Execution on n0213.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:16.223 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test32
#
# electron scattering from Pt atom
#
LMax 8 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0 # charge, formula type
FegeEng 10.0 # Energy correction (in eV) used in the fege potential
LMaxK 5 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test32.molden2012' 'molden'
GetBlms
ExpOrb
GetPot
ScatContSym 'AG' # Scattering symmetry
Scat 1.0
TotalCrossSection
+ End of input reached
+ Data Record LMax - 8
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record FegeEng - 10.0
+ Data Record LMaxK - 5
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test32.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 98 basis functions
Selecting orbitals
Number of orbitals selected is 39
Selecting 1 1 SymOrb = 1.1 Ene = -2898.0841 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 2.1 Ene = -514.4352 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 1.5 Ene = -447.2585 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 1.2 Ene = -447.2585 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 1.3 Ene = -447.2585 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 3.1 Ene = -123.2163 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 2.5 Ene = -103.2581 Spin =Alpha Occup = 2.000000
Selecting 8 8 SymOrb = 2.2 Ene = -103.2581 Spin =Alpha Occup = 2.000000
Selecting 9 9 SymOrb = 2.3 Ene = -103.2581 Spin =Alpha Occup = 2.000000
Selecting 10 10 SymOrb = 4.1 Ene = -80.7532 Spin =Alpha Occup = 2.000000
Selecting 11 11 SymOrb = 1.7 Ene = -80.7532 Spin =Alpha Occup = 2.000000
Selecting 12 12 SymOrb = 1.6 Ene = -80.7532 Spin =Alpha Occup = 2.000000
Selecting 13 13 SymOrb = 1.4 Ene = -80.7532 Spin =Alpha Occup = 2.000000
Selecting 14 14 SymOrb = 5.1 Ene = -80.7532 Spin =Alpha Occup = 2.000000
Selecting 15 15 SymOrb = 6.1 Ene = -27.7031 Spin =Alpha Occup = 2.000000
Selecting 16 16 SymOrb = 3.5 Ene = -21.0225 Spin =Alpha Occup = 2.000000
Selecting 17 17 SymOrb = 3.3 Ene = -21.0225 Spin =Alpha Occup = 2.000000
Selecting 18 18 SymOrb = 3.2 Ene = -21.0225 Spin =Alpha Occup = 2.000000
Selecting 19 19 SymOrb = 7.1 Ene = -12.5972 Spin =Alpha Occup = 2.000000
Selecting 20 20 SymOrb = 2.7 Ene = -12.5972 Spin =Alpha Occup = 2.000000
Selecting 21 21 SymOrb = 2.6 Ene = -12.5972 Spin =Alpha Occup = 2.000000
Selecting 22 22 SymOrb = 2.4 Ene = -12.5972 Spin =Alpha Occup = 2.000000
Selecting 23 23 SymOrb = 8.1 Ene = -12.5972 Spin =Alpha Occup = 2.000000
Selecting 24 24 SymOrb = 9.1 Ene = -4.2974 Spin =Alpha Occup = 2.000000
Selecting 25 25 SymOrb = 4.5 Ene = -3.2372 Spin =Alpha Occup = 2.000000
Selecting 26 26 SymOrb = 4.2 Ene = -3.2372 Spin =Alpha Occup = 2.000000
Selecting 27 27 SymOrb = 4.3 Ene = -3.2372 Spin =Alpha Occup = 2.000000
Selecting 28 28 SymOrb = 5.5 Ene = -3.2372 Spin =Alpha Occup = 2.000000
Selecting 29 29 SymOrb = 1.8 Ene = -3.2372 Spin =Alpha Occup = 2.000000
Selecting 30 30 SymOrb = 5.2 Ene = -3.2372 Spin =Alpha Occup = 2.000000
Selecting 31 31 SymOrb = 5.3 Ene = -3.2372 Spin =Alpha Occup = 2.000000
Selecting 32 32 SymOrb = 6.3 Ene = -2.4666 Spin =Alpha Occup = 2.000000
Selecting 33 33 SymOrb = 6.2 Ene = -2.4666 Spin =Alpha Occup = 2.000000
