Execution on n0158.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:10.393 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test35
#
# Electron scattering from CN-
#
LMax 60 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
FegeEng 5.0 # Energy correction (in eV) used in the fege potential
LMaxK 8 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test35.molden2012' 'molden'
OrbOcc 2 2 2 2 4 2
TargSym 'S'
TargSpinDeg 1
ScatContSym 'S' # Scattering symmetry
ScatSym 'S'
SpinDeg 2
GetBlms
ExpOrb
GenFormScat
GrnType 1
GetPot
ScatN 1.5 0.5 12
TotalCrossSection
+ End of input reached
+ Data Record LMax - 60
+ Data Record EMax - 50.0
+ Data Record FegeEng - 5.0
+ Data Record LMaxK - 8
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test35.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 110 basis functions
Selecting orbitals
Number of orbitals selected is 7
Selecting 1 1 SymOrb = 1.1 Ene = -15.2856 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 2.1 Ene = -10.9681 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 3.1 Ene = -0.9274 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 4.1 Ene = -0.3407 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 1.2 Ene = -0.1941 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 1.3 Ene = -0.1941 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 5.1 Ene = -0.1927 Spin =Alpha Occup = 2.000000
Atoms found 2 Coordinates in Angstroms
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 -0.6308417370
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 0.5409582630
Maximum distance from expansion center is 0.6308417370
+ Data Record OrbOcc - 2 2 2 2 4 2
+ Data Record TargSym - 'S'
+ Data Record TargSpinDeg - 1
+ Data Record ScatContSym - 'S'
+ Data Record ScatSym - 'S'
+ Data Record SpinDeg - 2
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
#############################################################################
Expansion center is not at the center of charge
For high symmetry systems, a better expansion point may be
0.0000000000 0.0000000000 0.0001274938
#############################################################################
Found point group CAv
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup C2v
Time Now = 0.1281 Delta time = 0.1281 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 6 0.63084 7 0.54096
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 11
Determining angular grid in GetAxMax LMax = 60 LMaxA = 11 LMaxAb = 120
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 14 14 13 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5
4
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is CAv
LMax 60
The dimension of each irreducable representation is
S ( 1) A2 ( 1) B1 ( 1) B2 ( 1) P ( 2)
D ( 2) F ( 2) G ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
11 16 6
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
S 1 1 63 1 1 1
A2 1 2 2 -1 -1 1
B1 1 3 7 1 -1 -1
B2 1 4 7 -1 1 -1
P 1 5 64 -1 1 -1
P 2 6 64 1 -1 -1
D 1 7 63 -1 -1 1
D 2 8 63 1 1 1
F 1 9 62 -1 1 -1
F 2 10 62 1 -1 -1
G 1 11 14 -1 -1 1
G 2 12 14 1 1 1
Time Now = 35.9368 Delta time = 35.8087 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
S 1 0( 1) 1( 2) 2( 3) 3( 4) 4( 5) 5( 6) 6( 7) 7( 8) 8( 9) 9( 10)
10( 12) 11( 14)
A2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 1) 11( 2)
B1 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 2) 7( 3) 8( 4) 9( 5)
10( 6) 11( 7)
B2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 2) 7( 3) 8( 4) 9( 5)
10( 6) 11( 7)
P 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 5) 6( 6) 7( 7) 8( 8) 9( 10)
10( 12) 11( 15)
P 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 5) 6( 6) 7( 7) 8( 8) 9( 10)
10( 12) 11( 15)
D 1 0( 0) 1( 0) 2( 1) 3( 2) 4( 3) 5( 4) 6( 5) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14)
D 2 0( 0) 1( 0) 2( 1) 3( 2) 4( 3) 5( 4) 6( 5) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14)
F 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14)
F 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14)
G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 2) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14)
G 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 2) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 120
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
3 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
4 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 -1 1 -1
irep = 4 sym =B2 1 eigs = 1 1 -1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 729 1 1 1
A2 1 2 608 -1 -1 1
B1 1 3 621 -1 1 -1
B2 1 4 621 1 -1 -1
Time Now = 35.9589 Delta time = 0.0221 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 11.7365517503 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 11.73655 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 11.73655 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.54096 Angs Alpha Max = 0.14700E+05
3 Center at = 0.63084 Angs Alpha Max = 0.10800E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.18788E-02 0.01503
2 8 16 0.26454E-02 0.03619
3 8 24 0.42579E-02 0.07026
4 8 32 0.57059E-02 0.11590
5 8 40 0.66516E-02 0.16912
6 8 48 0.67622E-02 0.22321
7 8 56 0.62232E-02 0.27300
8 8 64 0.55328E-02 0.31726
9 8 72 0.48014E-02 0.35567
10 8 80 0.40942E-02 0.38843
11 8 88 0.34459E-02 0.41599
12 8 96 0.28717E-02 0.43897
13 8 104 0.23750E-02 0.45797
14 8 112 0.22623E-02 0.47607
15 8 120 0.23281E-02 0.49469
16 8 128 0.21119E-02 0.51159
17 8 136 0.13378E-02 0.52229
18 8 144 0.85033E-03 0.52909
19 8 152 0.57067E-03 0.53366
20 8 160 0.46572E-03 0.53738
21 8 168 0.43647E-03 0.54087
22 8 176 0.10568E-04 0.54096
23 8 184 0.43646E-03 0.54445
24 8 192 0.46530E-03 0.54817
25 8 200 0.57358E-03 0.55276
26 8 208 0.87025E-03 0.55972
27 8 216 0.13836E-02 0.57079
28 8 224 0.21997E-02 0.58839
29 8 232 0.19335E-02 0.60386
30 8 240 0.12290E-02 0.61369
31 8 248 0.78484E-03 0.61997
32 8 256 0.58684E-03 0.62466
33 8 264 0.51717E-03 0.62880
34 8 272 0.25519E-03 0.63084
35 8 280 0.50920E-03 0.63492
36 8 288 0.54286E-03 0.63926
37 8 296 0.66917E-03 0.64461
38 8 304 0.10153E-02 0.65273
39 8 312 0.16142E-02 0.66565
40 8 320 0.25663E-02 0.68618
41 8 328 0.33556E-02 0.71302
42 8 336 0.34869E-02 0.74092
43 8 344 0.36952E-02 0.77048
44 8 352 0.48004E-02 0.80888
45 8 360 0.63031E-02 0.85931
46 8 368 0.83870E-02 0.92640
47 8 376 0.11346E-01 1.01717
48 8 384 0.15668E-01 1.14252
49 8 392 0.22199E-01 1.32011
50 8 400 0.32469E-01 1.57986
51 8 408 0.45707E-01 1.94551
52 8 416 0.50912E-01 2.35281
53 8 424 0.55250E-01 2.79480
54 8 432 0.58854E-01 3.26563
55 8 440 0.61854E-01 3.76046
56 8 448 0.64364E-01 4.27538
57 8 456 0.66480E-01 4.80722
58 8 464 0.68275E-01 5.35342
59 8 472 0.69811E-01 5.91190
60 8 480 0.71135E-01 6.48098
61 8 488 0.72285E-01 7.05926
62 8 496 0.73290E-01 7.64558
63 8 504 0.74175E-01 8.23898
64 8 512 0.74959E-01 8.83865
65 8 520 0.75657E-01 9.44390
66 8 528 0.76281E-01 10.05415
67 8 536 0.76844E-01 10.66890
68 8 544 0.77352E-01 11.28772
69 8 552 0.56104E-01 11.73655
Time Now = 35.9843 Delta time = 0.0254 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 60
Maximum scattering m (mmaxs) = 60
Maximum numerical integration l (lmaxi) = 120
Maximum numerical integration m (mmaxi) = 120
Maximum l to include in the asymptotic region (lmasym) = 11
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 11
Actual value of lmasym found = 11
Number of regions of the same l expansion (NAngReg) = 18
Angular regions
1 L = 2 from ( 1) 0.00188 to ( 7) 0.01315
2 L = 4 from ( 8) 0.01503 to ( 15) 0.03355
3 L = 5 from ( 16) 0.03619 to ( 23) 0.06600
4 L = 7 from ( 24) 0.07026 to ( 31) 0.11020
5 L = 9 from ( 32) 0.11590 to ( 39) 0.16246
6 L = 11 from ( 40) 0.16912 to ( 55) 0.26678
7 L = 19 from ( 56) 0.27300 to ( 71) 0.35087
8 L = 27 from ( 72) 0.35567 to ( 79) 0.38433
9 L = 35 from ( 80) 0.38843 to ( 95) 0.43610
10 L = 43 from ( 96) 0.43897 to ( 103) 0.45559
