Execution on n0159.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:53.869 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test31
#
# Ar SCF, (2p)^-1 photoionization
#
LMax 5 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatEng 0.341 4.241 5.471 9.541 # list of scattering energies
InitSym 'AG' # Initial state symmetry
InitSpinDeg 1 # Initial state spin degeneracy
OrbOccInit 2 2 6 2 6 # Orbital occupation of initial state
OrbOcc 2 2 6 2 5 # occupation of the orbital groups of target
SpinDeg 1 # Spin degeneracy of the total scattering state (=1 singlet)
TargSym 'T1U' # Symmetry of the target state
TargSpinDeg 2 # Target spin degeneracy
IPot 15.759 # ionization potentail
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test31.g03' 'gaussian'
GetBlms
ExpOrb
ScatSym 'T1U' # Scattering symmetry of total final state
ScatContSym 'AG' # Scattering symmetry of continuum electron
FileName 'MatrixElements' 'test31AG.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
ScatSym 'T1U' # Scattering symmetry of total final state
ScatContSym 'HG' # Scattering symmetry of continuum electron
FileName 'MatrixElements' 'test31HG.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
GetCro 'test31AG.idy' 'test31HG.idy'
#
DPotEng 15. # Energy (in eV) for the local exchange potential
ResSearchEng
1 # nengrb - number of energy step regions
1. 0.5 # first energy and step (in eV)
20.0 # final ending point, engrb(nengrb+1)
10. # eendzi, largest imaginary part
2. # estpzi, imaginary energy step
GetDPot
ResSearch
#
+ End of input reached
+ Data Record LMax - 5
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 0.341 4.241 5.471 9.541
+ Data Record InitSym - 'AG'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 6 2 6
+ Data Record OrbOcc - 2 2 6 2 5
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'T1U'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 15.759
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test31.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = #HF/6-311G SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 9 number already selected 0
Number of orbitals selected is 9
Highest orbital read in is = 9
Time Now = 0.0037 Delta time = 0.0037 End GaussianCnv
Atoms found 1 Coordinates in Angstroms
Z = 18 ZS = 18 r = 0.0000000000 0.0000000000 0.0000000000
Maximum distance from expansion center is 0.0000000000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Ih
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.0686 Delta time = 0.0648 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 5
Determining angular grid in GetAxMax LMax = 5 LMaxA = 5 LMaxAb = 10
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Ih
LMax 5
The dimension of each irreducable representation is
AG ( 1) T1G ( 3) T2G ( 3) GG ( 4) HG ( 5)
AU ( 1) T1U ( 3) T2U ( 3) GU ( 4) HU ( 5)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
18 29 30 2 5 4 3
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 1 1 1 1 1 1 1 1
T1G 1 2 0 0 0 0 0 0 0 0
T1G 2 3 0 0 0 0 0 0 0 0
T1G 3 4 0 0 0 0 0 0 0 0
T2G 1 5 0 0 0 0 0 0 0 0
T2G 2 6 0 0 0 0 0 0 0 0
T2G 3 7 0 0 0 0 0 0 0 0
GG 1 8 1 -1 -1 1 1 -1 -1 1
GG 2 9 1 -1 1 -1 1 -1 1 -1
GG 3 10 1 1 -1 -1 1 1 -1 -1
GG 4 11 1 1 1 1 1 1 1 1
HG 1 12 2 -1 -1 1 1 -1 -1 1
HG 2 13 2 -1 1 -1 1 -1 1 -1
HG 3 14 2 1 -1 -1 1 1 -1 -1
HG 4 15 2 1 1 1 1 1 1 1
HG 5 16 2 1 1 1 1 1 1 1
AU 1 17 0 1 1 1 -1 -1 -1 -1
T1U 1 18 2 -1 -1 1 -1 1 1 -1
T1U 2 19 2 -1 1 -1 -1 1 -1 1
T1U 3 20 2 1 -1 -1 -1 -1 1 1
T2U 1 21 2 -1 -1 1 -1 1 1 -1
T2U 2 22 2 -1 1 -1 -1 1 -1 1
T2U 3 23 2 1 -1 -1 -1 -1 1 1
GU 1 24 1 -1 -1 1 -1 1 1 -1
GU 2 25 1 -1 1 -1 -1 1 -1 1
GU 3 26 1 1 -1 -1 -1 -1 1 1
GU 4 27 1 1 1 1 -1 -1 -1 -1
HU 1 28 1 -1 -1 1 -1 1 1 -1
HU 2 29 1 -1 1 -1 -1 1 -1 1
HU 3 30 1 1 -1 -1 -1 -1 1 1
HU 4 31 1 1 1 1 -1 -1 -1 -1
HU 5 32 1 1 1 1 -1 -1 -1 -1
Time Now = 0.1978 Delta time = 0.1293 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
AG 1 0( 1) 1( 1) 2( 1) 3( 1) 4( 1) 5( 1)
T1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0)
T1G 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0)
T1G 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0)
T2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0)
T2G 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0)
T2G 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0)
GG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1)
GG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1)
GG 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1)
GG 4 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1)
HG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2)
HG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2)
HG 3 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2)
HG 4 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2)
HG 5 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2)
AU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0)
T1U 1 0( 0) 1( 1) 2( 1) 3( 1) 4( 1) 5( 2)
T1U 2 0( 0) 1( 1) 2( 1) 3( 1) 4( 1) 5( 2)
T1U 3 0( 0) 1( 1) 2( 1) 3( 1) 4( 1) 5( 2)
T2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2)
T2U 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2)
T2U 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2)
GU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1)
GU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1)
GU 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1)
GU 4 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1)
HU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1)
HU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1)
HU 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1)
HU 4 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1)
HU 5 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 10
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
4 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