Selecting 34 34 SymOrb = 6.5 Ene = -2.4666 Spin =Alpha Occup = 2.000000
Selecting 35 35 SymOrb = 3.4 Ene = -0.3222 Spin =Alpha Occup = 2.000000
Selecting 36 36 SymOrb = 10.1 Ene = -0.3222 Spin =Alpha Occup = 2.000000
Selecting 37 37 SymOrb = 11.1 Ene = -0.3222 Spin =Alpha Occup = 2.000000
Selecting 38 38 SymOrb = 3.7 Ene = -0.3222 Spin =Alpha Occup = 2.000000
Selecting 39 39 SymOrb = 3.6 Ene = -0.3222 Spin =Alpha Occup = 2.000000
Atoms found 1 Coordinates in Angstroms
Z = 78 ZS = 78 r = 0.0000000000 0.0000000000 0.0000000000
Maximum distance from expansion center is 0.0000000000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Ih
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.1036 Delta time = 0.1036 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 8
Determining angular grid in GetAxMax LMax = 8 LMaxA = 8 LMaxAb = 16
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Ih
LMax 8
The dimension of each irreducable representation is
AG ( 1) T1G ( 3) T2G ( 3) GG ( 4) HG ( 5)
AU ( 1) T1U ( 3) T2U ( 3) GU ( 4) HU ( 5)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
18 29 30 2 5 4 3
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 2 1 1 1 1 1 1 1
T1G 1 2 1 -1 -1 1 1 -1 -1 1
T1G 2 3 1 -1 1 -1 1 -1 1 -1
T1G 3 4 1 1 -1 -1 1 1 -1 -1
T2G 1 5 1 -1 -1 1 1 -1 -1 1
T2G 2 6 1 -1 1 -1 1 -1 1 -1
T2G 3 7 1 1 -1 -1 1 1 -1 -1
GG 1 8 3 -1 -1 1 1 -1 -1 1
GG 2 9 3 -1 1 -1 1 -1 1 -1
GG 3 10 3 1 -1 -1 1 1 -1 -1
GG 4 11 3 1 1 1 1 1 1 1
HG 1 12 5 -1 -1 1 1 -1 -1 1
HG 2 13 5 -1 1 -1 1 -1 1 -1
HG 3 14 5 1 -1 -1 1 1 -1 -1
HG 4 15 5 1 1 1 1 1 1 1
HG 5 16 5 1 1 1 1 1 1 1
AU 1 17 0 1 1 1 -1 -1 -1 -1
T1U 1 18 3 -1 -1 1 -1 1 1 -1
T1U 2 19 3 -1 1 -1 -1 1 -1 1
T1U 3 20 3 1 -1 -1 -1 -1 1 1
T2U 1 21 3 -1 -1 1 -1 1 1 -1
T2U 2 22 3 -1 1 -1 -1 1 -1 1
T2U 3 23 3 1 -1 -1 -1 -1 1 1
GU 1 24 2 -1 -1 1 -1 1 1 -1
GU 2 25 2 -1 1 -1 -1 1 -1 1
GU 3 26 2 1 -1 -1 -1 -1 1 1
GU 4 27 2 1 1 1 -1 -1 -1 -1
HU 1 28 2 -1 -1 1 -1 1 1 -1
HU 2 29 2 -1 1 -1 -1 1 -1 1
HU 3 30 2 1 -1 -1 -1 -1 1 1
HU 4 31 2 1 1 1 -1 -1 -1 -1
HU 5 32 2 1 1 1 -1 -1 -1 -1
Time Now = 0.5313 Delta time = 0.4277 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
AG 1 0( 1) 1( 1) 2( 1) 3( 1) 4( 1) 5( 1) 6( 2) 7( 2) 8( 2)
T1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1)
T1G 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1)
T1G 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1)
T2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 1)
T2G 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 1)
T2G 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 1)
GG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 3)
GG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 3)
GG 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 3)
GG 4 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 3)
HG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5)
HG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5)
HG 3 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5)
HG 4 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5)
HG 5 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5)
AU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0)
T1U 1 0( 0) 1( 1) 2( 1) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3)