11 L = 51 from ( 104) 0.45797 to ( 111) 0.47380
12 L = 60 from ( 112) 0.47607 to ( 328) 0.71302
13 L = 59 from ( 329) 0.71651 to ( 336) 0.74092
14 L = 43 from ( 337) 0.74461 to ( 352) 0.80888
15 L = 35 from ( 353) 0.81519 to ( 360) 0.85931
16 L = 27 from ( 361) 0.86769 to ( 376) 1.01717
17 L = 19 from ( 377) 1.03284 to ( 392) 1.32011
18 L = 11 from ( 393) 1.35258 to ( 552) 11.73655
There are 3 angular regions for computing spherical harmonics
1 lval = 11
2 lval = 28
3 lval = 60
Maximum number of processors is 68
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 96
Proc id = 1 Last grid point = 120
Proc id = 2 Last grid point = 136
Proc id = 3 Last grid point = 144
Proc id = 4 Last grid point = 160
Proc id = 5 Last grid point = 176
Proc id = 6 Last grid point = 192
Proc id = 7 Last grid point = 200
Proc id = 8 Last grid point = 216
Proc id = 9 Last grid point = 232
Proc id = 10 Last grid point = 248
Proc id = 11 Last grid point = 256
Proc id = 12 Last grid point = 272
Proc id = 13 Last grid point = 288
Proc id = 14 Last grid point = 304
Proc id = 15 Last grid point = 320
Proc id = 16 Last grid point = 328
Proc id = 17 Last grid point = 352
Proc id = 18 Last grid point = 384
Proc id = 19 Last grid point = 552
Time Now = 36.0402 Delta time = 0.0559 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -15.285600 S 1 at max irg = 184 r = 0.54445
2 Orig 2 Eng = -10.968100 S 1 at max irg = 280 r = 0.63492
3 Orig 3 Eng = -0.927400 S 1 at max irg = 184 r = 0.54445
4 Orig 4 Eng = -0.340700 S 1 at max irg = 376 r = 1.01717
5 Orig 5 Eng = -0.194100 P 1 at max irg = 336 r = 0.74092
6 Orig 6 Eng = -0.194100 P 2 at max irg = 336 r = 0.74092
7 Orig 7 Eng = -0.192700 S 1 at max irg = 384 r = 1.14252
Rotation coefficients for orbital 1 grp = 1 S 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 S 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 S 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 S 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 P 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 6 grp = 5 P 2
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 7 grp = 6 S 1
1 1.0000000000
Number of orbital groups and degeneracis are 6
1 1 1 1 2 1
Number of orbital groups and number of electrons when fully occupied
6
2 2 2 2 4 2
Time Now = 39.3729 Delta time = 3.3327 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 6
Orbital 1 of S 1 symmetry normalization integral = 0.99997927
Orbital 2 of S 1 symmetry normalization integral = 0.99997972
Orbital 3 of S 1 symmetry normalization integral = 0.99999899
Orbital 4 of S 1 symmetry normalization integral = 0.99999938
Orbital 5 of P 1 symmetry normalization integral = 1.00000000
Orbital 6 of S 1 symmetry normalization integral = 0.99999987
Time Now = 44.0716 Delta time = 4.6987 End ExpOrb
+ Command GenFormScat
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 6
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - S 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 1 name - S 1
Set 3 has degeneracy 1
Orbital 1 is num 3 type = 1 name - S 1
Set 4 has degeneracy 1
Orbital 1 is num 4 type = 1 name - S 1
Set 5 has degeneracy 2
Orbital 1 is num 5 type = 5 name - P 1
Orbital 2 is num 6 type = 6 name - P 2
Set 6 has degeneracy 1
Orbital 1 is num 7 type = 1 name - S 1
Orbital occupations by degenerate group
1 S occ = 2
2 S occ = 2
3 S occ = 2
4 S occ = 2
5 P occ = 4
6 S occ = 2
The dimension of each irreducable representation is
S ( 1) A2 ( 1) B1 ( 1) B2 ( 1) P ( 2)
D ( 2) F ( 2) G ( 2)
Symmetry of the continuum orbital is S
Symmetry of the total state is S
Spin degeneracy of the total state is = 2
Symmetry of the target state is S
Spin degeneracy of the target state is = 1
Closed shell target
Open shell symmetry types
1 S iele = 1
Use only configuration of type S
Each irreducable representation is present the number of times indicated
S ( 1)
representation S component 1 fun 1
Symmeterized Function from AddNewShell
1: 1.00000 0.00000 1
Closed shell target
Direct product basis set
Direct product basis function
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15
Time Now = 44.0726 Delta time = 0.0010 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15
Direct product Configuration Cont sym = 1 Targ sym = 1
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 1
Symmetry of target = 1
Symmetry of total states = 1
Total symmetry component = 1
Cont Target Component
Comp 1
1 0.10000000E+01
Time Now = 44.0730 Delta time = 0.0004 End MatEle
In the product of the symmetry types S S
Each irreducable representation is present the number of times indicated
S ( 1)
In the product of the symmetry types A2 S
Each irreducable representation is present the number of times indicated
A2 ( 1)
In the product of the symmetry types B1 S
Each irreducable representation is present the number of times indicated
B1 ( 1)
In the product of the symmetry types B2 S
Each irreducable representation is present the number of times indicated
B2 ( 1)
In the product of the symmetry types P S
Each irreducable representation is present the number of times indicated
P ( 1)
In the product of the symmetry types D S
Each irreducable representation is present the number of times indicated
D ( 1)
In the product of the symmetry types F S
Each irreducable representation is present the number of times indicated
F ( 1)
In the product of the symmetry types G S
Each irreducable representation is present the number of times indicated
G ( 1)
In the product of the symmetry types S S
Each irreducable representation is present the number of times indicated
S ( 1)
In the product of the symmetry types A2 S
Each irreducable representation is present the number of times indicated
A2 ( 1)
In the product of the symmetry types B1 S
Each irreducable representation is present the number of times indicated
B1 ( 1)
In the product of the symmetry types B2 S
Each irreducable representation is present the number of times indicated
B2 ( 1)
In the product of the symmetry types P S
Each irreducable representation is present the number of times indicated
P ( 1)
In the product of the symmetry types D S
Each irreducable representation is present the number of times indicated
D ( 1)
In the product of the symmetry types F S
Each irreducable representation is present the number of times indicated
F ( 1)
In the product of the symmetry types G S
Each irreducable representation is present the number of times indicated
G ( 1)
Found 8 T Matrix types
1 Cont S Targ S Total S
2 Cont A2 Targ S Total A2
3 Cont B1 Targ S Total B1
4 Cont B2 Targ S Total B2
5 Cont P Targ S Total P
6 Cont D Targ S Total D
7 Cont F Targ S Total F
8 Cont G Targ S Total G
+ Data Record GrnType - 1
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 14.00000000
Time Now = 44.3147 Delta time = 0.2417 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.14000000E+02 facnorm = 0.10000000E+01
Time Now = 44.5166 Delta time = 0.2019 Electronic part
Time Now = 44.5236 Delta time = 0.0070 End StPot
+ Command ScatN
+ 1.5 0.5 12
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.15000000E+01 eV ( 0.55123989E-01 AU)
Time Now = 45.0699 Delta time = 0.5464 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 45.3268 Delta time = 0.2568 Energy independent setup
Compute solution for E = 1.5000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.11164019E-15
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.11164018E-15
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.11164016E-15
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.11164014E-15
For potential 3
Number of asymptotic regions = 87
Final point in integration = 0.35368117E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 62.7389 Delta time = 17.4122 End SolveHomo
Final T matrix
ROW 1
( 0.41235884E-03, 0.10190841E-02) ( 0.28509507E-01,-0.72962563E-03)
(-0.14262142E-01, 0.78326015E-03) ( 0.46477373E-03,-0.54692114E-03)