8 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 4 sym =B3G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 1 -1 -1 1 -1 1
irep = 8 sym =B3U 1 eigs = 1 -1 -1 1 -1 1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 21 1 1 1 1 1 1 1
B1G 1 2 15 1 -1 -1 1 1 -1 -1
B2G 1 3 15 -1 1 -1 1 -1 1 -1
B3G 1 4 15 -1 -1 1 1 -1 -1 1
AU 1 5 10 1 1 1 -1 -1 -1 -1
B1U 1 6 15 1 -1 -1 -1 -1 1 1
B2U 1 7 15 -1 1 -1 -1 1 -1 1
B3U 1 8 15 -1 -1 1 -1 1 1 -1
Time Now = 0.1993 Delta time = 0.0015 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 5.8403030373 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 5.84030 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 5.84030 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.11802E+06
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.15403E-03 0.00123
2 8 16 0.16422E-03 0.00255
3 8 24 0.20243E-03 0.00417
4 8 32 0.30713E-03 0.00662
5 8 40 0.48829E-03 0.01053
6 8 48 0.77632E-03 0.01674
7 8 56 0.12342E-02 0.02661
8 8 64 0.19623E-02 0.04231
9 8 72 0.31198E-02 0.06727
10 8 80 0.49600E-02 0.10695
11 8 88 0.78857E-02 0.17004
12 8 96 0.12537E-01 0.27033
13 8 104 0.19932E-01 0.42979
14 8 112 0.31690E-01 0.68331
15 8 120 0.41476E-01 1.01512
16 8 128 0.47960E-01 1.39880
17 8 136 0.53302E-01 1.82522
18 8 144 0.57657E-01 2.28647
19 8 152 0.61204E-01 2.77611
20 8 160 0.64108E-01 3.28897
21 8 168 0.66502E-01 3.82099
22 8 176 0.68496E-01 4.36896
23 8 184 0.70171E-01 4.93032
24 8 192 0.71592E-01 5.50306
25 8 200 0.42155E-01 5.84030
Time Now = 0.2009 Delta time = 0.0016 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 5
Maximum scattering m (mmaxs) = 5
Maximum numerical integration l (lmaxi) = 10
Maximum numerical integration m (mmaxi) = 10
Maximum l to include in the asymptotic region (lmasym) = 5
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 0
Actual value of lmasym found = 5
Number of regions of the same l expansion (NAngReg) = 2
Angular regions
1 L = 2 from ( 1) 0.00015 to ( 7) 0.00108
2 L = 5 from ( 8) 0.00123 to ( 200) 5.84030
There are 1 angular regions for computing spherical harmonics
1 lval = 5
Maximum number of processors is 24
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 16
Proc id = 1 Last grid point = 32
Proc id = 2 Last grid point = 40
Proc id = 3 Last grid point = 48
Proc id = 4 Last grid point = 56
Proc id = 5 Last grid point = 72
Proc id = 6 Last grid point = 80
Proc id = 7 Last grid point = 88
Proc id = 8 Last grid point = 96
Proc id = 9 Last grid point = 104
Proc id = 10 Last grid point = 120
Proc id = 11 Last grid point = 128
Proc id = 12 Last grid point = 136
Proc id = 13 Last grid point = 144
Proc id = 14 Last grid point = 152
Proc id = 15 Last grid point = 168
Proc id = 16 Last grid point = 176
Proc id = 17 Last grid point = 184
Proc id = 18 Last grid point = 192
Proc id = 19 Last grid point = 200
Time Now = 0.2012 Delta time = 0.0003 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -118.608390 AG 1 at max irg = 56 r = 0.02661
2 Orig 2 Eng = -12.320674 AG 1 at max irg = 88 r = 0.17004
3 Orig 3 Eng = -9.570498 T1U 1 at max irg = 88 r = 0.17004
4 Orig 4 Eng = -9.570498 T1U 2 at max irg = 88 r = 0.17004
5 Orig 5 Eng = -9.570498 T1U 3 at max irg = 88 r = 0.17004
6 Orig 6 Eng = -1.276169 AG 1 at max irg = 112 r = 0.68331
7 Orig 7 Eng = -0.590124 T1U 1 at max irg = 112 r = 0.68331
8 Orig 8 Eng = -0.590124 T1U 2 at max irg = 112 r = 0.68331
9 Orig 9 Eng = -0.590124 T1U 3 at max irg = 112 r = 0.68331
Rotation coefficients for orbital 1 grp = 1 AG 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 AG 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 T1U 1
1 -0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 4 grp = 3 T1U 2
1 1.0000000000 2 0.0000000000 3 0.0000000000
Rotation coefficients for orbital 5 grp = 3 T1U 3
1 -0.0000000000 2 0.0000000000 3 1.0000000000
Rotation coefficients for orbital 6 grp = 4 AG 1
1 1.0000000000
Rotation coefficients for orbital 7 grp = 5 T1U 1
1 -0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 8 grp = 5 T1U 2
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 9 grp = 5 T1U 3
1 1.0000000000 2 0.0000000000 3 0.0000000000
Number of orbital groups and degeneracis are 5
1 1 3 1 3
Number of orbital groups and number of electrons when fully occupied
5
2 2 6 2 6
Time Now = 0.2060 Delta time = 0.0048 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 5
Orbital 1 of AG 1 symmetry normalization integral = 0.99999999
Orbital 2 of AG 1 symmetry normalization integral = 1.00000001
Orbital 3 of T1U 1 symmetry normalization integral = 0.99999996
Orbital 4 of AG 1 symmetry normalization integral = 0.99999999
Orbital 5 of T1U 1 symmetry normalization integral = 0.99999997
Time Now = 0.2072 Delta time = 0.0013 End ExpOrb
+ Data Record ScatSym - 'T1U'
+ Data Record ScatContSym - 'AG'
+ Command FileName
+ 'MatrixElements' 'test31AG.idy' 'REWIND'
Opening file test31AG.idy at position REWIND
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 5
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - AG 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 1 name - AG 1
Set 3 has degeneracy 3
Orbital 1 is num 3 type = 18 name - T1U 1
Orbital 2 is num 4 type = 19 name - T1U 2
Orbital 3 is num 5 type = 20 name - T1U 3
Set 4 has degeneracy 1
Orbital 1 is num 6 type = 1 name - AG 1
Set 5 has degeneracy 3
Orbital 1 is num 7 type = 18 name - T1U 1
Orbital 2 is num 8 type = 19 name - T1U 2
Orbital 3 is num 9 type = 20 name - T1U 3
Orbital occupations by degenerate group
1 AG occ = 2
2 AG occ = 2
3 T1U occ = 6
4 AG occ = 2
5 T1U occ = 5
The dimension of each irreducable representation is
AG ( 1) T1G ( 3) T2G ( 3) GG ( 4) HG ( 5)
AU ( 1) T1U ( 3) T2U ( 3) GU ( 4) HU ( 5)
Symmetry of the continuum orbital is AG
Symmetry of the total state is T1U
Spin degeneracy of the total state is = 1