T1U 2 0( 0) 1( 1) 2( 1) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3)
T1U 3 0( 0) 1( 1) 2( 1) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3)
T2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3)
T2U 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3)
T2U 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3)
GU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1) 6( 1) 7( 2) 8( 2)
GU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1) 6( 1) 7( 2) 8( 2)
GU 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1) 6( 1) 7( 2) 8( 2)
GU 4 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1) 6( 1) 7( 2) 8( 2)
HU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2)
HU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2)
HU 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2)
HU 4 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2)
HU 5 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 16
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
4 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
8 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 4 sym =B3G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 1 -1 -1 1 -1 1
irep = 8 sym =B3U 1 eigs = 1 -1 -1 1 -1 1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 45 1 1 1 1 1 1 1
B1G 1 2 36 1 -1 -1 1 1 -1 -1
B2G 1 3 36 -1 1 -1 1 -1 1 -1
B3G 1 4 36 -1 -1 1 1 -1 -1 1
AU 1 5 28 1 1 1 -1 -1 -1 -1
B1U 1 6 36 1 -1 -1 -1 -1 1 1
B2U 1 7 36 -1 1 -1 -1 1 -1 1
B3U 1 8 36 -1 -1 1 -1 1 1 -1
Time Now = 0.5337 Delta time = 0.0024 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 14.7228479157 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 14.72285 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 14.72285 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.12054E+10
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.15242E-05 0.00001
2 8 16 0.16249E-05 0.00003
3 8 24 0.20030E-05 0.00004
4 8 32 0.30391E-05 0.00007
5 8 40 0.48317E-05 0.00010
6 8 48 0.76818E-05 0.00017
7 8 56 0.12213E-04 0.00026
8 8 64 0.19417E-04 0.00042
9 8 72 0.30870E-04 0.00067
10 8 80 0.49080E-04 0.00106
11 8 88 0.78030E-04 0.00168
12 8 96 0.12406E-03 0.00267
13 8 104 0.19723E-03 0.00425
14 8 112 0.31357E-03 0.00676
15 8 120 0.49854E-03 0.01075
16 8 128 0.79261E-03 0.01709
17 8 136 0.12601E-02 0.02717
18 8 144 0.20035E-02 0.04320
19 8 152 0.31852E-02 0.06868
20 8 160 0.50641E-02 0.10919
21 8 168 0.80512E-02 0.17360
22 8 176 0.12800E-01 0.27601
23 8 184 0.20351E-01 0.43881
24 8 192 0.23127E-01 0.62383
25 8 200 0.24952E-01 0.82344
26 8 208 0.28295E-01 1.04980
27 8 216 0.31490E-01 1.30172
28 8 224 0.34524E-01 1.57791
29 8 232 0.37387E-01 1.87701
30 8 240 0.40077E-01 2.19762
31 8 248 0.42595E-01 2.53838
32 8 256 0.44945E-01 2.89794
33 8 264 0.47135E-01 3.27502
34 8 272 0.49171E-01 3.66839
35 8 280 0.51064E-01 4.07690
36 8 288 0.52822E-01 4.49948
37 8 296 0.54455E-01 4.93513
38 8 304 0.55972E-01 5.38290
39 8 312 0.57382E-01 5.84196
40 8 320 0.58693E-01 6.31150
41 8 328 0.59913E-01 6.79081
42 8 336 0.61050E-01 7.27921
43 8 344 0.62110E-01 7.77609
44 8 352 0.63100E-01 8.28088
45 8 360 0.64025E-01 8.79308
46 8 368 0.64890E-01 9.31220
47 8 376 0.65701E-01 9.83781