(-0.39342684E-04, 0.11059690E-03) (-0.16858117E-05,-0.58855116E-05)
( 0.28518287E-06, 0.39327381E-06) (-0.19878610E-07,-0.83827664E-08)
( 0.11140673E-08, 0.62785447E-10)
ROW 2
( 0.28509507E-01,-0.72962563E-03) (-0.14212390E-01, 0.16395029E-02)
( 0.23039841E-01,-0.11145344E-02) (-0.94248014E-02, 0.65449796E-03)
( 0.25659956E-03,-0.31276423E-03) (-0.18240907E-04, 0.53201346E-04)
(-0.73100820E-06,-0.24478975E-05) ( 0.10588395E-06, 0.14307753E-06)
(-0.65253555E-08,-0.26830283E-08)
ROW 3
(-0.14262142E-01, 0.78326015E-03) ( 0.23039841E-01,-0.11145344E-02)
(-0.84267783E-02, 0.12193465E-02) ( 0.19132472E-01,-0.61616127E-03)
(-0.66402797E-02, 0.40730973E-03) ( 0.15650050E-03,-0.18637755E-03)
(-0.97365064E-05, 0.27742339E-04) (-0.32698779E-06,-0.11287114E-05)
( 0.43031043E-07, 0.58948805E-07)
ROW 4
( 0.46477406E-03,-0.54692163E-03) (-0.94248018E-02, 0.65449799E-03)
( 0.19132472E-01,-0.61616128E-03) (-0.63089413E-02, 0.78003176E-03)
( 0.16129704E-01,-0.37813522E-03) (-0.47967504E-02, 0.27631561E-03)
( 0.98770076E-04,-0.11625881E-03) (-0.54272692E-05, 0.15290879E-04)
(-0.15836441E-06,-0.55554412E-06)
ROW 5
(-0.39342678E-04, 0.11059733E-03) ( 0.25659957E-03,-0.31276425E-03)
(-0.66402797E-02, 0.40730973E-03) ( 0.16129704E-01,-0.37813522E-03)
(-0.49177336E-02, 0.53200229E-03) ( 0.13783232E-01,-0.24341936E-03)
(-0.35641086E-02, 0.19620977E-03) ( 0.64855715E-04,-0.75738372E-04)
(-0.31833500E-05, 0.89011008E-05)
ROW 6
(-0.16858152E-05,-0.58855152E-05) (-0.18240908E-04, 0.53201348E-04)
( 0.15650050E-03,-0.18637755E-03) (-0.47967504E-02, 0.27631561E-03)
( 0.13783232E-01,-0.24341936E-03) (-0.39165215E-02, 0.37901162E-03)
( 0.11952782E-01,-0.16333469E-03) (-0.27245527E-02, 0.14490786E-03)
( 0.44286864E-04,-0.51430387E-04)
ROW 7
( 0.28518352E-06, 0.39327392E-06) (-0.73100823E-06,-0.24478976E-05)
(-0.97365064E-05, 0.27742339E-04) ( 0.98770076E-04,-0.11625881E-03)
(-0.35641086E-02, 0.19620977E-03) ( 0.11952782E-01,-0.16333469E-03)
(-0.31770848E-02, 0.28089769E-03) ( 0.10510369E-01,-0.11389073E-03)
(-0.21373707E-02, 0.11069497E-03)
ROW 8
(-0.19878624E-07,-0.83827595E-08) ( 0.10588395E-06, 0.14307754E-06)
(-0.32698780E-06,-0.11287114E-05) (-0.54272692E-05, 0.15290879E-04)
( 0.64855715E-04,-0.75738372E-04) (-0.27245527E-02, 0.14490786E-03)
( 0.10510369E-01,-0.11389073E-03) (-0.26202498E-02, 0.21534587E-03)
( 0.93563402E-02,-0.82151747E-04)
ROW 9
( 0.11140679E-08, 0.62784587E-10) (-0.65253557E-08,-0.26830283E-08)
( 0.43031043E-07, 0.58948805E-07) (-0.15836441E-06,-0.55554412E-06)
(-0.31833500E-05, 0.89011008E-05) ( 0.44286864E-04,-0.51430387E-04)
(-0.21373707E-02, 0.11069497E-03) ( 0.93563402E-02,-0.82151747E-04)
(-0.21931802E-02, 0.16981349E-03)
eigenphases
-0.6049146E-01 -0.3085398E-01 -0.1789115E-01 -0.6148599E-02 0.4043107E-02
0.1065627E-01 0.1421158E-01 0.1697741E-01 0.2397962E-01
eigenphase sum-0.455172E-01 scattering length= 0.13718
eps+pi 0.309608E+01 eps+2*pi 0.623767E+01
MaxIter = 6 c.s. = 0.19659331 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.15201445E-11
Time Now = 134.5742 Delta time = 71.8352 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.20000000E+01 eV ( 0.73498652E-01 AU)
Time Now = 135.0931 Delta time = 0.5189 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 135.3494 Delta time = 0.2564 Energy independent setup
Compute solution for E = 2.0000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.12156900E-15
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.12156899E-15
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.12156897E-15
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.12156895E-15
For potential 3
Number of asymptotic regions = 91
Final point in integration = 0.32134449E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 152.8358 Delta time = 17.4864 End SolveHomo
Final T matrix
ROW 1
( 0.16345401E-03, 0.14700930E-02) ( 0.32250363E-01,-0.12199337E-02)
(-0.20583602E-01, 0.10953324E-02) ( 0.81952972E-03,-0.85084691E-03)
(-0.88333514E-04, 0.20726960E-03) (-0.26512933E-05,-0.13137761E-04)
( 0.60983127E-06, 0.10570336E-05) (-0.52889800E-07,-0.30250500E-07)
( 0.35149863E-08, 0.70908793E-09)
ROW 2
( 0.32250363E-01,-0.12199337E-02) (-0.21058307E-01, 0.23174824E-02)
( 0.25653127E-01,-0.17898211E-02) (-0.12825809E-01, 0.94987103E-03)
( 0.41992984E-03,-0.45722621E-03) (-0.37294916E-04, 0.91519426E-04)
(-0.10757273E-05,-0.49760234E-05) ( 0.20611658E-06, 0.34715581E-06)
(-0.15680460E-07,-0.87486425E-08)
ROW 3
(-0.20583602E-01, 0.10953324E-02) ( 0.25653127E-01,-0.17898210E-02)
(-0.12005887E-01, 0.17337937E-02) ( 0.20617484E-01,-0.92532871E-03)
(-0.86100239E-02, 0.52966263E-03) ( 0.24230051E-03,-0.25407087E-03)
(-0.18697790E-04, 0.44373513E-04) (-0.42915065E-06,-0.21268470E-05)
( 0.76545602E-07, 0.13222329E-06)
ROW 4
( 0.81952972E-03,-0.85084691E-03) (-0.12825809E-01, 0.94987102E-03)
( 0.20617484E-01,-0.92532871E-03) (-0.86514530E-02, 0.99494248E-03)
( 0.17020141E-01,-0.53069027E-03) (-0.60203400E-02, 0.33513004E-03)
( 0.14713534E-03,-0.15141990E-03) (-0.99767592E-05, 0.23296504E-04)
(-0.19328275E-06,-0.99426442E-06)
ROW 5
(-0.88340026E-04, 0.20727519E-03) ( 0.41993013E-03,-0.45722639E-03)
(-0.86100239E-02, 0.52966260E-03) ( 0.17020141E-01,-0.53069027E-03)
(-0.65446136E-02, 0.63296262E-03) ( 0.14338072E-01,-0.32643359E-03)
(-0.43769092E-02, 0.22708622E-03) ( 0.94089944E-04,-0.95680439E-04)
(-0.56783550E-05, 0.13123325E-04)
ROW 6
(-0.26513268E-05,-0.13137825E-04) (-0.37294938E-04, 0.91519460E-04)
( 0.24230051E-03,-0.25407087E-03) (-0.60203400E-02, 0.33513004E-03)
( 0.14338072E-01,-0.32643359E-03) (-0.50948167E-02, 0.43091034E-03)
( 0.12314281E-01,-0.21236219E-03) (-0.32968986E-02, 0.16235573E-03)
( 0.63085240E-04,-0.63633330E-04)
ROW 7
( 0.60984082E-06, 0.10570406E-05) (-0.10757273E-05,-0.49760252E-05)
(-0.18697790E-04, 0.44373513E-04) ( 0.14713534E-03,-0.15141990E-03)
(-0.43769092E-02, 0.22708622E-03) ( 0.12314281E-01,-0.21236219E-03)
(-0.40625510E-02, 0.30983034E-03) ( 0.10756138E-01,-0.14491831E-03)
(-0.25599713E-02, 0.12119328E-03)
ROW 8
(-0.52890093E-07,-0.30250489E-07) ( 0.20611662E-06, 0.34715593E-06)
(-0.42915066E-06,-0.21268470E-05) (-0.99767592E-05, 0.23296504E-04)
( 0.94089944E-04,-0.95680439E-04) (-0.32968986E-02, 0.16235573E-03)
( 0.10756138E-01,-0.14491831E-03) (-0.33067193E-02, 0.23261613E-03)
( 0.95298206E-02,-0.10292077E-03)
ROW 9
( 0.35150063E-08, 0.70907768E-09) (-0.15680464E-07,-0.87486459E-08)
( 0.76545603E-07, 0.13222329E-06) (-0.19328275E-06,-0.99426442E-06)
(-0.56783550E-05, 0.13123325E-04) ( 0.63085240E-04,-0.63633330E-04)
(-0.25599713E-02, 0.12119328E-03) ( 0.95298206E-02,-0.10292077E-03)
(-0.27393745E-02, 0.18071567E-03)
eigenphases
-0.7380368E-01 -0.3411019E-01 -0.1903209E-01 -0.6035935E-02 0.4691157E-02
0.1079114E-01 0.1258568E-01 0.1458737E-01 0.2674332E-01
eigenphase sum-0.635832E-01 scattering length= 0.16606
eps+pi 0.307801E+01 eps+2*pi 0.621960E+01
MaxIter = 6 c.s. = 0.19685847 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.13444062E-10
Time Now = 235.1981 Delta time = 82.3623 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.25000000E+01 eV ( 0.91873315E-01 AU)
Time Now = 235.6923 Delta time = 0.4942 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 235.9479 Delta time = 0.2556 Energy independent setup
Compute solution for E = 2.5000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.98364592E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.98364583E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.98364564E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.98364536E-16
For potential 3
Number of asymptotic regions = 94
Final point in integration = 0.29831278E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 253.4096 Delta time = 17.4617 End SolveHomo
Final T matrix
ROW 1
(-0.17798607E-02, 0.20386076E-02) ( 0.35710151E-01,-0.18759526E-02)
(-0.27334187E-01, 0.15101464E-02) ( 0.12427574E-02,-0.11957202E-02)