Symmetry of the target state is T1U
Spin degeneracy of the target state is = 2
Symmetry of the initial state is AG
Spin degeneracy of the initial state is = 1
Orbital occupations of initial state by degenerate group
1 AG occ = 2
2 AG occ = 2
3 T1U occ = 6
4 AG occ = 2
5 T1U occ = 6
Open shell symmetry types
1 T1U iele = 5
Use only configuration of type T1U
MS2 = 1 SDGN = 2
NumAlpha = 3
List of determinants found
1: 1.00000 0.00000 1 2 3 4 5
2: 1.00000 0.00000 1 2 3 4 6
3: 1.00000 0.00000 1 2 3 5 6
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3 4 5
Configuration 2
1: 1.00000 0.00000 1 2 3 4 6
Configuration 3
1: 1.00000 0.00000 1 2 3 5 6
Each irreducable representation is present the number of times indicated
T1U ( 1)
representation T1U component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 5 6
representation T1U component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3 4 6
representation T1U component 3 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 4 5
Open shell symmetry types
1 T1U iele = 5
2 AG iele = 1
Use only configuration of type T1U
Each irreducable representation is present the number of times indicated
T1U ( 1)
representation T1U component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 2 3 5 6 8
2: 0.70711 0.00000 2 3 4 5 6 7
representation T1U component 2 fun 1
Symmeterized Function from AddNewShell
1: 0.70711 0.00000 1 2 3 4 6 8
2: -0.70711 0.00000 1 3 4 5 6 7
representation T1U component 3 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 2 3 4 5 8
2: 0.70711 0.00000 1 2 4 5 6 7
Open shell symmetry types
1 T1U iele = 5
Use only configuration of type T1U
MS2 = 1 SDGN = 2
NumAlpha = 3
List of determinants found
1: 1.00000 0.00000 1 2 3 4 5
2: 1.00000 0.00000 1 2 3 4 6
3: 1.00000 0.00000 1 2 3 5 6
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3 4 5
Configuration 2
1: 1.00000 0.00000 1 2 3 4 6
Configuration 3
1: 1.00000 0.00000 1 2 3 5 6
Each irreducable representation is present the number of times indicated
T1U ( 1)
representation T1U component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 5 6
representation T1U component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3 4 6
representation T1U component 3 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 4 5
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 20
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 19
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 20
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 19
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 20
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 19
Closed shell target
Time Now = 0.2401 Delta time = 0.0329 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 20
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 19
Configuration 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 20
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 19
Configuration 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 20
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 19
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 20
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 19
Direct product Configuration Cont sym = 1 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 20
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 19
Direct product Configuration Cont sym = 1 Targ sym = 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 20
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 19
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 1
Symmetry of target = 7
Symmetry of total states = 7
Total symmetry component = 1
Cont Target Component
Comp 1 2 3
1 0.10000000E+01 0.00000000E+00 0.00000000E+00
Total symmetry component = 2
Cont Target Component
Comp 1 2 3
1 0.00000000E+00 0.10000000E+01 0.00000000E+00
Total symmetry component = 3
Cont Target Component
Comp 1 2 3
1 0.00000000E+00 0.00000000E+00 0.10000000E+01
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18
One electron matrix elements between initial and final states
1: -1.414213562 0.000000000 < 13| 19>
Reduced formula list
1 5 1 -0.1414213562E+01
Time Now = 0.2406 Delta time = 0.0004 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 1
Symmetry of the continuum orbital (iContSym) = 1 or AG
Symmetry of total final state (iTotalSym) = 7 or T1U
Symmetry of the initial state (iInitSym) = 1 or AG
Symmetry of the ionized target state (iTargSym) = 7 or T1U
List of unique symmetry types
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
Unique dipole matrix type 1 Dipole symmetry type =T1U
Final state symmetry type = T1U Target sym =T1U
Continuum type =AG
In the product of the symmetry types T1U T1G
Each irreducable representation is present the number of times indicated
In the product of the symmetry types T1U T2G
Each irreducable representation is present the number of times indicated
In the product of the symmetry types T1U GG
Each irreducable representation is present the number of times indicated
T2U ( 1)
GU ( 1)
HU ( 1)
In the product of the symmetry types T1U HG
Each irreducable representation is present the number of times indicated
T1U ( 1)
T2U ( 1)
GU ( 1)
HU ( 1)
Unique dipole matrix type 2 Dipole symmetry type =T1U
Final state symmetry type = T1U Target sym =T1U
Continuum type =HG
In the product of the symmetry types T1U AU
Each irreducable representation is present the number of times indicated
T1G ( 1)
In the product of the symmetry types T1U T1U
Each irreducable representation is present the number of times indicated
AG ( 1)
T1G ( 1)
HG ( 1)
In the product of the symmetry types T1U T2U
Each irreducable representation is present the number of times indicated
GG ( 1)
HG ( 1)
In the product of the symmetry types T1U GU
Each irreducable representation is present the number of times indicated
T2G ( 1)
GG ( 1)