48 8 384 0.66462E-01 10.36951
49 8 392 0.67176E-01 10.90692
50 8 400 0.67848E-01 11.44970
51 8 408 0.68481E-01 11.99755
52 8 416 0.69077E-01 12.55017
53 8 424 0.69640E-01 13.10728
54 8 432 0.70171E-01 13.66866
55 8 440 0.70674E-01 14.23405
56 8 448 0.61100E-01 14.72285
Time Now = 0.5717 Delta time = 0.0380 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 8
Maximum scattering m (mmaxs) = 8
Maximum numerical integration l (lmaxi) = 16
Maximum numerical integration m (mmaxi) = 16
Maximum l to include in the asymptotic region (lmasym) = 8
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 6
Actual value of lmasym found = 8
Number of regions of the same l expansion (NAngReg) = 7
Angular regions
1 L = 2 from ( 1) 0.00000 to ( 7) 0.00001
2 L = 3 from ( 8) 0.00001 to ( 31) 0.00006
3 L = 4 from ( 32) 0.00007 to ( 55) 0.00025
4 L = 5 from ( 56) 0.00026 to ( 71) 0.00063
5 L = 6 from ( 72) 0.00067 to ( 87) 0.00160
6 L = 7 from ( 88) 0.00168 to ( 95) 0.00255
7 L = 8 from ( 96) 0.00267 to ( 448) 14.72285
There are 1 angular regions for computing spherical harmonics
1 lval = 8
Maximum number of processors is 55
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 72
Proc id = 1 Last grid point = 96
Proc id = 2 Last grid point = 120
Proc id = 3 Last grid point = 136
Proc id = 4 Last grid point = 160
Proc id = 5 Last grid point = 176
Proc id = 6 Last grid point = 200
Proc id = 7 Last grid point = 216
Proc id = 8 Last grid point = 240
Proc id = 9 Last grid point = 256
Proc id = 10 Last grid point = 272
Proc id = 11 Last grid point = 296
Proc id = 12 Last grid point = 312
Proc id = 13 Last grid point = 336
Proc id = 14 Last grid point = 352
Proc id = 15 Last grid point = 376
Proc id = 16 Last grid point = 392
Proc id = 17 Last grid point = 416
Proc id = 18 Last grid point = 432
Proc id = 19 Last grid point = 448
Time Now = 0.5720 Delta time = 0.0004 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng =-2898.084100 AG 1 at max irg = 104 r = 0.00425
2 Orig 2 Eng = -514.435200 AG 1 at max irg = 136 r = 0.02717
3 Orig 3 Eng = -447.258500 T1U 1 at max irg = 136 r = 0.02717
4 Orig 4 Eng = -447.258500 T1U 2 at max irg = 136 r = 0.02717
5 Orig 5 Eng = -447.258500 T1U 3 at max irg = 136 r = 0.02717
6 Orig 6 Eng = -123.216300 AG 1 at max irg = 160 r = 0.10919
7 Orig 7 Eng = -103.258100 T1U 1 at max irg = 160 r = 0.10919
8 Orig 8 Eng = -103.258100 T1U 2 at max irg = 160 r = 0.10919
9 Orig 9 Eng = -103.258100 T1U 3 at max irg = 160 r = 0.10919
10 Orig 10 Eng = -80.753200 HG 1 at max irg = 152 r = 0.06868
11 Orig 11 Eng = -80.753200 HG 2 at max irg = 152 r = 0.06868
12 Orig 12 Eng = -80.753200 HG 3 at max irg = 152 r = 0.06868
13 Orig 13 Eng = -80.753200 HG 4 at max irg = 152 r = 0.06868
14 Orig 14 Eng = -80.753200 HG 5 at max irg = 152 r = 0.06868
15 Orig 15 Eng = -27.703100 AG 1 at max irg = 168 r = 0.17360
16 Orig 16 Eng = -21.022500 T1U 1 at max irg = 168 r = 0.17360
17 Orig 17 Eng = -21.022500 T1U 2 at max irg = 168 r = 0.17360
18 Orig 18 Eng = -21.022500 T1U 3 at max irg = 168 r = 0.17360
19 Orig 19 Eng = -12.597200 HG 1 at max irg = 176 r = 0.27601
20 Orig 20 Eng = -12.597200 HG 2 at max irg = 176 r = 0.27601
21 Orig 21 Eng = -12.597200 HG 3 at max irg = 176 r = 0.27601