(-0.15995724E-03, 0.33313949E-03) (-0.35494249E-05,-0.23902746E-04)
( 0.10629164E-05, 0.22061201E-05) (-0.10977611E-06,-0.75687158E-07)
( 0.82767807E-08, 0.25820465E-08)
ROW 2
( 0.35710151E-01,-0.18759526E-02) (-0.28465895E-01, 0.31402639E-02)
( 0.27819692E-01,-0.25767696E-02) (-0.16072653E-01, 0.13054772E-02)
( 0.60003161E-03,-0.60771812E-03) (-0.62428900E-04, 0.13650676E-03)
(-0.13524597E-05,-0.83874570E-05) ( 0.33204256E-06, 0.66622839E-06)
(-0.29963842E-07,-0.20243110E-07)
ROW 3
(-0.27334187E-01, 0.15101463E-02) ( 0.27819692E-01,-0.25767696E-02)
(-0.15590038E-01, 0.23624119E-02) ( 0.21756237E-01,-0.12545554E-02)
(-0.10402116E-01, 0.66214840E-03) ( 0.33362057E-03,-0.31928867E-03)
(-0.30009746E-04, 0.62666267E-04) (-0.47270106E-06,-0.33950346E-05)
( 0.11458685E-06, 0.24006521E-06)
ROW 4
( 0.12427574E-02,-0.11957202E-02) (-0.16072653E-01, 0.13054772E-02)
( 0.21756237E-01,-0.12545554E-02) (-0.10927351E-01, 0.12225731E-02)
( 0.17678850E-01,-0.68158788E-03) (-0.71076702E-02, 0.39459764E-03)
( 0.19745229E-03,-0.18392094E-03) (-0.15555921E-04, 0.31786709E-04)
(-0.19672466E-06,-0.15317248E-05)
ROW 5
(-0.15995724E-03, 0.33313949E-03) ( 0.60003161E-03,-0.60771811E-03)
(-0.10402116E-01, 0.66214840E-03) ( 0.17678850E-01,-0.68158788E-03)
(-0.80849615E-02, 0.73177391E-03) ( 0.14737022E-01,-0.40513000E-03)
(-0.50910196E-02, 0.25696263E-03) ( 0.12406977E-03,-0.11369045E-03)
(-0.86808024E-05, 0.17507265E-04)
ROW 6
(-0.35495388E-05,-0.23903145E-04) (-0.62429097E-04, 0.13650695E-03)
( 0.33362057E-03,-0.31928870E-03) (-0.71076702E-02, 0.39459764E-03)
( 0.14737022E-01,-0.40513000E-03) (-0.61890385E-02, 0.47930138E-03)
( 0.12569080E-01,-0.25767850E-03) (-0.37973525E-02, 0.17875827E-03)
( 0.82197649E-04,-0.74514626E-04)
ROW 7
( 0.10629593E-05, 0.22061855E-05) (-0.13524567E-05,-0.83874701E-05)
(-0.30009748E-04, 0.62666269E-04) ( 0.19745229E-03,-0.18392094E-03)
(-0.50910196E-02, 0.25696263E-03) ( 0.12569080E-01,-0.25767850E-03)
(-0.48741899E-02, 0.33601252E-03) ( 0.10927038E-01,-0.17316943E-03)
(-0.29288687E-02, 0.13087580E-03)
ROW 8
(-0.10977809E-06,-0.75687674E-07) ( 0.33204266E-06, 0.66622950E-06)
(-0.47270115E-06,-0.33950347E-05) (-0.15555921E-04, 0.31786709E-04)
( 0.12406977E-03,-0.11369045E-03) (-0.37973525E-02, 0.17875827E-03)
( 0.10927038E-01,-0.17316943E-03) (-0.39303731E-02, 0.24795047E-03)
( 0.96493368E-02,-0.12165599E-03)
ROW 9
( 0.82769566E-08, 0.25820265E-08) (-0.29963869E-07,-0.20243151E-07)
( 0.11458686E-06, 0.24006522E-06) (-0.19672466E-06,-0.15317248E-05)
(-0.86808024E-05, 0.17507265E-04) ( 0.82197649E-04,-0.74514626E-04)
(-0.29288687E-02, 0.13087580E-03) ( 0.96493368E-02,-0.12165599E-03)
(-0.32324701E-02, 0.19027450E-03)
eigenphases
-0.8725976E-01 -0.3702500E-01 -0.2004755E-01 -0.6016317E-02 0.5063682E-02
0.7993002E-02 0.1055276E-01 0.1358055E-01 0.2962171E-01
eigenphase sum-0.835369E-01 scattering length= 0.19534
eps+pi 0.305806E+01 eps+2*pi 0.619965E+01
MaxIter = 6 c.s. = 0.20425945 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.53005189E-10
Time Now = 339.3580 Delta time = 85.9483 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 339.8518 Delta time = 0.4938 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 340.1081 Delta time = 0.2563 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.95815220E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.95815213E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.95815197E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.95815175E-16
For potential 3
Number of asymptotic regions = 96
Final point in integration = 0.28072552E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 357.5043 Delta time = 17.3962 End SolveHomo
Final T matrix
ROW 1
(-0.69342251E-02, 0.28373530E-02) ( 0.39443319E-01,-0.28091241E-02)
(-0.34744152E-01, 0.21398916E-02) ( 0.17194778E-02,-0.15972790E-02)
(-0.25613554E-03, 0.49201742E-03) (-0.44962604E-05,-0.38637097E-04)
( 0.16568726E-05, 0.39789818E-05) (-0.19764867E-06,-0.15440471E-06)
( 0.16441638E-07, 0.65731666E-08)
ROW 2
( 0.39443319E-01,-0.28091241E-02) (-0.36546782E-01, 0.41795931E-02)
( 0.29663639E-01,-0.34976189E-02) (-0.19141585E-01, 0.17264132E-02)
( 0.78653962E-03,-0.76309326E-03) (-0.92537019E-04, 0.18678577E-03)
(-0.15757728E-05,-0.12606459E-04) ( 0.47969110E-06, 0.11084177E-05)
(-0.49976082E-07,-0.38408275E-07)
ROW 3
(-0.34744152E-01, 0.21398916E-02) ( 0.29663639E-01,-0.34976189E-02)
(-0.19033389E-01, 0.31385444E-02) ( 0.22668957E-01,-0.15966877E-02)
(-0.12046080E-01, 0.80434794E-03) ( 0.42776417E-03,-0.38242902E-03)
(-0.43325168E-04, 0.82173994E-04) (-0.45284297E-06,-0.49049465E-05)
( 0.15479211E-06, 0.38395834E-06)
ROW 4
( 0.17194778E-02,-0.15972789E-02) (-0.19141585E-01, 0.17264131E-02)
( 0.22668957E-01,-0.15966877E-02) (-0.13111859E-01, 0.14633242E-02)
( 0.18205166E-01,-0.82991809E-03) (-0.80936842E-02, 0.45563412E-03)
( 0.24894308E-03,-0.21452770E-03) (-0.22027911E-04, 0.40629221E-04)
(-0.16625403E-06,-0.21575533E-05)
ROW 5
(-0.25613555E-03, 0.49201742E-03) ( 0.78653962E-03,-0.76309325E-03)
(-0.12046080E-01, 0.80434794E-03) ( 0.18205166E-01,-0.82991809E-03)
(-0.95477254E-02, 0.83101211E-03) ( 0.15051243E-01,-0.48035790E-03)
(-0.57347697E-02, 0.28676466E-03) ( 0.15452081E-03,-0.13036669E-03)
(-0.12125645E-04, 0.22009182E-04)
ROW 6
(-0.44962611E-05,-0.38637096E-04) (-0.92537019E-04, 0.18678577E-03)
( 0.42776417E-03,-0.38242902E-03) (-0.80936842E-02, 0.45563412E-03)
( 0.15051243E-01,-0.48035790E-03) (-0.72149530E-02, 0.52638063E-03)
( 0.12767238E-01,-0.30020895E-03) (-0.42473198E-02, 0.19479417E-03)
( 0.10151346E-03,-0.84491857E-04)
ROW 7
( 0.16569834E-05, 0.39792587E-05) (-0.15757492E-05,-0.12606513E-04)
(-0.43325168E-04, 0.82174002E-04) ( 0.24894308E-03,-0.21452770E-03)
(-0.57347697E-02, 0.28676466E-03) ( 0.12767238E-01,-0.30020895E-03)
(-0.56281846E-02, 0.36098005E-03) ( 0.11058774E-01,-0.19938591E-03)
(-0.32603632E-02, 0.14021695E-03)
ROW 8
(-0.19765615E-06,-0.15440822E-06) ( 0.47969041E-06, 0.11084230E-05)
(-0.45284332E-06,-0.49049467E-05) (-0.22027910E-04, 0.40629221E-04)
( 0.15452081E-03,-0.13036669E-03) (-0.42473198E-02, 0.19479417E-03)
( 0.11058774E-01,-0.19938591E-03) (-0.45061557E-02, 0.26238828E-03)
( 0.97409096E-02,-0.13892104E-03)
ROW 9
( 0.16442428E-07, 0.65732535E-08) (-0.49976169E-07,-0.38408516E-07)
( 0.15479213E-06, 0.38395834E-06) (-0.16625403E-06,-0.21575533E-05)
(-0.12125645E-04, 0.22009182E-04) ( 0.10151346E-03,-0.84491857E-04)
(-0.32603632E-02, 0.14021695E-03) ( 0.97409096E-02,-0.13892104E-03)
(-0.36857463E-02, 0.19919920E-03)
eigenphases
-0.1018236E+00 -0.3986919E-01 -0.2106332E-01 -0.6124539E-02 0.2051210E-02
0.5233622E-02 0.1002908E-01 0.1276569E-01 0.3186325E-01
eigenphase sum-0.106938E+00 scattering length= 0.22861
eps+pi 0.303465E+01 eps+2*pi 0.617625E+01
MaxIter = 6 c.s. = 0.21883452 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.13295947E-09
Time Now = 454.1703 Delta time = 96.6660 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.35000000E+01 eV ( 0.12862264E+00 AU)
Time Now = 454.6606 Delta time = 0.4903 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 454.9147 Delta time = 0.2541 Energy independent setup
Compute solution for E = 3.5000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.91840556E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.91840549E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.91840536E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.91840515E-16
For potential 3
Number of asymptotic regions = 99
Final point in integration = 0.26666724E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 472.3216 Delta time = 17.4069 End SolveHomo
Final T matrix
ROW 1
(-0.16344891E-01, 0.40980675E-02) ( 0.43801427E-01,-0.41679342E-02)
(-0.43108717E-01, 0.31362051E-02) ( 0.22438184E-02,-0.20791098E-02)
(-0.38059449E-03, 0.69150887E-03) (-0.56624777E-05,-0.58028836E-04)
( 0.24108455E-05, 0.65545819E-05) (-0.32501977E-06,-0.27816440E-06)
( 0.29286526E-07, 0.13903887E-07)