HG ( 1)
In the product of the symmetry types T1U HU
Each irreducable representation is present the number of times indicated
T1G ( 1)
T2G ( 1)
GG ( 1)
HG ( 1)
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
Irreducible representation containing the dipole operator is T1U
Number of different dipole operators in this representation is 1
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
2 ( -0.16653345E-16, 0.00000000E+00)
3 ( 0.15681900E-15, 0.00000000E+00)
Vector of the total symmetry
ie = 2 ij = 1
1 ( -0.16653345E-16, 0.00000000E+00)
2 ( 0.10000000E+01, 0.00000000E+00)
3 ( -0.17069679E-15, 0.00000000E+00)
Vector of the total symmetry
ie = 3 ij = 1
1 ( 0.15681900E-15, 0.00000000E+00)
2 ( -0.17069679E-15, 0.00000000E+00)
3 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Component Dipole Op Sym = 2 goes to Total Sym component 2 phase = 1.0
Component Dipole Op Sym = 3 goes to Total Sym component 3 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 1.00000000 0.00000000 0.00000000
sym comp = 2
coefficients = 0.00000000 1.00000000 0.00000000
sym comp = 3
coefficients = 0.00000000 0.00000000 1.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 1 Orb 7 Coef = -1.4142135620
Symmetry type to write out (SymTyp) =AG
Time Now = 0.2556 Delta time = 0.0150 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 17.00000000
Time Now = 0.2576 Delta time = 0.0020 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.17000000E+02 facnorm = 0.10000000E+01
Time Now = 0.2583 Delta time = 0.0007 Electronic part
Time Now = 0.2583 Delta time = 0.0000 End StPot
+ Command PhIon
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.34100000E+00 eV ( 0.12531520E-01 AU)
Time Now = 0.2587 Delta time = 0.0004 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = AG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 25
Number of partial waves (np) = 1
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 5
Number of partial waves in the asymptotic region (npasym) = 1
Number of orthogonality constraints (NOrthUse) = 3
Number of different asymptotic potentials = 6
Maximum number of asymptotic partial waves = 21
Maximum l used in usual function (lmax) = 5
Maximum m used in usual function (LMax) = 5
Maxamum l used in expanding static potential (lpotct) = 10
Maximum l used in exapnding the exchange potential (lmaxab) = 10
Higest l included in the expansion of the wave function (lnp) = 0
Higest l included in the K matrix (lna) = 0
Highest l used at large r (lpasym) = 5
Higest l used in the asymptotic potential (lpzb) = 10
Maximum L used in the homogeneous solution (LMaxHomo) = 5
Number of partial waves in the homogeneous solution (npHomo) = 1
Time Now = 0.2595 Delta time = 0.0008 Energy independent setup
Compute solution for E = 0.3410000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.16653345E-15 Asymp Coef = 0.52722214E-11 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33448149E-18 Asymp Moment = 0.50099944E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.56419276E-18 Asymp Moment = 0.84506996E-16 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25895382E-19 Asymp Moment = 0.23813913E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.82819617E-20 Asymp Moment = -0.76162579E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.22119144E-19 Asymp Moment = -0.20341208E-15 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.74894515E-15
i = 2 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.74894516E-15
i = 3 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.74894516E-15
i = 4 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.74894516E-15
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.21413094E+00 Asymp Coef = -0.67790927E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.89893862E-03 Asymp Moment = 0.13464654E+00 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16388055E-20 Asymp Moment = -0.15070784E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16763836E-20 Asymp Moment = -0.15416359E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17872748E-21 Asymp Moment = 0.16436138E-17 (e Angs^(n-1))
For potential 5
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.44946931E-03 Asymp Moment = 0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.31886056E-20 Asymp Moment = 0.29323056E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.88169435E-21 Asymp Moment = -0.81082379E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.59035673E-21 Asymp Moment = 0.54290387E-17 (e Angs^(n-1))
For potential 6
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.21275093E-19 Asymp Moment = -0.31866666E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.52443071E-21 Asymp Moment = 0.48227699E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.86702182E-21 Asymp Moment = -0.79733064E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47849805E-20 Asymp Moment = -0.44003640E-16 (e Angs^(n-1))
Number of asymptotic regions = 70
Final point in integration = 0.57799834E+03 Angstroms
Time Now = 0.3475 Delta time = 0.0879 End SolveHomo
Final Dipole matrix
ROW 1
( 0.12121364E+01,-0.31445493E+00)
ROW 2
( 0.64617149E+00,-0.16763114E+00)
MaxIter = 5 c.s. = 2.01379430 rmsk= 0.00000000 Abs eps 0.12368166E-05 Rel eps 0.25052088E-08
Time Now = 0.7653 Delta time = 0.4178 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.42410000E+01 eV ( 0.15585389E+00 AU)
Time Now = 0.7656 Delta time = 0.0003 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = AG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 25
Number of partial waves (np) = 1
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 5
Number of partial waves in the asymptotic region (npasym) = 1
Number of orthogonality constraints (NOrthUse) = 3
Number of different asymptotic potentials = 6
Maximum number of asymptotic partial waves = 21
