        3        10         36       1 -1 -1
Time Now =         0.1895  Delta time =         0.1453 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1    1    0(   1)    1(   1)    2(   1)    3(   2)    4(   3)    5(   3)    6(   4)    7(   5)    8(   6)    9(   7)
          10(   8)   11(   9)   12(  11)   13(  12)
A2    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)    6(   1)    7(   1)    8(   1)    9(   2)
          10(   3)   11(   3)   12(   4)   13(   5)
E     1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
E     2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   3)    6(   4)    7(   5)    8(   7)    9(   8)
          10(  10)   11(  12)   12(  14)   13(  16)
T1    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T1    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   2)    5(   3)    6(   4)    7(   6)    8(   8)    9(  10)
          10(  12)   11(  15)   12(  18)   13(  21)
T2    1    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    2    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)
T2    3    0(   0)    1(   1)    2(   2)    3(   3)    4(   4)    5(   6)    6(   8)    7(  10)    8(  12)    9(  15)
          10(  18)   11(  21)   12(  24)   13(  28)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2
LMax    30
 The dimension of each irreducable representation is
    A     (  1)    B1    (  1)    B2    (  1)    B3    (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  4       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
irep =    1  sym =A     1  eigs =   1   1   1   1
irep =    2  sym =B1    1  eigs =   1   1  -1  -1
irep =    3  sym =B2    1  eigs =   1  -1   1  -1
irep =    4  sym =B3    1  eigs =   1  -1  -1   1
 Number of symmetry operations in the abelian subgroup (excluding E) =    3
 The operations are -
     2     3     4
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 A         1         1        241       1  1  1
 B1        1         2        240       1 -1 -1
 B2        1         3        240      -1  1 -1
 B3        1         4        240      -1 -1  1
Time Now =         0.1935  Delta time =         0.0040 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =   13.0181031605 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

HFacGauss    10.00000
HFacWave     10.00000
GridFac       1
MinExpFac   300.00000
Maximum R in the grid (RMax) =    13.01810 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =  13.01810 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.33980E+05
    2  Center at =     1.08335 Angs  Alpha Max = 0.30000E+03