ROW 2
( 0.43801427E-01,-0.41679342E-02) (-0.45568362E-01, 0.55312229E-02)
( 0.31234054E-01,-0.45954542E-02) (-0.22016696E-01, 0.22205382E-02)
( 0.96945259E-03,-0.92294423E-03) (-0.12618170E-03, 0.24125917E-03)
(-0.18166990E-05,-0.17524730E-04) ( 0.64922980E-06, 0.16738884E-05)
(-0.76319919E-07,-0.63858103E-07)
ROW 3
(-0.43108717E-01, 0.31362051E-02) ( 0.31234054E-01,-0.45954542E-02)
(-0.22181269E-01, 0.41104899E-02) ( 0.23402015E-01,-0.19454141E-02)
(-0.13559904E-01, 0.95390085E-03) ( 0.52238306E-03,-0.44354842E-03)
(-0.58295601E-04, 0.10256219E-03) (-0.37593619E-06,-0.66268998E-05)
( 0.19563905E-06, 0.56408949E-06)
ROW 4
( 0.22438184E-02,-0.20791098E-02) (-0.22016696E-01, 0.22205382E-02)
( 0.23402015E-01,-0.19454141E-02) (-0.15175675E-01, 0.17137323E-02)
( 0.18645259E-01,-0.97449425E-03) (-0.90008356E-02, 0.51815174E-03)
( 0.30108132E-03,-0.24372109E-03) (-0.29284869E-04, 0.49748882E-04)
(-0.10191340E-06,-0.28636491E-05)
ROW 5
(-0.38059451E-03, 0.69150888E-03) ( 0.96945259E-03,-0.92294422E-03)
(-0.13559904E-01, 0.95390085E-03) ( 0.18645259E-01,-0.97449426E-03)
(-0.10939533E-01, 0.93133149E-03) ( 0.15314232E-01,-0.55271924E-03)
(-0.63254708E-02, 0.31684375E-03) ( 0.18529340E-03,-0.14608425E-03)
(-0.15965695E-04, 0.26606640E-04)
ROW 6
(-0.56624792E-05,-0.58028837E-04) (-0.12618170E-03, 0.24125916E-03)
( 0.52238306E-03,-0.44354842E-03) (-0.90008356E-02, 0.51815174E-03)
( 0.15314232E-01,-0.55271924E-03) (-0.81840584E-02, 0.57310191E-03)
( 0.12931946E-01,-0.34059113E-03) (-0.46597609E-02, 0.21075477E-03)
( 0.12097817E-03,-0.93818449E-04)
ROW 7
( 0.24111563E-05, 0.65554143E-05) (-0.18165994E-05,-0.17524892E-04)
(-0.58295594E-04, 0.10256220E-03) ( 0.30108132E-03,-0.24372109E-03)
(-0.63254708E-02, 0.31684375E-03) ( 0.12931946E-01,-0.34059113E-03)
(-0.63358461E-02, 0.38542047E-03) ( 0.11167614E-01,-0.22405469E-03)
(-0.35640210E-02, 0.14942220E-03)
ROW 8
(-0.32504056E-06,-0.27817598E-06) ( 0.64922432E-06, 0.16739058E-05)
(-0.37593722E-06,-0.66269007E-05) (-0.29284869E-04, 0.49748883E-04)
( 0.18529340E-03,-0.14608425E-03) (-0.46597609E-02, 0.21075477E-03)
( 0.11167614E-01,-0.22405469E-03) (-0.50439843E-02, 0.27639262E-03)
( 0.98162440E-02,-0.15507069E-03)
ROW 9
( 0.29289159E-07, 0.13904365E-07) (-0.76320063E-07,-0.63859031E-07)
( 0.19563912E-06, 0.56408952E-06) (-0.10191343E-06,-0.28636491E-05)
(-0.15965695E-04, 0.26606640E-04) ( 0.12097817E-03,-0.93818449E-04)
(-0.35640210E-02, 0.14942220E-03) ( 0.98162440E-02,-0.15507069E-03)
(-0.41077732E-02, 0.20780221E-03)
eigenphases
-0.1185199E+00 -0.4277490E-01 -0.2212097E-01 -0.6420416E-02 -0.5104685E-02
0.5271129E-02 0.9289511E-02 0.1197362E-01 0.3338362E-01
eigenphase sum-0.135023E+00 scattering length= 0.26785
eps+pi 0.300657E+01 eps+2*pi 0.614816E+01
MaxIter = 6 c.s. = 0.24264235 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.25264116E-09
Time Now = 572.4805 Delta time = 100.1589 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 572.9706 Delta time = 0.4901 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 573.2295 Delta time = 0.2589 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80319536E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80319526E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80319507E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80319480E-16
For potential 3
Number of asymptotic regions = 101
Final point in integration = 0.25505983E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 590.5719 Delta time = 17.3424 End SolveHomo
Final T matrix
ROW 1
(-0.30249321E-01, 0.61915313E-02) ( 0.48877208E-01,-0.61112201E-02)
(-0.52667277E-01, 0.46675695E-02) ( 0.28180780E-02,-0.26632791E-02)
(-0.53903737E-03, 0.94118380E-03) (-0.70604713E-05,-0.82970929E-04)
( 0.33296446E-05, 0.10164158E-04) (-0.50047198E-06,-0.46251839E-06)
( 0.48280034E-07, 0.26334240E-07)
ROW 2
( 0.48877208E-01,-0.61112201E-02) (-0.55844591E-01, 0.73130210E-02)
( 0.32550098E-01,-0.59221397E-02) (-0.24689699E-01, 0.27989432E-02)
( 0.11397990E-02,-0.10874667E-02) (-0.16172496E-03, 0.29906623E-03)
(-0.21905922E-05,-0.23014877E-04) ( 0.84594240E-06, 0.23560036E-05)
(-0.10972296E-06,-0.96497978E-07)
ROW 3
(-0.52667277E-01, 0.46675695E-02) ( 0.32550098E-01,-0.59221397E-02)
(-0.24885192E-01, 0.53431610E-02) ( 0.23967377E-01,-0.22957554E-02)
(-0.14951445E-01, 0.11076806E-02) ( 0.61510578E-03,-0.50231902E-03)
(-0.74530460E-04, 0.12351970E-03) (-0.25881254E-06,-0.85258845E-05)
( 0.23658020E-06, 0.77921762E-06)
ROW 4
( 0.28180780E-02,-0.26632790E-02) (-0.24689699E-01, 0.27989432E-02)
( 0.23967377E-01,-0.22957554E-02) (-0.17082616E-01, 0.19683215E-02)
( 0.19021006E-01,-0.11135375E-02) (-0.98435474E-02, 0.58147610E-03)
( 0.35339899E-03,-0.27176736E-03) (-0.37230552E-04, 0.59087811E-04)
(-0.57878244E-08,-0.36426636E-05)
ROW 5
(-0.53903747E-03, 0.94118380E-03) ( 0.11397990E-02,-0.10874667E-02)
(-0.14951445E-01, 0.11076806E-02) ( 0.19021006E-01,-0.11135375E-02)
(-0.12263392E-01, 0.10323629E-02) ( 0.15543318E-01,-0.62253070E-03)
(-0.68745847E-02, 0.34729804E-03) ( 0.21627569E-03,-0.16108436E-03)
(-0.20164274E-04, 0.31287277E-04)
ROW 6
(-0.70604692E-05,-0.82970936E-04) (-0.16172495E-03, 0.29906622E-03)
( 0.61510579E-03,-0.50231903E-03) (-0.98435474E-02, 0.58147610E-03)
( 0.15543318E-01,-0.62253070E-03) (-0.91047121E-02, 0.61986960E-03)
( 0.13075301E-01,-0.37926264E-03) (-0.50429173E-02, 0.22677276E-03)
( 0.14055951E-03,-0.10265804E-03)
ROW 7
( 0.33310324E-05, 0.10166634E-04) (-0.21902879E-05,-0.23015254E-04)
(-0.74530446E-04, 0.12351974E-03) ( 0.35339898E-03,-0.27176737E-03)
(-0.68745847E-02, 0.34729804E-03) ( 0.13075301E-01,-0.37926264E-03)
(-0.70051547E-02, 0.40967375E-03) ( 0.11262001E-01,-0.24750715E-03)
(-0.38460842E-02, 0.15859192E-03)
ROW 8
(-0.50052445E-06,-0.46254265E-06) ( 0.84592071E-06, 0.23560482E-05)
(-0.25881486E-06,-0.85258874E-05) (-0.37230551E-04, 0.59087811E-04)
( 0.21627569E-03,-0.16108436E-03) (-0.50429173E-02, 0.22677276E-03)
( 0.11262001E-01,-0.24750715E-03) (-0.55508654E-02, 0.29019471E-03)
( 0.98813694E-02,-0.17034561E-03)
ROW 9
( 0.48288820E-07, 0.26335188E-07) (-0.10972292E-06,-0.96500678E-07)
( 0.23658036E-06, 0.77921772E-06) (-0.57878930E-08,-0.36426637E-05)
(-0.20164274E-04, 0.31287277E-04) ( 0.14055951E-03,-0.10265804E-03)
(-0.38460842E-02, 0.15859192E-03) ( 0.98813694E-02,-0.17034561E-03)
(-0.45044684E-02, 0.21624010E-03)
eigenphases
-0.1382724E+00 -0.4575009E-01 -0.2323325E-01 -0.1398417E-01 -0.6539879E-02
0.5236623E-02 0.8366657E-02 0.1121766E-01 0.3466593E-01
eigenphase sum-0.168293E+00 scattering length= 0.31335
eps+pi 0.297330E+01 eps+2*pi 0.611489E+01
MaxIter = 6 c.s. = 0.27878916 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.40095470E-09
Time Now = 690.8410 Delta time = 100.2692 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.45000000E+01 eV ( 0.16537197E+00 AU)
Time Now = 691.3320 Delta time = 0.4910 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 691.5855 Delta time = 0.2535 Energy independent setup
Compute solution for E = 4.5000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.83943808E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.83943799E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.83943780E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.83943753E-16
For potential 3
Number of asymptotic regions = 102
Final point in integration = 0.24524154E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 709.2016 Delta time = 17.6161 End SolveHomo
Final T matrix
ROW 1
(-0.48172227E-01, 0.95752144E-02) ( 0.54543399E-01,-0.87819165E-02)
(-0.63544782E-01, 0.68981308E-02) ( 0.34487616E-02,-0.33647250E-02)
(-0.73840772E-03, 0.12506794E-02) (-0.84169713E-05,-0.11443318E-03)
( 0.43815646E-05, 0.15084677E-04) (-0.73028863E-06,-0.72773991E-06)
( 0.74900944E-07, 0.46363420E-07)
ROW 2
( 0.54543399E-01,-0.87819165E-02) (-0.67639120E-01, 0.96606761E-02)
( 0.33620244E-01,-0.75274563E-02) (-0.27161051E-01, 0.34743165E-02)