Maximum l used in usual function (lmax) = 5
Maximum m used in usual function (LMax) = 5
Maxamum l used in expanding static potential (lpotct) = 10
Maximum l used in exapnding the exchange potential (lmaxab) = 10
Higest l included in the expansion of the wave function (lnp) = 0
Higest l included in the K matrix (lna) = 0
Highest l used at large r (lpasym) = 5
Higest l used in the asymptotic potential (lpzb) = 10
Maximum L used in the homogeneous solution (LMaxHomo) = 5
Number of partial waves in the homogeneous solution (npHomo) = 1
Time Now = 0.7663 Delta time = 0.0007 Energy independent setup
Compute solution for E = 4.2410000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.16653345E-15 Asymp Coef = 0.52722214E-11 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33448149E-18 Asymp Moment = 0.50099944E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.56419276E-18 Asymp Moment = 0.84506996E-16 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25895382E-19 Asymp Moment = 0.23813913E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.82819617E-20 Asymp Moment = -0.76162579E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.22119144E-19 Asymp Moment = -0.20341208E-15 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.57270400E-15
i = 2 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.57270400E-15
i = 3 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.57270400E-15
i = 4 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.57270401E-15
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.21413094E+00 Asymp Coef = -0.67790927E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.89893862E-03 Asymp Moment = 0.13464654E+00 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16388055E-20 Asymp Moment = -0.15070784E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16763836E-20 Asymp Moment = -0.15416359E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17872748E-21 Asymp Moment = 0.16436138E-17 (e Angs^(n-1))
For potential 5
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.44946931E-03 Asymp Moment = 0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.31886056E-20 Asymp Moment = 0.29323056E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.88169435E-21 Asymp Moment = -0.81082379E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.59035673E-21 Asymp Moment = 0.54290387E-17 (e Angs^(n-1))
For potential 6
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.21275093E-19 Asymp Moment = -0.31866666E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.52443071E-21 Asymp Moment = 0.48227699E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.86702182E-21 Asymp Moment = -0.79733064E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47849805E-20 Asymp Moment = -0.44003640E-16 (e Angs^(n-1))
Number of asymptotic regions = 119
Final point in integration = 0.28633520E+03 Angstroms
Time Now = 0.8822 Delta time = 0.1159 End SolveHomo
Final Dipole matrix
ROW 1
( 0.90767030E+00,-0.14226480E+00)
ROW 2
( 0.59779512E+00,-0.93696131E-01)
MaxIter = 5 c.s. = 1.21024261 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.15333819E-08
Time Now = 1.3082 Delta time = 0.4260 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.54710000E+01 eV ( 0.20105556E+00 AU)
Time Now = 1.3086 Delta time = 0.0004 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = AG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 25
Number of partial waves (np) = 1
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 5
Number of partial waves in the asymptotic region (npasym) = 1
Number of orthogonality constraints (NOrthUse) = 3
Number of different asymptotic potentials = 6
Maximum number of asymptotic partial waves = 21
Maximum l used in usual function (lmax) = 5
Maximum m used in usual function (LMax) = 5
Maxamum l used in expanding static potential (lpotct) = 10
Maximum l used in exapnding the exchange potential (lmaxab) = 10
Higest l included in the expansion of the wave function (lnp) = 0
Higest l included in the K matrix (lna) = 0
Highest l used at large r (lpasym) = 5
Higest l used in the asymptotic potential (lpzb) = 10
Maximum L used in the homogeneous solution (LMaxHomo) = 5
Number of partial waves in the homogeneous solution (npHomo) = 1
Time Now = 1.3092 Delta time = 0.0007 Energy independent setup
Compute solution for E = 5.4710000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.16653345E-15 Asymp Coef = 0.52722214E-11 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33448149E-18 Asymp Moment = 0.50099944E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.56419276E-18 Asymp Moment = 0.84506996E-16 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25895382E-19 Asymp Moment = 0.23813913E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.82819617E-20 Asymp Moment = -0.76162579E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.22119144E-19 Asymp Moment = -0.20341208E-15 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.51991424E-15
i = 2 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.51991424E-15
i = 3 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.51991424E-15
i = 4 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.51991424E-15
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.21413094E+00 Asymp Coef = -0.67790927E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.89893862E-03 Asymp Moment = 0.13464654E+00 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16388055E-20 Asymp Moment = -0.15070784E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16763836E-20 Asymp Moment = -0.15416359E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17872748E-21 Asymp Moment = 0.16436138E-17 (e Angs^(n-1))
For potential 5