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.28707E-03     0.00230
    2    8    16    0.30604E-03     0.00474
    3    8    24    0.37726E-03     0.00776
    4    8    32    0.57239E-03     0.01234
    5    8    40    0.91002E-03     0.01962
    6    8    48    0.14468E-02     0.03120
    7    8    56    0.23002E-02     0.04960
    8    8    64    0.36571E-02     0.07886
    9    8    72    0.58142E-02     0.12537
   10    8    80    0.92438E-02     0.19932
   11    8    88    0.11380E-01     0.29036
   12    8    96    0.12337E-01     0.38905
   13    8   104    0.11857E-01     0.48391
   14    8   112    0.11284E-01     0.57418
   15    8   120    0.11908E-01     0.66944
   16    8   128    0.13884E-01     0.78051
   17    8   136    0.13776E-01     0.89072
   18    8   144    0.87733E-02     0.96090
   19    8   152    0.55766E-02     1.00552
   20    8   160    0.38388E-02     1.03623
   21    8   168    0.32048E-02     1.06187
   22    8   176    0.26851E-02     1.08335
   23    8   184    0.30552E-02     1.10779
   24    8   192    0.32571E-02     1.13384
   25    8   200    0.40150E-02     1.16596
   26    8   208    0.60918E-02     1.21470
   27    8   216    0.96851E-02     1.29218
   28    8   224    0.15398E-01     1.41536
   29    8   232    0.24481E-01     1.61121
   30    8   240    0.33415E-01     1.87853
   31    8   248    0.38959E-01     2.19021
   32    8   256    0.46359E-01     2.56107
   33    8   264    0.58081E-01     3.02573
   34    8   272    0.61727E-01     3.51954
   35    8   280    0.64635E-01     4.03662
   36    8   288    0.66998E-01     4.57261
   37    8   296    0.68947E-01     5.12418
   38    8   304    0.70575E-01     5.68878
   39    8   312    0.71953E-01     6.26441
   40    8   320    0.73130E-01     6.84945
   41    8   328    0.74146E-01     7.44262
   42    8   336    0.75030E-01     8.04286
   43    8   344    0.75805E-01     8.64930
   44    8   352    0.76489E-01     9.26121
   45    8   360    0.77097E-01     9.87799
   46    8   368    0.77640E-01    10.49911
   47    8   376    0.78128E-01    11.12414
   48    8   384    0.78569E-01    11.75269
   49    8   392    0.78969E-01    12.38444
   50    8   400    0.79208E-01    13.01810
Time Now =         0.2274  Delta time =         0.0339 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =   15
Maximum scattering m (mmaxs) =   15
Maximum numerical integration l (lmaxi) =   30
Maximum numerical integration m (mmaxi) =   30
Maximum l to include in the asymptotic region (lmasym) =   13
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =   13
 Actual value of lmasym found =     13
Number of regions of the same l expansion (NAngReg) =   12
Angular regions
    1 L =    2  from (    1)         0.00029  to (    7)         0.00201
    2 L =    4  from (    8)         0.00230  to (   15)         0.00444
    3 L =    5  from (   16)         0.00474  to (   31)         0.01177
    4 L =    6  from (   32)         0.01234  to (   47)         0.02975
    5 L =    7  from (   48)         0.03120  to (   55)         0.04730
    6 L =    8  from (   56)         0.04960  to (   63)         0.07520
    7 L =    9  from (   64)         0.07886  to (   71)         0.11955
    8 L =   11  from (   72)         0.12537  to (   79)         0.19008
    9 L =   12  from (   80)         0.19932  to (   87)         0.27898
   10 L =   13  from (   88)         0.29036  to (  119)         0.65753
   11 L =   15  from (  120)         0.66944  to (  240)         1.87853
   12 L =   13  from (  241)         1.91749  to (  400)        13.01810
There are     2 angular regions for computing spherical harmonics
    1 lval =   13
    2 lval =   15
Maximum number of processors is       49
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      72
Proc id =    1  Last grid point =      96
Proc id =    2  Last grid point =     112
Proc id =    3  Last grid point =     128
Proc id =    4  Last grid point =     144
Proc id =    5  Last grid point =     160
Proc id =    6  Last grid point =     176
Proc id =    7  Last grid point =     192
Proc id =    8  Last grid point =     208
Proc id =    9  Last grid point =     224
Proc id =   10  Last grid point =     240
Proc id =   11  Last grid point =     256
Proc id =   12  Last grid point =     272
Proc id =   13  Last grid point =     288
Proc id =   14  Last grid point =     312
Proc id =   15  Last grid point =     328
Proc id =   16  Last grid point =     344
Proc id =   17  Last grid point =     368
Proc id =   18  Last grid point =     384
Proc id =   19  Last grid point =     400
Time Now =         0.2360  Delta time =         0.0086 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  Orig    1  Eng =    0.000000  A1    1 at max irg =   64  r =   0.07886
     2  Orig    2  Eng =    0.000000  A1    1 at max irg =  128  r =   0.78051
     3  Orig    3  Eng =    0.000000  T2    1 at max irg =  152  r =   1.00552
     4  Orig    4  Eng =    0.000000  T2    2 at max irg =  152  r =   1.00552
     5  Orig    5  Eng =    0.000000  T2    3 at max irg =  152  r =   1.00552

Rotation coefficients for orbital     1  grp =    1 A1    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 A1    1
     1  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T2    1
     1  1.0000000000    2 -0.0000000000    3 -0.0000000000

Rotation coefficients for orbital     4  grp =    3 T2    2
     1  0.0000000000    2  1.0000000000    3  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T2    3
     1  0.0000000000    2 -0.0000000000    3  1.0000000000
Number of orbital groups and degeneracis are         3
  1  1  3
Number of orbital groups and number of electrons when fully occupied
         3
  2  2  6
Time Now =         0.2943  Delta time =         0.0583 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    3
Orbital     1 of  A1    1 symmetry normalization integral =  0.99999991
Orbital     2 of  A1    1 symmetry normalization integral =  0.99997961
Orbital     3 of  T2    1 symmetry normalization integral =  0.99997457
Time Now =         0.8687  Delta time =         0.5744 End ExpOrb
+ Data Record ScatSym - 'T2'
+ Data Record ScatContSym - 'T1'