22 Orig 22 Eng = -12.597200 HG 4 at max irg = 176 r = 0.27601
23 Orig 23 Eng = -12.597200 HG 5 at max irg = 176 r = 0.27601
24 Orig 24 Eng = -4.297400 AG 1 at max irg = 184 r = 0.43881
25 Orig 25 Eng = -3.237200 T2U 1 at max irg = 168 r = 0.17360
26 Orig 26 Eng = -3.237200 T2U 2 at max irg = 168 r = 0.17360
27 Orig 27 Eng = -3.237200 T2U 3 at max irg = 168 r = 0.17360
28 Orig 28 Eng = -3.237200 GU 1 at max irg = 168 r = 0.17360
29 Orig 29 Eng = -3.237200 GU 2 at max irg = 168 r = 0.17360
30 Orig 30 Eng = -3.237200 GU 3 at max irg = 168 r = 0.17360
31 Orig 31 Eng = -3.237200 GU 4 at max irg = 168 r = 0.17360
32 Orig 32 Eng = -2.466600 T1U 1 at max irg = 192 r = 0.62383
33 Orig 33 Eng = -2.466600 T1U 2 at max irg = 192 r = 0.62383
34 Orig 34 Eng = -2.466600 T1U 3 at max irg = 192 r = 0.62383
35 Orig 35 Eng = -0.322200 HG 1 at max irg = 192 r = 0.62383
36 Orig 36 Eng = -0.322200 HG 2 at max irg = 192 r = 0.62383
37 Orig 37 Eng = -0.322200 HG 3 at max irg = 192 r = 0.62383
38 Orig 38 Eng = -0.322200 HG 4 at max irg = 192 r = 0.62383
39 Orig 39 Eng = -0.322200 HG 5 at max irg = 192 r = 0.62383
Rotation coefficients for orbital 1 grp = 1 AG 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 AG 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 T1U 1
1 -0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 4 grp = 3 T1U 2
1 0.0000000000 2 0.0000000000 3 1.0000000000
Rotation coefficients for orbital 5 grp = 3 T1U 3
1 1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 6 grp = 4 AG 1
1 1.0000000000
Rotation coefficients for orbital 7 grp = 5 T1U 1
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 8 grp = 5 T1U 2
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 9 grp = 5 T1U 3
1 1.0000000000 2 -0.0000000000 3 0.0000000000
Rotation coefficients for orbital 10 grp = 6 HG 1
1 0.0000000000 2 1.0000000000 3 -0.0000000000 4 0.0000000000
5 0.0000000000
Rotation coefficients for orbital 11 grp = 6 HG 2
1 -0.0000000000 2 0.0000000000 3 1.0000000000 4 0.0000000000
5 0.0000000000
Rotation coefficients for orbital 12 grp = 6 HG 3
1 0.0000000000 2 -0.0000000000 3 -0.0000000000 4 1.0000000000
5 0.0000000000
Rotation coefficients for orbital 13 grp = 6 HG 4
1 0.9999999997 2 0.0000000000 3 0.0000000000 4 -0.0000000000
5 -0.0000255610
Rotation coefficients for orbital 14 grp = 6 HG 5
1 0.0000255610 2 -0.0000000000 3 -0.0000000000 4 -0.0000000000
5 0.9999999997
Rotation coefficients for orbital 15 grp = 7 AG 1
1 1.0000000000
Rotation coefficients for orbital 16 grp = 8 T1U 1
1 0.0000000000 2 0.0000000000 3 1.0000000000
Rotation coefficients for orbital 17 grp = 8 T1U 2
1 0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 18 grp = 8 T1U 3
1 1.0000000000 2 -0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 19 grp = 9 HG 1
1 -0.0000000000 2 1.0000000000 3 -0.0000000000 4 -0.0000000000
5 0.0000000000
Rotation coefficients for orbital 20 grp = 9 HG 2
1 0.0000000000 2 0.0000000000 3 1.0000000000 4 0.0000000000
5 -0.0000000000
Rotation coefficients for orbital 21 grp = 9 HG 3
1 0.0000000000 2 0.0000000000 3 -0.0000000000 4 1.0000000000
5 0.0000000000
Rotation coefficients for orbital 22 grp = 9 HG 4
1 0.9999999992 2 0.0000000000 3 -0.0000000000 4 -0.0000000000
5 -0.0000388932