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.44946931E-03 Asymp Moment = 0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.31886056E-20 Asymp Moment = 0.29323056E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.88169435E-21 Asymp Moment = -0.81082379E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.59035673E-21 Asymp Moment = 0.54290387E-17 (e Angs^(n-1))
For potential 6
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.21275093E-19 Asymp Moment = -0.31866666E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.52443071E-21 Asymp Moment = 0.48227699E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.86702182E-21 Asymp Moment = -0.79733064E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47849805E-20 Asymp Moment = -0.44003640E-16 (e Angs^(n-1))
Number of asymptotic regions = 126
Final point in integration = 0.26755807E+03 Angstroms
Time Now = 1.4401 Delta time = 0.1309 End SolveHomo
Final Dipole matrix
ROW 1
( 0.82909548E+00,-0.10522404E+00)
ROW 2
( 0.58441111E+00,-0.74170100E-01)
MaxIter = 5 c.s. = 1.04550896 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.13350348E-08
Time Now = 1.8610 Delta time = 0.4209 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.95410000E+01 eV ( 0.35062532E+00 AU)
Time Now = 1.8613 Delta time = 0.0003 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = AG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 25
Number of partial waves (np) = 1
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 5
Number of partial waves in the asymptotic region (npasym) = 1
Number of orthogonality constraints (NOrthUse) = 3
Number of different asymptotic potentials = 6
Maximum number of asymptotic partial waves = 21
Maximum l used in usual function (lmax) = 5
Maximum m used in usual function (LMax) = 5
Maxamum l used in expanding static potential (lpotct) = 10
Maximum l used in exapnding the exchange potential (lmaxab) = 10
Higest l included in the expansion of the wave function (lnp) = 0
Higest l included in the K matrix (lna) = 0
Highest l used at large r (lpasym) = 5
Higest l used in the asymptotic potential (lpzb) = 10
Maximum L used in the homogeneous solution (LMaxHomo) = 5
Number of partial waves in the homogeneous solution (npHomo) = 1
Time Now = 1.8620 Delta time = 0.0007 Energy independent setup
Compute solution for E = 9.5410000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.16653345E-15 Asymp Coef = 0.52722214E-11 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33448149E-18 Asymp Moment = 0.50099944E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.56419276E-18 Asymp Moment = 0.84506996E-16 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25895382E-19 Asymp Moment = 0.23813913E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.82819617E-20 Asymp Moment = -0.76162579E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.22119144E-19 Asymp Moment = -0.20341208E-15 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.42920225E-15
i = 2 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.42920225E-15
i = 3 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.42920225E-15
i = 4 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.42920225E-15
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.21413094E+00 Asymp Coef = -0.67790927E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.89893862E-03 Asymp Moment = 0.13464654E+00 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16388055E-20 Asymp Moment = -0.15070784E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16763836E-20 Asymp Moment = -0.15416359E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17872748E-21 Asymp Moment = 0.16436138E-17 (e Angs^(n-1))
For potential 5
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.44946931E-03 Asymp Moment = 0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.31886056E-20 Asymp Moment = 0.29323056E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.88169435E-21 Asymp Moment = -0.81082379E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.59035673E-21 Asymp Moment = 0.54290387E-17 (e Angs^(n-1))
For potential 6
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.21275093E-19 Asymp Moment = -0.31866666E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.52443071E-21 Asymp Moment = 0.48227699E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.86702182E-21 Asymp Moment = -0.79733064E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47849805E-20 Asymp Moment = -0.44003640E-16 (e Angs^(n-1))
Number of asymptotic regions = 142
Final point in integration = 0.22953605E+03 Angstroms
Time Now = 2.0043 Delta time = 0.1423 End SolveHomo
Final Dipole matrix
ROW 1
( 0.62058680E+00,-0.21903453E-01)
ROW 2
( 0.54538422E+00,-0.19249190E-01)
MaxIter = 5 c.s. = 0.68342221 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.87656758E-09
Time Now = 2.4264 Delta time = 0.4222 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 2.4267 Delta time = 0.0003 End CnvIdy
Found 4 energies :
0.34100000 4.24100000 5.47100000 9.54100000
List of matrix element types found Number = 1
1 Cont Sym AG Targ Sym T1U Total Sym T1U
Keeping 4 energies :
0.34100000 4.24100000 5.47100000 9.54100000
Time Now = 2.4268 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 15.7590 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
16.1000 0.47651010E+01
20.0000 0.31862739E+01
21.2300 0.27986943E+01
25.3000 0.18412938E+01
Sigma MIXED at all energies
Eng
16.1000 0.42933190E+01
20.0000 0.28551437E+01
21.2300 0.25285410E+01
25.3000 0.17404166E+01
Sigma VELOCITY at all energies
Eng
16.1000 0.38682471E+01
20.0000 0.25584259E+01
21.2300 0.22844652E+01
25.3000 0.16450661E+01
Beta LENGTH at all energies
Eng
16.1000 0.00000000E+00
20.0000 0.00000000E+00
21.2300 0.00000000E+00
25.3000 0.00000000E+00
Beta MIXED at all energies
Eng
16.1000 0.00000000E+00
20.0000 0.00000000E+00
21.2300 0.00000000E+00
25.3000 0.00000000E+00
Beta VELOCITY at all energies