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    3
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - A1    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - A1    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =   8  name - T2    1
Orbital     2  is num     4  type =   9  name - T2    2
Orbital     3  is num     5  type =  10  name - T2    3
Orbital occupations by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 5
The dimension of each irreducable representation is
    A1    (  1)    A2    (  1)    E     (  2)    T1    (  3)    T2    (  3)
Symmetry of the continuum orbital is T1
Symmetry of the total state is T2
Spin degeneracy of the total state is =    1
Symmetry of the target state is T2
Spin degeneracy of the target state is =    2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  A1       occ = 2
    2  A1       occ = 2
    3  T2       occ = 6
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T2     iele =    5
    2  T1     iele =    1
Use only configuration of type T2
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function from AddNewShell
    1:   0.50000   0.00000    1    2    3    4    5   11
    2:   0.50000   0.00000    1    2    3    4    6   12
    3:  -0.50000   0.00000    1    2    4    5    6    8
    4:  -0.50000   0.00000    1    3    4    5    6    9

 representation T2     component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.50000   0.00000    1    2    3    4    5   10
    2:   0.50000   0.00000    1    2    3    5    6   12
    3:  -0.50000   0.00000    1    2    4    5    6    7
    4:  -0.50000   0.00000    2    3    4    5    6    9

 representation T2     component     3  fun    1
Symmeterized Function from AddNewShell
    1:   0.50000   0.00000    1    2    3    4    6   10
    2:  -0.50000   0.00000    1    2    3    5    6   11
    3:  -0.50000   0.00000    1    3    4    5    6    7
    4:   0.50000   0.00000    2    3    4    5    6    8
Open shell symmetry types
    1  T2     iele =    5
Use only configuration of type T2
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T2    (  1)

 representation T2     component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T2     component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T2     component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Closed shell target
Time Now =         0.8736  Delta time =         0.0050 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:   0.50000   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   16
    3:  -0.50000   0.00000    1    2    3    4    5    6    8    9   10   12
    4:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   13
Configuration     2
    1:   0.50000   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.50000   0.00000    1    2    3    4    5    6    7    9   10   16
    3:  -0.50000   0.00000    1    2    3    4    5    6    8    9   10   11
    4:  -0.50000   0.00000    1    2    3    4    6    7    8    9   10   13
Configuration     3
    1:   0.50000   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.50000   0.00000    1    2    3    4    5    6    7    9   10   15
    3:  -0.50000   0.00000    1    2    3    4    5    7    8    9   10   11
    4:   0.50000   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   14
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   15
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    9   10   16
    2:   0.70711   0.00000    1    2    3    4    6    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   14
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   15
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8   10   16
    2:  -0.70711   0.00000    1    2    3    4    5    7    8    9   10   13
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   14
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   11
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   15
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   12
Direct product Configuration Cont sym =    3  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   16
    2:   0.70711   0.00000    1    2    3    4    5    6    8    9   10   13
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    4
Symmetry of target =    5
Symmetry of total states =    5

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.00000000E+00
   2   0.00000000E+00  0.00000000E+00 -0.70710678E+00
   3   0.00000000E+00  0.70710678E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00 -0.70710678E+00
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
   3  -0.70710678E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.70710678E+00  0.00000000E+00
   2   0.70710678E+00  0.00000000E+00  0.00000000E+00
   3   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
One electron matrix elements between initial and final states
    1:   -1.000000000    0.000000000  <    6|   13>
    2:    1.000000000    0.000000000  <    7|   12>

Reduced formula list
    3    3    2 -0.1000000000E+01
    2    3    3  0.1000000000E+01
Time Now =         0.8742  Delta time =         0.0006 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    2
Symmetry of the continuum orbital (iContSym) =     4 or T1
Symmetry of total final state (iTotalSym) =     5 or T2
Symmetry of the initial state (iInitSym) =     1 or A1
Symmetry of the ionized target state (iTargSym) =     5 or T2
List of unique symmetry types
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Unique dipole matrix type     1 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =A1
In the product of the symmetry types T2    A2
 Each irreducable representation is present the number of times indicated
    T1    (  1)
In the product of the symmetry types T2    E
 Each irreducable representation is present the number of times indicated
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =E
In the product of the symmetry types T2    T1
 Each irreducable representation is present the number of times indicated
    A2    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     3 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T1
In the product of the symmetry types T2    T2
 Each irreducable representation is present the number of times indicated
    A1    (  1)
    E     (  1)
    T1    (  1)
    T2    (  1)
Unique dipole matrix type     4 Dipole symmetry type =T2
     Final state symmetry type = T2     Target sym =T2
     Continuum type =T2
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Irreducible representation containing the dipole operator is T2
Number of different dipole operators in this representation is     1
In the product of the symmetry types T2    A1
 Each irreducable representation is present the number of times indicated
    T2    (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 (  0.00000000E+00,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.00000000E+00,  0.00000000E+00)
    2 (  0.00000000E+00,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  2
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  3  Orb  4  Coef =  -1.0000000000
  2  Cont comp  2  Orb  5  Coef =   1.0000000000
Symmetry type to write out (SymTyp) =T1
Time Now =        16.2301  Delta time =        15.3559 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =      9.00000000
Time Now =        16.2396  Delta time =         0.0095 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.90000000E+01 facnorm =  0.10000000E+01
Time Now =        16.2529  Delta time =         0.0134 Electronic part
Time Now =        16.2544  Delta time =         0.0015 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15800000E+02 eV (  0.58063935E+00 AU)
Time Now =        16.2659  Delta time =         0.0115 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = T1    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =   11
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    50
Number of partial waves (np) =    27
Number of asymptotic solutions on the right (NAsymR) =    15
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =   13
Number of partial waves in the asymptotic region (npasym) =   21
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   10
Maximum number of asymptotic partial waves =  183
Maximum l used in usual function (lmax) =   15
Maximum m used in usual function (LMax) =   15
Maxamum l used in expanding static potential (lpotct) =   30
Maximum l used in exapnding the exchange potential (lmaxab) =   30
Higest l included in the expansion of the wave function (lnp) =   15
Higest l included in the K matrix (lna) =   11
Highest l used at large r (lpasym) =   13
Higest l used in the asymptotic potential (lpzb) =   26
Maximum L used in the homogeneous solution (LMaxHomo) =   13
Number of partial waves in the homogeneous solution (npHomo) =   21
Time Now =        16.2711  Delta time =         0.0052 Energy independent setup