Rotation coefficients for orbital 23 grp = 9 HG 5
1 0.0000388932 2 -0.0000000000 3 0.0000000000 4 -0.0000000000
5 0.9999999992
Rotation coefficients for orbital 24 grp = 10 AG 1
1 1.0000000000
Rotation coefficients for orbital 25 grp = 11 T2U 1
1 0.0000000000 2 0.3593411432 3 0.0000000000 4 0.0000000000
5 -0.0000000000 6 0.9332062702 7 0.0000000000
Rotation coefficients for orbital 26 grp = 11 T2U 2
1 -0.0000000000 2 -0.0000000000 3 0.9878185628 4 -0.0000000000
5 -0.0000000000 6 0.0000000000 7 -0.1556100478
Rotation coefficients for orbital 27 grp = 11 T2U 3
1 -0.4982042831 2 0.0000000000 3 0.0000000000 4 0.8670596821
5 0.0000000000 6 -0.0000000000 7 0.0000000000
Rotation coefficients for orbital 28 grp = 11 GU 1
1 0.0000000000 2 0.9332062702 3 -0.0000000000 4 -0.0000000000
5 -0.0000000000 6 -0.3593411432 7 -0.0000000000
Rotation coefficients for orbital 29 grp = 11 GU 2
1 0.0000000000 2 0.0000000000 3 0.1556100478 4 -0.0000000000
5 0.0000000000 6 -0.0000000000 7 0.9878185628
Rotation coefficients for orbital 30 grp = 11 GU 3
1 -0.8670596821 2 0.0000000000 3 -0.0000000000 4 -0.4982042831
5 0.0000000000 6 0.0000000000 7 -0.0000000000
Rotation coefficients for orbital 31 grp = 11 GU 4
1 0.0000000000 2 0.0000000000 3 -0.0000000000 4 -0.0000000000
5 1.0000000000 6 -0.0000000000 7 -0.0000000000
Rotation coefficients for orbital 32 grp = 12 T1U 1
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 33 grp = 12 T1U 2
1 1.0000000000 2 -0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 34 grp = 12 T1U 3
1 0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 35 grp = 13 HG 1
1 0.0000000000 2 0.0000000000 3 0.0000000000 4 1.0000000000
5 -0.0000000000
Rotation coefficients for orbital 36 grp = 13 HG 2
1 -0.0000000000 2 -0.0000000000 3 0.0000000000 4 0.0000000000
5 1.0000000000
Rotation coefficients for orbital 37 grp = 13 HG 3
1 1.0000000000 2 0.0000000000 3 0.0000000000 4 -0.0000000000
5 0.0000000000
Rotation coefficients for orbital 38 grp = 13 HG 4
1 -0.0000000000 2 -0.0000008170 3 1.0000000000 4 0.0000000000
5 -0.0000000000
Rotation coefficients for orbital 39 grp = 13 HG 5
1 -0.0000000000 2 1.0000000000 3 0.0000008170 4 -0.0000000000
5 -0.0000000000
Number of orbital groups and degeneracis are 14
1 1 3 1 3 5 1 3 5 1 3 4 3 5
Number of orbital groups and number of electrons when fully occupied
14
2 2 6 2 6 10 2 6 10 2 6 8 6 10
Time Now = 0.6960 Delta time = 0.1240 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 14
Orbital 1 of AG 1 symmetry normalization integral = 1.00000000
Orbital 2 of AG 1 symmetry normalization integral = 1.00000000
Orbital 3 of T1U 1 symmetry normalization integral = 1.00000000
Orbital 4 of AG 1 symmetry normalization integral = 0.99999998
Orbital 5 of T1U 1 symmetry normalization integral = 1.00000000
Orbital 6 of HG 1 symmetry normalization integral = 1.00000000
Orbital 7 of AG 1 symmetry normalization integral = 1.00000003
Orbital 8 of T1U 1 symmetry normalization integral = 1.00000006
Orbital 9 of HG 1 symmetry normalization integral = 1.00000002
Orbital 10 of AG 1 symmetry normalization integral = 1.00000000
Orbital 11 of T2U 1 symmetry normalization integral = 0.99999994
Orbital 12 of GU 1 symmetry normalization integral = 0.99999994