Eng
16.1000 0.00000000E+00
20.0000 0.00000000E+00
21.2300 0.00000000E+00
25.3000 0.00000000E+00
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 16.1000 4.7651 4.2933 3.8682 0.0000 0.0000 0.0000
EPhi 20.0000 3.1863 2.8551 2.5584 0.0000 0.0000 0.0000
EPhi 21.2300 2.7987 2.5285 2.2845 0.0000 0.0000 0.0000
EPhi 25.3000 1.8413 1.7404 1.6451 0.0000 0.0000 0.0000
Time Now = 2.4276 Delta time = 0.0008 End CrossSection
+ Data Record ScatSym - 'T1U'
+ Data Record ScatContSym - 'HG'
+ Command FileName
+ 'MatrixElements' 'test31HG.idy' 'REWIND'
Opening file test31HG.idy at position REWIND
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 5
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - AG 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 1 name - AG 1
Set 3 has degeneracy 3
Orbital 1 is num 3 type = 18 name - T1U 1
Orbital 2 is num 4 type = 19 name - T1U 2
Orbital 3 is num 5 type = 20 name - T1U 3
Set 4 has degeneracy 1
Orbital 1 is num 6 type = 1 name - AG 1
Set 5 has degeneracy 3
Orbital 1 is num 7 type = 18 name - T1U 1
Orbital 2 is num 8 type = 19 name - T1U 2
Orbital 3 is num 9 type = 20 name - T1U 3
Orbital occupations by degenerate group
1 AG occ = 2
2 AG occ = 2
3 T1U occ = 6
4 AG occ = 2
5 T1U occ = 5
The dimension of each irreducable representation is
AG ( 1) T1G ( 3) T2G ( 3) GG ( 4) HG ( 5)
AU ( 1) T1U ( 3) T2U ( 3) GU ( 4) HU ( 5)
Symmetry of the continuum orbital is HG
Symmetry of the total state is T1U
Spin degeneracy of the total state is = 1
Symmetry of the target state is T1U
Spin degeneracy of the target state is = 2
Symmetry of the initial state is AG
Spin degeneracy of the initial state is = 1
Orbital occupations of initial state by degenerate group
1 AG occ = 2
2 AG occ = 2
3 T1U occ = 6
4 AG occ = 2
5 T1U occ = 6
Open shell symmetry types
1 T1U iele = 5
Use only configuration of type T1U
MS2 = 1 SDGN = 2
NumAlpha = 3
List of determinants found
1: 1.00000 0.00000 1 2 3 4 5
2: 1.00000 0.00000 1 2 3 4 6
3: 1.00000 0.00000 1 2 3 5 6
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3 4 5
Configuration 2
1: 1.00000 0.00000 1 2 3 4 6
Configuration 3
1: 1.00000 0.00000 1 2 3 5 6
Each irreducable representation is present the number of times indicated
T1U ( 1)
representation T1U component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 5 6
representation T1U component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3 4 6
representation T1U component 3 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 4 5
Open shell symmetry types
1 T1U iele = 5
2 HG iele = 1
Use only configuration of type T1U
Each irreducable representation is present the number of times indicated
T1U ( 1)
T2U ( 1)
GU ( 1)
HU ( 1)
representation T1U component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.38730 0.00000 1 2 3 4 5 13
2: 0.38730 0.00000 1 2 3 4 6 14
3: 0.22361 0.00000 1 2 3 5 6 15
4: -0.38730 0.00000 1 2 3 5 6 16
5: 0.38730 0.00000 1 2 4 5 6 8
6: -0.38730 0.00000 1 3 4 5 6 9
7: -0.22361 0.00000 2 3 4 5 6 10
8: 0.38730 0.00000 2 3 4 5 6 11
representation T1U component 2 fun 1
Symmeterized Function from AddNewShell
1: -0.38730 0.00000 1 2 3 4 5 12
2: -0.22361 0.00000 1 2 3 4 6 15
3: -0.38730 0.00000 1 2 3 4 6 16
4: -0.38730 0.00000 1 2 3 5 6 14
5: 0.38730 0.00000 1 2 4 5 6 7
6: 0.22361 0.00000 1 3 4 5 6 10
7: 0.38730 0.00000 1 3 4 5 6 11
8: 0.38730 0.00000 2 3 4 5 6 9
representation T1U component 3 fun 1
Symmeterized Function from AddNewShell
1: -0.44721 0.00000 1 2 3 4 5 15
2: 0.38730 0.00000 1 2 3 4 6 12
3: -0.38730 0.00000 1 2 3 5 6 13
4: 0.44721 0.00000 1 2 4 5 6 10
5: -0.38730 0.00000 1 3 4 5 6 7
6: 0.38730 0.00000 2 3 4 5 6 8
Open shell symmetry types
1 T1U iele = 5
Use only configuration of type T1U
MS2 = 1 SDGN = 2
NumAlpha = 3
List of determinants found
1: 1.00000 0.00000 1 2 3 4 5
2: 1.00000 0.00000 1 2 3 4 6
3: 1.00000 0.00000 1 2 3 5 6
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3 4 5
Configuration 2
1: 1.00000 0.00000 1 2 3 4 6
Configuration 3
1: 1.00000 0.00000 1 2 3 5 6
Each irreducable representation is present the number of times indicated
T1U ( 1)
representation T1U component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 5 6
representation T1U component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3 4 6
representation T1U component 3 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 3 4 5
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 24
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 19
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 25
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 20
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 26
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 21
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 27
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 22
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 28
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 23
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 24
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 19
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 25
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 20
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 26
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 21
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 27
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 22
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 28
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 23
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 24
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 19
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 25
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 20
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 26
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 21