( 0.12904205E-02,-0.12574520E-02) (-0.19750221E-03, 0.35958920E-03)
(-0.28366863E-05,-0.28946933E-04) ( 0.10800472E-05, 0.31433130E-05)
(-0.15107931E-06,-0.13557836E-06)
ROW 3
(-0.63544782E-01, 0.68981308E-02) ( 0.33620244E-01,-0.75274563E-02)
(-0.27018326E-01, 0.69163782E-02) ( 0.24361568E-01,-0.26451027E-02)
(-0.16221341E-01, 0.12628238E-02) ( 0.70346954E-03,-0.55815002E-03)
(-0.91577358E-04, 0.14472505E-03) (-0.12827282E-06,-0.10560165E-04)
( 0.27819980E-06, 0.10265051E-05)
ROW 4
( 0.34487616E-02,-0.33647250E-02) (-0.27161051E-01, 0.34743165E-02)
( 0.24361568E-01,-0.26451027E-02) (-0.18792135E-01, 0.22209232E-02)
( 0.19341954E-01,-0.12448193E-02) (-0.10631004E-01, 0.64454588E-03)
( 0.40541384E-03,-0.29876812E-03) (-0.45769115E-04, 0.68591734E-04)
( 0.11794833E-06,-0.44869179E-05)
ROW 5
(-0.73840772E-03, 0.12506794E-02) ( 0.12904205E-02,-0.12574520E-02)
(-0.16221341E-01, 0.12628238E-02) ( 0.19341954E-01,-0.12448193E-02)
(-0.13519030E-01, 0.11331093E-02) ( 0.15747871E-01,-0.68985170E-03)
(-0.73898444E-02, 0.37808511E-03) ( 0.24736239E-03,-0.17552387E-03)
(-0.24689303E-04, 0.36041469E-04)
ROW 6
(-0.84169505E-05,-0.11443318E-03) (-0.19750219E-03, 0.35958919E-03)
( 0.70346957E-03,-0.55815004E-03) (-0.10631004E-01, 0.64454589E-03)
( 0.15747871E-01,-0.68985170E-03) (-0.99827153E-02, 0.66679888E-03)
( 0.13204113E-01,-0.41651837E-03) (-0.54024998E-02, 0.24290661E-03)
( 0.16023125E-03,-0.11112168E-03)
ROW 7
( 0.43815620E-05, 0.15084677E-04) (-0.28366872E-05,-0.28946931E-04)
(-0.91577361E-04, 0.14472505E-03) ( 0.40541384E-03,-0.29876812E-03)
(-0.73898444E-02, 0.37808511E-03) ( 0.13204113E-01,-0.41651837E-03)
(-0.76420026E-02, 0.43391270E-03) ( 0.11346719E-01,-0.26997830E-03)
(-0.41107844E-02, 0.16777795E-03)
ROW 8
(-0.73043129E-06,-0.72777088E-06) ( 0.10799849E-05, 0.31434075E-05)
(-0.12827687E-06,-0.10560172E-04) (-0.45769113E-04, 0.68591736E-04)
( 0.24736239E-03,-0.17552387E-03) (-0.54024998E-02, 0.24290661E-03)
( 0.11346719E-01,-0.26997830E-03) (-0.60318815E-02, 0.30391960E-03)
( 0.99396973E-02,-0.18491525E-03)
ROW 9
( 0.74952310E-07, 0.46368377E-07) (-0.15107828E-06,-0.13558478E-06)
( 0.27820011E-06, 0.10265054E-05) ( 0.11794815E-06,-0.44869180E-05)
(-0.24689303E-04, 0.36041469E-04) ( 0.16023125E-03,-0.11112168E-03)
(-0.41107844E-02, 0.16777795E-03) ( 0.99396973E-02,-0.18491525E-03)
(-0.48801090E-02, 0.22459814E-03)
eigenphases
-0.1616980E+00 -0.4872051E-01 -0.2567303E-01 -0.2304345E-01 -0.6780715E-02
0.5168423E-02 0.7304824E-02 0.1051937E-01 0.3637607E-01
eigenphase sum-0.206547E+00 scattering length= 0.36434
eps+pi 0.293505E+01 eps+2*pi 0.607664E+01
MaxIter = 6 c.s. = 0.33025074 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.56369270E-09
Time Now = 820.0379 Delta time = 110.8363 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 820.5291 Delta time = 0.4912 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 820.7876 Delta time = 0.2586 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80841844E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80841835E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80841816E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80841789E-16
For potential 3
Number of asymptotic regions = 104
Final point in integration = 0.23677952E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 838.4035 Delta time = 17.6159 End SolveHomo
Final T matrix
ROW 1
(-0.69200129E-01, 0.14695340E-01) ( 0.60536350E-01,-0.12283118E-01)
(-0.75745854E-01, 0.99702140E-02) ( 0.41426291E-02,-0.41898947E-02)
(-0.98595734E-03, 0.16284080E-02) (-0.91547926E-05,-0.15333114E-03)
( 0.54840638E-05, 0.21622418E-04) (-0.10161576E-05,-0.10987322E-05)
( 0.11037896E-06, 0.77355093E-07)
ROW 2
( 0.60536350E-01,-0.12283118E-01) (-0.81107792E-01, 0.12721064E-01)
( 0.34449926E-01,-0.94512018E-02) (-0.29439493E-01, 0.42588114E-02)
( 0.14163363E-02,-0.14341916E-02) (-0.23199029E-03, 0.42244924E-03)
(-0.38968194E-05,-0.35203230E-04) ( 0.13654269E-05, 0.40218746E-05)
(-0.20141704E-06,-0.17985605E-06)
ROW 3
(-0.75745854E-01, 0.99702140E-02) ( 0.34449926E-01,-0.94512018E-02)
(-0.28485939E-01, 0.89215176E-02) ( 0.24575481E-01,-0.29940588E-02)
(-0.17365389E-01, 0.14175993E-02) ( 0.78497324E-03,-0.61034727E-03)
(-0.10891253E-03, 0.16584487E-03) (-0.20205543E-07,-0.12681673E-04)
( 0.32240172E-06, 0.13014596E-05)
ROW 4
( 0.41426291E-02,-0.41898947E-02) (-0.29439493E-01, 0.42588114E-02)
( 0.24575481E-01,-0.29940588E-02) (-0.20262431E-01, 0.24656348E-02)
( 0.19611068E-01,-0.13659236E-02) (-0.11368884E-01, 0.70604992E-03)
( 0.45661243E-03,-0.32470313E-03) (-0.54799659E-04, 0.78202882E-04)
( 0.26307751E-06,-0.53878351E-05)
ROW 5
(-0.98595734E-03, 0.16284080E-02) ( 0.14163363E-02,-0.14341916E-02)
(-0.17365389E-01, 0.14175993E-02) ( 0.19611068E-01,-0.13659236E-02)
(-0.14703619E-01, 0.12321798E-02) ( 0.15932961E-01,-0.75453614E-03)
(-0.78765745E-02, 0.40907214E-03) ( 0.27844053E-03,-0.18950182E-03)
(-0.29510062E-04, 0.40859855E-04)
ROW 6
(-0.91547304E-05,-0.15333112E-03) (-0.23199022E-03, 0.42244924E-03)
( 0.78497332E-03,-0.61034729E-03) (-0.11368884E-01, 0.70604995E-03)
( 0.15932961E-01,-0.75453615E-03) (-0.10821924E-01, 0.71383005E-03)
( 0.13322391E-01,-0.45254800E-03) (-0.57426264E-02, 0.25917425E-03)
( 0.17996691E-03,-0.11928713E-03)
ROW 7
( 0.54840572E-05, 0.21622411E-04) (-0.38968235E-05,-0.35203229E-04)
(-0.10891254E-03, 0.16584488E-03) ( 0.45661243E-03,-0.32470313E-03)
(-0.78765745E-02, 0.40907214E-03) ( 0.13322391E-01,-0.45254800E-03)
(-0.82508001E-02, 0.45821952E-03) ( 0.11424649E-01,-0.29163840E-03)
(-0.43611369E-02, 0.17700730E-03)
ROW 8
(-0.10166954E-05,-0.10987292E-05) ( 0.13652809E-05, 0.40220493E-05)
(-0.20210623E-07,-0.12681690E-04) (-0.54799655E-04, 0.78202888E-04)
( 0.27844053E-03,-0.18950182E-03) (-0.57426264E-02, 0.25917425E-03)
( 0.11424649E-01,-0.29163840E-03) (-0.64908429E-02, 0.31763784E-03)
( 0.99932933E-02,-0.19890327E-03)
ROW 9
( 0.11032244E-06, 0.77404448E-07) (-0.20141313E-06,-0.17986916E-06)
( 0.32240217E-06, 0.13014605E-05) ( 0.26307715E-06,-0.53878355E-05)
(-0.29510062E-04, 0.40859855E-04) ( 0.17996691E-03,-0.11928713E-03)
(-0.43611369E-02, 0.17700730E-03) ( 0.99932933E-02,-0.19890327E-03)
(-0.52378897E-02, 0.23292566E-03)
eigenphases
-0.1889505E+00 -0.5167775E-01 -0.3697822E-01 -0.2474672E-01 -0.6954114E-02
0.5053151E-02 0.6194595E-02 0.9894566E-02 0.3904052E-01
eigenphase sum-0.249124E+00 scattering length= 0.41967
eps+pi 0.289247E+01 eps+2*pi 0.603406E+01
MaxIter = 6 c.s. = 0.39891815 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.72843506E-09
Time Now = 949.2893 Delta time = 110.8857 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.55000000E+01 eV ( 0.20212129E+00 AU)
Time Now = 949.7766 Delta time = 0.4873 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 950.0322 Delta time = 0.2556 Energy independent setup
Compute solution for E = 5.5000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80185010E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80185004E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80184991E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.80184973E-16
For potential 3
Number of asymptotic regions = 106
Final point in integration = 0.22937653E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 967.6730 Delta time = 17.6408 End SolveHomo
Final T matrix
ROW 1
(-0.92244718E-01, 0.21898019E-01) ( 0.66537414E-01,-0.16661834E-01)
(-0.89175821E-01, 0.13991263E-01) ( 0.49043271E-02,-0.51377870E-02)
(-0.12885338E-02, 0.20808854E-02) (-0.84427308E-05,-0.20043636E-03)
( 0.64982379E-05, 0.30094839E-04) (-0.13535648E-05,-0.16042168E-05)
( 0.15542754E-06, 0.12357871E-06)
ROW 2
( 0.66537414E-01,-0.16661834E-01) (-0.96280470E-01, 0.16643870E-01)
( 0.35044204E-01,-0.11718472E-01) (-0.31540187E-01, 0.51623950E-02)
( 0.15146815E-02,-0.16193170E-02) (-0.26393281E-03, 0.48747020E-03)
(-0.54979965E-05,-0.41689242E-04) ( 0.17176699E-05, 0.49772957E-05)