Orbital 13 of T1U 1 symmetry normalization integral = 1.00000003
Orbital 14 of HG 1 symmetry normalization integral = 1.00000001
Time Now = 0.8921 Delta time = 0.1961 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 78.00000000
Time Now = 0.8961 Delta time = 0.0041 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.78000000E+02 facnorm = 0.10000000E+01
Time Now = 0.8985 Delta time = 0.0024 Electronic part
Time Now = 0.8985 Delta time = 0.0000 End StPot
+ Data Record ScatContSym - 'AG'
+ Command Scat
+ 1.0
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.10000000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 0.9014 Delta time = 0.0028 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = AG 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 56
Number of partial waves (np) = 2
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 8
Number of partial waves in the asymptotic region (npasym) = 2
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 45
Maximum l used in usual function (lmax) = 8
Maximum m used in usual function (LMax) = 8
Maxamum l used in expanding static potential (lpotct) = 16
Maximum l used in exapnding the exchange potential (lmaxab) = 16
Higest l included in the expansion of the wave function (lnp) = 6
Higest l included in the K matrix (lna) = 0
Highest l used at large r (lpasym) = 8
Higest l used in the asymptotic potential (lpzb) = 16
Maximum L used in the homogeneous solution (LMaxHomo) = 8
Number of partial waves in the homogeneous solution (npHomo) = 2
Time Now = 0.9032 Delta time = 0.0018 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.00000000E+00 Asymp Coef = 0.00000000E+00 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.26185580E-19 Asymp Moment = -0.62834285E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.24426165E-19 Asymp Moment = 0.58612435E-16 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.34973918E-20 Asymp Moment = 0.32744241E-14 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.33611392E-21 Asymp Moment = -0.31468580E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.52519804E-21 Asymp Moment = -0.49171532E-15 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.11128860E+03 -0.20000000E+01 stpote = -0.22374538E-16
i = 2 exps = -0.11128860E+03 -0.20000000E+01 stpote = -0.22374537E-16
i = 3 exps = -0.11128860E+03 -0.20000000E+01 stpote = -0.22374534E-16
i = 4 exps = -0.11128860E+03 -0.20000000E+01 stpote = -0.22374530E-16
For potential 3
Number of asymptotic regions = 1
Final point in integration = 0.15211645E+02 Angstroms
Time Now = 0.9711 Delta time = 0.0679 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.79667096E+00
eigenphases
0.6727077E+00
eigenphase sum 0.672708E+00 scattering length= -2.93859
eps+pi 0.381430E+01 eps+2*pi 0.695589E+01
MaxIter = 6 c.s. = 18.58903102 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.22550987E-08
Time Now = 1.8940 Delta time = 0.9229 End ScatStab
+ Command TotalCrossSection
+
Using LMaxK 5
Continuum Symmetry AG -
E (eV) XS(angs^2) EPS(radians)
1.000000 18.589031 0.672708
Largest value of LMaxK found 0
Total Cross Sections
Energy Total Cross Section
1.00000 18.58903
Time Now = 1.8944 Delta time = 0.0004 Finalize