Compute solution for E =   15.8000000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.19428903E-15 Asymp Coef   =  -0.15184124E-09 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.21507609E-19 Asymp Moment =  -0.35677486E-16 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13721110E-18 Asymp Moment =   0.22761001E-15 (e Angs^(n-1))
 i =  4  lval =   3  1/r^n n =   4  StPot(RMax) = -0.25287983E-04 Asymp Moment =   0.76452562E+00 (e Angs^(n-1))
For potential     2
 i =  1  exps = -0.98402591E+02 -0.20000000E+01  stpote = -0.50305172E-17
 i =  2  exps = -0.98402591E+02 -0.20000000E+01  stpote = -0.50434921E-17
 i =  3  exps = -0.98402591E+02 -0.20000000E+01  stpote = -0.50552788E-17
 i =  4  exps = -0.98402591E+02 -0.20000000E+01  stpote = -0.50655066E-17
For potential     3
For potential     4
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.48032715E-01 Asymp Coef   =   0.37538645E+05 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.35867136E-04 Asymp Moment =  -0.59497511E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.20707900E-04 Asymp Moment =   0.34350904E-01 (e Angs^(n-1))
 i =  4  lval =   3  1/r^n n =   4  StPot(RMax) =  0.38695728E-05 Asymp Moment =  -0.11698788E+00 (e Angs^(n-1))
For potential     5
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.48032715E-01 Asymp Coef   =   0.37538645E+05 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.35867136E-04 Asymp Moment =   0.59497511E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.20707900E-04 Asymp Moment =   0.34350904E-01 (e Angs^(n-1))
 i =  4  lval =   3  1/r^n n =   4  StPot(RMax) =  0.38695728E-05 Asymp Moment =  -0.11698788E+00 (e Angs^(n-1))
For potential     6
 i =  1  lval =   1  1/r^n n =   2  StPot(RMax) =  0.97163808E-03 Asymp Moment =  -0.74286547E-01 (e Angs^(n-1))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.10006150E-03 Asymp Moment =  -0.16598511E+00 (e Angs^(n-1))
 i =  3  lval =   3  1/r^n n =   4  StPot(RMax) = -0.27879505E-05 Asymp Moment =   0.84287448E-01 (e Angs^(n-1))
 i =  4  lval =   3  1/r^n n =   4  StPot(RMax) =  0.21595372E-05 Asymp Moment =  -0.65288777E-01 (e Angs^(n-1))
For potential     7
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.72049072E-01 Asymp Coef   =  -0.56307967E+05 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.53800704E-04 Asymp Moment =  -0.89246267E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.31061851E-04 Asymp Moment =  -0.51526356E-01 (e Angs^(n-1))
 i =  4  lval =   3  1/r^n n =   4  StPot(RMax) = -0.58043593E-05 Asymp Moment =   0.17548182E+00 (e Angs^(n-1))
For potential     8
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.48032715E-01 Asymp Coef   =   0.37538645E+05 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.16656639E-20 Asymp Moment =  -0.27630547E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.41415801E-04 Asymp Moment =  -0.68701808E-01 (e Angs^(n-1))
 i =  4  lval =   3  1/r^n n =   4  StPot(RMax) =  0.38695728E-05 Asymp Moment =  -0.11698788E+00 (e Angs^(n-1))
For potential     9
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.72049072E-01 Asymp Coef   =  -0.56307967E+05 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.24984959E-20 Asymp Moment =   0.41445820E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.62123701E-04 Asymp Moment =   0.10305271E+00 (e Angs^(n-1))