(-0.26181124E-06,-0.22782017E-06)
ROW 3
(-0.89175821E-01, 0.13991263E-01) ( 0.35044204E-01,-0.11718472E-01)
(-0.29230626E-01, 0.11456927E-01) ( 0.24599597E-01,-0.33468580E-02)
(-0.18376688E-01, 0.15720807E-02) ( 0.85715708E-03,-0.65826757E-03)
(-0.12594187E-03, 0.18655418E-03) ( 0.21289475E-07,-0.14837718E-04)
( 0.37259117E-06, 0.15980817E-05)
ROW 4
( 0.49043271E-02,-0.51377870E-02) (-0.31540187E-01, 0.51623950E-02)
( 0.24599597E-01,-0.33468580E-02) (-0.21453119E-01, 0.26974761E-02)
( 0.19827770E-01,-0.14745139E-02) (-0.12060227E-01, 0.76453227E-03)
( 0.50645828E-03,-0.34946510E-03) (-0.64211136E-04, 0.87854504E-04)
( 0.42164682E-06,-0.63356603E-05)
ROW 5
(-0.12885338E-02, 0.20808854E-02) ( 0.15146815E-02,-0.16193170E-02)
(-0.18376688E-01, 0.15720807E-02) ( 0.19827770E-01,-0.14745139E-02)
(-0.15812352E-01, 0.13279714E-02) ( 0.16101189E-01,-0.81628274E-03)
(-0.83386675E-02, 0.44006600E-03) ( 0.30938401E-03,-0.20307655E-03)
(-0.34597717E-04, 0.45732943E-04)
ROW 6
(-0.84426363E-05,-0.20043622E-03) (-0.26393268E-03, 0.48747023E-03)
( 0.85715722E-03,-0.65826758E-03) (-0.12060227E-01, 0.76453232E-03)
( 0.16101189E-01,-0.81628275E-03) (-0.11624847E-01, 0.76078299E-03)
( 0.13432541E-01,-0.48746475E-03) (-0.60662587E-02, 0.27556740E-03)
( 0.19973694E-03,-0.12720860E-03)
ROW 7
( 0.64982302E-05, 0.30094814E-04) (-0.54980066E-05,-0.41689247E-04)
(-0.12594188E-03, 0.18655418E-03) ( 0.50645828E-03,-0.34946511E-03)
(-0.83386675E-02, 0.44006600E-03) ( 0.13432541E-01,-0.48746475E-03)
(-0.88348113E-02, 0.48262394E-03) ( 0.11497600E-01,-0.31260981E-03)
(-0.45993561E-02, 0.18629285E-03)
ROW 8
(-0.13527774E-05,-0.16076685E-05) ( 0.17173737E-05, 0.49775850E-05)
( 0.21286734E-07,-0.14837754E-04) (-0.64211131E-04, 0.87854518E-04)
( 0.30938401E-03,-0.20307656E-03) (-0.60662587E-02, 0.27556740E-03)
( 0.11497600E-01,-0.31260981E-03) (-0.69306576E-02, 0.33138881E-03)
( 0.10043474E-01,-0.21240372E-03)
ROW 9
( 0.15539012E-06, 0.12361329E-06) (-0.26180099E-06,-0.22784389E-06)
( 0.37259155E-06, 0.15980837E-05) ( 0.42164622E-06,-0.63356613E-05)
(-0.34597717E-04, 0.45732943E-04) ( 0.19973694E-03,-0.12720860E-03)
(-0.45993561E-02, 0.18629285E-03) ( 0.10043474E-01,-0.21240372E-03)
(-0.55803401E-02, 0.24125195E-03)
eigenphases
-0.2197297E+00 -0.5592859E-01 -0.4923252E-01 -0.2552617E-01 -0.7047914E-02
0.4589138E-02 0.5405993E-02 0.9351868E-02 0.4296504E-01
eigenphase sum-0.295153E+00 scattering length= 0.47819
eps+pi 0.284644E+01 eps+2*pi 0.598803E+01
MaxIter = 6 c.s. = 0.48521277 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.88618507E-09
Time Now = 1078.5998 Delta time = 110.9268 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 1079.0898 Delta time = 0.4900 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 1079.3483 Delta time = 0.2585 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.81298996E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.81298991E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.81298982E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.81298967E-16
For potential 3
Number of asymptotic regions = 107
Final point in integration = 0.22282046E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 1096.9758 Delta time = 17.6274 End SolveHomo
Final T matrix
ROW 1
(-0.11622658E+00, 0.31381132E-01) ( 0.72232076E-01,-0.21904096E-01)
(-0.10367011E+00, 0.19026429E-01) ( 0.57354988E-02,-0.62016684E-02)
(-0.16521976E-02, 0.26124316E-02) (-0.52723929E-05,-0.25633237E-03)
( 0.72288779E-05, 0.40813383E-04) (-0.17310202E-05,-0.22756930E-05)
( 0.21000224E-06, 0.19016549E-06)
ROW 2
( 0.72232076E-01,-0.21904096E-01) (-0.11307136E+00, 0.21572686E-01)
( 0.35408352E-01,-0.14337939E-01) (-0.33481996E-01, 0.61919606E-02)
( 0.15843925E-02,-0.18146031E-02) (-0.29239999E-03, 0.55464143E-03)
(-0.77413485E-05,-0.48338120E-04) ( 0.21520937E-05, 0.59965118E-05)
(-0.33327816E-06,-0.27789880E-06)
ROW 3
(-0.10367011E+00, 0.19026429E-01) ( 0.35408352E-01,-0.14337939E-01)
(-0.29233395E-01, 0.14622506E-01) ( 0.24426738E-01,-0.37112839E-02)
(-0.19247016E-01, 0.17285800E-02) ( 0.91768695E-03,-0.70145916E-03)
(-0.14200736E-03, 0.20655228E-03) (-0.54441991E-07,-0.16973958E-04)
( 0.43380922E-06, 0.19090426E-05)
ROW 4
( 0.57354988E-02,-0.62016684E-02) (-0.33481996E-01, 0.61919606E-02)
( 0.24426738E-01,-0.37112839E-02) (-0.22326625E-01, 0.29127778E-02)
( 0.19989652E-01,-0.15685626E-02) (-0.12706583E-01, 0.81849041E-03)
( 0.55440017E-03,-0.37288667E-03) (-0.73885843E-04, 0.97473811E-04)
( 0.58397420E-06,-0.73194663E-05)
ROW 5
(-0.16521976E-02, 0.26124316E-02) ( 0.15843925E-02,-0.18146031E-02)
(-0.19247016E-01, 0.17285800E-02) ( 0.19989652E-01,-0.15685626E-02)
(-0.16839397E-01, 0.14188202E-02) ( 0.16253685E-01,-0.87468964E-03)
(-0.87787473E-02, 0.47082669E-03) ( 0.34005659E-03,-0.21627468E-03)
(-0.39919767E-04, 0.50650196E-04)
ROW 6
(-0.52723929E-05,-0.25633237E-03) (-0.29239999E-03, 0.55464143E-03)
( 0.91768695E-03,-0.70145916E-03) (-0.12706583E-01, 0.81849041E-03)
( 0.16253685E-01,-0.87468964E-03) (-0.12392800E-01, 0.80739779E-03)
( 0.13536002E-01,-0.52131834E-03) (-0.63756316E-02, 0.29206065E-03)
( 0.21950726E-03,-0.13492594E-03)
ROW 7
( 0.72288815E-05, 0.40813324E-04) (-0.77413656E-05,-0.48338141E-04)
(-0.14200738E-03, 0.20655229E-03) ( 0.55440017E-03,-0.37288668E-03)
(-0.87787473E-02, 0.47082669E-03) ( 0.13536002E-01,-0.52131834E-03)
(-0.93964776E-02, 0.50711895E-03) ( 0.11566736E-01,-0.33298329E-03)
(-0.48272333E-02, 0.19563973E-03)
ROW 8
(-0.17310197E-05,-0.22756882E-05) ( 0.21520965E-05, 0.59965138E-05)
(-0.54439636E-07,-0.16973960E-04) (-0.73885844E-04, 0.97473813E-04)
( 0.34005659E-03,-0.21627468E-03) (-0.63756316E-02, 0.29206065E-03)
( 0.11566736E-01,-0.33298329E-03) (-0.73536725E-02, 0.34519297E-03)
( 0.10091105E-01,-0.22548758E-03)
ROW 9
( 0.20996677E-06, 0.19020469E-06) (-0.33325618E-06,-0.27793787E-06)
( 0.43380893E-06, 0.19090466E-05) ( 0.58397340E-06,-0.73194685E-05)
(-0.39919766E-04, 0.50650197E-04) ( 0.21950726E-03,-0.13492594E-03)
(-0.48272333E-02, 0.19563973E-03) ( 0.10091105E-01,-0.22548758E-03)
(-0.59093208E-02, 0.24959566E-03)
eigenphases
-0.2534387E+00 -0.6873522E-01 -0.5432801E-01 -0.2611143E-01 -0.7063469E-02
0.3546900E-02 0.5221618E-02 0.8897041E-02 0.4828544E-01
eigenphase sum-0.343726E+00 scattering length= 0.53900
eps+pi 0.279787E+01 eps+2*pi 0.593946E+01
MaxIter = 6 c.s. = 0.58820532 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.10312008E-08
Time Now = 1218.4195 Delta time = 121.4437 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.65000000E+01 eV ( 0.23887062E+00 AU)
Time Now = 1218.9071 Delta time = 0.4876 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 1219.1630 Delta time = 0.2559 Energy independent setup
Compute solution for E = 6.5000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.64231201E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.64231196E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.64231186E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.64231169E-16
For potential 3
Number of asymptotic regions = 108
Final point in integration = 0.21695509E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 1236.8595 Delta time = 17.6966 End SolveHomo
Final T matrix
ROW 1
(-0.14018023E+00, 0.43187521E-01) ( 0.77345187E-01,-0.27940327E-01)
(-0.11902047E+00, 0.25096973E-01) ( 0.66348601E-02,-0.73706359E-02)
(-0.20819751E-02, 0.32251215E-02) ( 0.14658726E-05,-0.32139097E-03)
( 0.74296917E-05, 0.54069370E-04) (-0.21299286E-05,-0.31460731E-05)
( 0.27311659E-06, 0.28301454E-06)
ROW 2
( 0.77345187E-01,-0.27940327E-01) (-0.13130290E+00, 0.27636507E-01)
( 0.35547869E-01,-0.17302402E-01) (-0.35285298E-01, 0.73511700E-02)
( 0.16257922E-02,-0.20218157E-02) (-0.31680968E-03, 0.62405340E-03)
(-0.10695777E-04,-0.55113207E-04) ( 0.26818477E-05, 0.70686761E-05)
(-0.41665857E-06,-0.32868250E-06)
ROW 3
(-0.11902047E+00, 0.25096973E-01) ( 0.35547869E-01,-0.17302402E-01)