 i =  4  lval =   3  1/r^n n =   4  StPot(RMax) = -0.58043593E-05 Asymp Moment =   0.17548182E+00 (e Angs^(n-1))
For potential    10
 i =  1  lval =   1  1/r^n n =   2  StPot(RMax) =  0.97163808E-03 Asymp Moment =  -0.74286547E-01 (e Angs^(n-1))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.10006150E-03 Asymp Moment =  -0.16598511E+00 (e Angs^(n-1))
 i =  3  lval =   3  1/r^n n =   4  StPot(RMax) = -0.27879505E-05 Asymp Moment =   0.84287448E-01 (e Angs^(n-1))
 i =  4  lval =   3  1/r^n n =   4  StPot(RMax) =  0.21595372E-05 Asymp Moment =  -0.65288777E-01 (e Angs^(n-1))
Number of asymptotic regions =     251
Final point in integration =   0.32023773E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now =        46.5435  Delta time =        30.2725 End SolveHomo
      Final Dipole matrix
     ROW  1
  (-0.46193501E+00, 0.97262850E-01) (-0.91356756E-01, 0.41554716E-01)
  (-0.29253441E-02,-0.19495242E-02) (-0.77360490E-02, 0.28112151E-02)
  ( 0.62217266E-03,-0.16316182E-03) ( 0.97112415E-03,-0.61081637E-03)
  (-0.23683474E-04,-0.15380240E-04) ( 0.50141481E-05,-0.40441740E-04)
  (-0.54507069E-05, 0.11119662E-05) ( 0.46026745E-04,-0.11401496E-04)
  ( 0.40162120E-05,-0.64942392E-06) ( 0.33919069E-05,-0.21203875E-05)
  (-0.20189643E-06, 0.25683997E-07) ( 0.44468736E-07, 0.24036673E-07)
  ( 0.11592782E-06, 0.14499306E-06)
     ROW  2
  (-0.43723681E+00, 0.92438522E-01) (-0.91133400E-01, 0.39566764E-01)
  (-0.21206404E-02,-0.20477225E-02) (-0.71545600E-02, 0.26636916E-02)
  ( 0.47384181E-03,-0.15240756E-03) ( 0.95130680E-03,-0.58371155E-03)
  (-0.20293598E-05,-0.17852141E-04) ( 0.20698767E-04,-0.36616850E-04)
  (-0.41455655E-05, 0.14944635E-05) ( 0.27810714E-04,-0.10206426E-04)
  ( 0.21290250E-05,-0.55291088E-06) ( 0.19236124E-05,-0.17958776E-05)
  (-0.93117277E-07, 0.17175431E-07) ( 0.12772316E-07, 0.30307870E-07)
  ( 0.93982413E-07, 0.11279406E-06)
MaxIter =   5 c.s. =      0.44265891 rmsk=     0.00000000  Abs eps    0.10000000E-05  Rel eps    0.33904965E-09
Time Now =        50.7020  Delta time =         4.1584 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        50.7025  Delta time =         0.0005 End CnvIdy
Found     1 energies :
    15.80000000
List of matrix element types found   Number =    1
    1  Cont Sym T1     Targ Sym T2     Total Sym T2
Keeping     1 energies :
    15.80000000
Time Now =        50.7025  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     14.2000 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    30.0000  0.13192639E+01

     Sigma MIXED    at all energies
      Eng
    30.0000  0.11350632E+01

     Sigma VELOCITY at all energies
      Eng
    30.0000  0.97668132E+00

     Beta LENGTH   at all energies
      Eng
    30.0000  0.49995720E+00

     Beta MIXED    at all energies
      Eng
    30.0000  0.49996386E+00

     Beta VELOCITY at all energies
      Eng
    30.0000  0.49996843E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     30.0000     1.3193     1.1351     0.9767     0.5000     0.5000     0.5000
Time Now =        50.7117  Delta time =         0.0092 End CrossSection
+ Command Exit
Time Now =        50.7120  Delta time =         0.0003 Finalize