(-0.28512114E-01, 0.18513699E-01) ( 0.24053551E-01,-0.40982302E-02)
(-0.19968596E-01, 0.18918508E-02) ( 0.96442109E-03,-0.73975794E-03)
(-0.15640743E-03, 0.22559864E-03) (-0.30382833E-06,-0.19037592E-04)
( 0.51276844E-06, 0.22261983E-05)
ROW 4
( 0.66348601E-02,-0.73706359E-02) (-0.35285298E-01, 0.73511700E-02)
( 0.24053551E-01,-0.40982302E-02) (-0.22849348E-01, 0.31094150E-02)
( 0.20093447E-01,-0.16465270E-02) (-0.13308001E-01, 0.86643862E-03)
( 0.59988969E-03,-0.39476337E-03) (-0.83692421E-04, 0.10697879E-03)
( 0.73922372E-06,-0.83270962E-05)
ROW 5
(-0.20819751E-02, 0.32251215E-02) ( 0.16257922E-02,-0.20218157E-02)
(-0.19968596E-01, 0.18918508E-02) ( 0.20093447E-01,-0.16465270E-02)
(-0.17778070E-01, 0.15031499E-02) ( 0.16390685E-01,-0.92929046E-03)
(-0.91988121E-02, 0.50108638E-03) ( 0.37031256E-03,-0.22910130E-03)
(-0.45445129E-04, 0.55599711E-04)
ROW 6
( 0.14658754E-05,-0.32139097E-03) (-0.31680967E-03, 0.62405340E-03)
( 0.96442109E-03,-0.73975794E-03) (-0.13308001E-01, 0.86643862E-03)
( 0.16390685E-01,-0.92929046E-03) (-0.13126391E-01, 0.85335008E-03)
( 0.13633599E-01,-0.55411600E-03) (-0.66724102E-02, 0.30861530E-03)
( 0.23923904E-03,-0.14246567E-03)
ROW 7
( 0.74297363E-05, 0.54069255E-04) (-0.10695796E-04,-0.55113258E-04)
(-0.15640746E-03, 0.22559864E-03) ( 0.59988970E-03,-0.39476339E-03)
(-0.91988121E-02, 0.50108638E-03) ( 0.13633599E-01,-0.55411600E-03)
(-0.99375944E-02, 0.53167458E-03) ( 0.11632812E-01,-0.35282162E-03)
(-0.50460854E-02, 0.20504655E-03)
ROW 8
(-0.21299308E-05,-0.31460625E-05) ( 0.26818517E-05, 0.70686812E-05)
(-0.30382389E-06,-0.19037594E-04) (-0.83692422E-04, 0.10697879E-03)
( 0.37031256E-03,-0.22910130E-03) (-0.66724102E-02, 0.30861530E-03)
( 0.11632812E-01,-0.35282162E-03) (-0.77616796E-02, 0.35905846E-03)
( 0.10136776E-01,-0.23821092E-03)
ROW 9
( 0.27308093E-06, 0.28306095E-06) (-0.41661732E-06,-0.32874220E-06)
( 0.51276617E-06, 0.22262055E-05) ( 0.73922299E-06,-0.83271006E-05)
(-0.45445128E-04, 0.55599712E-04) ( 0.23923904E-03,-0.14246567E-03)
(-0.50460854E-02, 0.20504655E-03) ( 0.10136776E-01,-0.23821092E-03)
(-0.62264363E-02, 0.25796745E-03)
eigenphases
-0.2893723E+00 -0.8598314E-01 -0.5626397E-01 -0.2654507E-01 -0.7008348E-02
0.2444145E-02 0.5158546E-02 0.8538525E-02 0.5502536E-01
eigenphase sum-0.394006E+00 scattering length= 0.60149
eps+pi 0.274759E+01 eps+2*pi 0.588918E+01
MaxIter = 6 c.s. = 0.70598137 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.11602489E-08
Time Now = 1354.9437 Delta time = 118.0841 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.70000000E+01 eV ( 0.25724528E+00 AU)
Time Now = 1355.4340 Delta time = 0.4903 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 69
Number of partial waves (np) = 63
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 14
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 144
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 33
Time Now = 1355.6933 Delta time = 0.2593 Energy independent setup
Compute solution for E = 7.0000000000 eV
Found fege potential
Charge on the molecule (zz) = -1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.47184479E-15 Asymp Coef = -0.24361939E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.66083489E-03 Asymp Moment = 0.41066176E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33244772E-18 Asymp Moment = 0.40411402E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48408987E-03 Asymp Moment = -0.58844592E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.56538566E-16
i = 2 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.56538555E-16
i = 3 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.56538534E-16
i = 4 exps = -0.88715474E+02 -0.20000000E+01 stpote = -0.56538504E-16
For potential 3
Number of asymptotic regions = 109
Final point in integration = 0.21166236E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 1373.3757 Delta time = 17.6824 End SolveHomo
Final T matrix
ROW 1
(-0.16330204E+00, 0.57225670E-01) ( 0.81657512E-01,-0.34657374E-01)
(-0.13499648E+00, 0.32183700E-01) ( 0.75985712E-02,-0.86308044E-02)
(-0.25817423E-02, 0.39188217E-02) ( 0.12911499E-04,-0.39576672E-03)
( 0.68108062E-05, 0.70120517E-04) (-0.25250343E-05,-0.42483990E-05)
( 0.34270687E-06, 0.40862560E-06)
ROW 2
( 0.81657512E-01,-0.34657374E-01) (-0.15073481E+00, 0.34942820E-01)
( 0.35468284E-01,-0.20590918E-01) (-0.36970062E-01, 0.86407137E-02)
( 0.16401965E-02,-0.22425658E-02) (-0.33690214E-03, 0.69586499E-03)
(-0.14396703E-04,-0.62005746E-04) ( 0.33166402E-05, 0.81859467E-05)
(-0.51252567E-06,-0.37906825E-06)
ROW 3
(-0.13499648E+00, 0.32183700E-01) ( 0.35468284E-01,-0.20590918E-01)
(-0.27117898E-01, 0.23215616E-01) ( 0.23481203E-01,-0.45209144E-02)
(-0.20534892E-01, 0.20690299E-02) ( 0.99548124E-03,-0.77335696E-03)
(-0.16841785E-03, 0.24352845E-03) (-0.78705866E-06,-0.20981071E-04)
( 0.61778654E-06, 0.25410078E-05)
ROW 4
( 0.75985712E-02,-0.86308044E-02) (-0.36970062E-01, 0.86407137E-02)
( 0.23481203E-01,-0.45209144E-02) (-0.22991651E-01, 0.32868957E-02)
( 0.20135622E-01,-0.17074697E-02) (-0.13863821E-01, 0.90697561E-03)
( 0.64238666E-03,-0.41487192E-03) (-0.93490457E-04, 0.11628416E-03)
( 0.87540899E-06,-0.93453486E-05)
ROW 5
(-0.25817423E-02, 0.39188217E-02) ( 0.16401966E-02,-0.22425658E-02)
(-0.20534892E-01, 0.20690299E-02) ( 0.20135622E-01,-0.17074697E-02)
(-0.18621540E-01, 0.15795900E-02) ( 0.16511874E-01,-0.97959780E-03)
(-0.96001066E-02, 0.53055556E-03) ( 0.40000250E-03,-0.24154428E-03)
(-0.51139323E-04, 0.60566906E-04)
ROW 6
( 0.12911504E-04,-0.39576672E-03) (-0.33690214E-03, 0.69586499E-03)
( 0.99548124E-03,-0.77335696E-03) (-0.13863821E-01, 0.90697561E-03)
( 0.16511874E-01,-0.97959780E-03) (-0.13825521E-01, 0.89827564E-03)
( 0.13725762E-01,-0.58582799E-03) (-0.69579729E-02, 0.32518440E-03)
( 0.25888877E-03,-0.14984603E-03)
ROW 7
( 0.68109487E-05, 0.70120326E-04) (-0.14396713E-04,-0.62005846E-04)
(-0.16841790E-03, 0.24352845E-03) ( 0.64238668E-03,-0.41487195E-03)
(-0.96001066E-02, 0.53055557E-03) ( 0.13725762E-01,-0.58582799E-03)
(-0.10459535E-01, 0.55624076E-03) ( 0.11696310E-01,-0.37216941E-03)
(-0.52569210E-02, 0.21450728E-03)
ROW 8
(-0.25250446E-05,-0.42483798E-05) ( 0.33166450E-05, 0.81859572E-05)
(-0.78705118E-06,-0.20981075E-04) (-0.93490460E-04, 0.11628417E-03)
( 0.40000250E-03,-0.24154428E-03) (-0.69579729E-02, 0.32518440E-03)
( 0.11696310E-01,-0.37216941E-03) (-0.81560836E-02, 0.37298569E-03)
( 0.10180888E-01,-0.25061628E-03)
ROW 9
( 0.34267331E-06, 0.40867912E-06) (-0.51245534E-06,-0.37915415E-06)
( 0.61777994E-06, 0.25410194E-05) ( 0.87540895E-06,-0.93453563E-05)
(-0.51139323E-04, 0.60566907E-04) ( 0.25888877E-03,-0.14984603E-03)
(-0.52569210E-02, 0.21450728E-03) ( 0.10180888E-01,-0.25061628E-03)
(-0.65329635E-02, 0.26637312E-03)
eigenphases
-0.3268517E+00 -0.1050803E+00 -0.5754367E-01 -0.2684803E-01 -0.6888507E-02
0.1406790E-02 0.5108860E-02 0.8290359E-02 0.6313077E-01
eigenphase sum-0.445275E+00 scattering length= 0.66535
eps+pi 0.269632E+01 eps+2*pi 0.583791E+01
MaxIter = 6 c.s. = 0.83604884 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.12718495E-08
Time Now = 1491.3606 Delta time = 117.9849 End ScatStab
+ Command TotalCrossSection
+
Using LMaxK 8
Continuum Symmetry S -
Target Symmetry S
Total Symmetry S
E (eV) XS(angs^2) EPS(radians)
1.500000 0.196593 -0.045517
2.000000 0.196858 -0.063583
2.500000 0.204259 -0.083537
3.000000 0.218835 -0.106938
3.500000 0.242642 -0.135023
4.000000 0.278789 -0.168293
4.500000 0.330251 -0.206547
5.000000 0.398918 -0.249124
5.500000 0.485213 -0.295153
6.000000 0.588205 -0.343726
6.500000 0.705981 -0.394006
7.000000 0.836049 -0.445275
Largest value of LMaxK found 8
Total Cross Sections
Energy Total Cross Section
1.50000 0.19659
2.00000 0.19686
2.50000 0.20426
3.00000 0.21883
3.50000 0.24264
4.00000 0.27879
4.50000 0.33025
5.00000 0.39892
5.50000 0.48521
6.00000 0.58821
6.50000 0.70598
7.00000 0.83605
Time Now = 1491.3700 Delta time = 0.0094 Finalize