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 27
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 22
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 28
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 23
Closed shell target
Time Now = 2.6282 Delta time = 0.2006 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 25
2: 0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 26
3: 0.22361 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 27
4: -0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 28
5: 0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 20
6: -0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 21
7: -0.22361 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 22
8: 0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 23
Configuration 2
1: -0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 24
2: -0.22361 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 27
3: -0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 28
4: -0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 26
5: 0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 19
6: 0.22361 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 22
7: 0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 23
8: 0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 21
Configuration 3
1: -0.44721 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 27
2: 0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 24
3: -0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 25
4: 0.44721 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 22
5: -0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 19
6: 0.38730 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 20
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 24
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 19
Direct product Configuration Cont sym = 2 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 25
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 20
Direct product Configuration Cont sym = 3 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 26
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 21
Direct product Configuration Cont sym = 4 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 27
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 22
Direct product Configuration Cont sym = 5 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 17 18 28
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 14 15 16 17 18 23
Direct product Configuration Cont sym = 1 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 24
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 19
Direct product Configuration Cont sym = 2 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 25
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 20
Direct product Configuration Cont sym = 3 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 26
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 21
Direct product Configuration Cont sym = 4 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 27
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 22
Direct product Configuration Cont sym = 5 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 18 28
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 15 16 17 18 23
Direct product Configuration Cont sym = 1 Targ sym = 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 24
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 19
Direct product Configuration Cont sym = 2 Targ sym = 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 25
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 20
Direct product Configuration Cont sym = 3 Targ sym = 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 26
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 21
Direct product Configuration Cont sym = 4 Targ sym = 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 27
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 22
Direct product Configuration Cont sym = 5 Targ sym = 3
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 28
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 16 17 18 23
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 5
Symmetry of target = 7
Symmetry of total states = 7
Total symmetry component = 1
Cont Target Component
Comp 1 2 3
1 0.00000000E+00 0.00000000E+00 0.00000000E+00
2 0.00000000E+00 0.00000000E+00 0.54772256E+00
3 0.00000000E+00 0.54772256E+00 0.00000000E+00
4 -0.31622777E+00 0.00000000E+00 0.00000000E+00
5 0.54772256E+00 0.00000000E+00 0.00000000E+00
Total symmetry component = 2
Cont Target Component
Comp 1 2 3
1 0.00000000E+00 0.00000000E+00 0.54772256E+00
2 0.00000000E+00 0.00000000E+00 0.00000000E+00
3 0.54772256E+00 0.00000000E+00 0.00000000E+00
4 0.00000000E+00 -0.31622777E+00 0.00000000E+00
5 0.00000000E+00 -0.54772256E+00 0.00000000E+00
Total symmetry component = 3
Cont Target Component
Comp 1 2 3
1 0.00000000E+00 0.54772256E+00 0.00000000E+00
2 0.54772256E+00 0.00000000E+00 0.00000000E+00
3 0.00000000E+00 0.00000000E+00 0.00000000E+00
4 0.00000000E+00 0.00000000E+00 0.63245553E+00
5 0.00000000E+00 0.00000000E+00 0.00000000E+00
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18
One electron matrix elements between initial and final states
1: 0.447213595 0.000000000 < 13| 22>
2: -0.774596669 0.000000000 < 13| 23>
3: -0.774596669 0.000000000 < 14| 21>
4: -0.774596669 0.000000000 < 15| 20>
Reduced formula list
4 5 1 0.4472135955E+00
5 5 1 -0.7745966692E+00
3 5 2 -0.7745966692E+00
2 5 3 -0.7745966692E+00
Time Now = 2.6296 Delta time = 0.0014 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 4
Symmetry of the continuum orbital (iContSym) = 5 or HG
Symmetry of total final state (iTotalSym) = 7 or T1U
Symmetry of the initial state (iInitSym) = 1 or AG
Symmetry of the ionized target state (iTargSym) = 7 or T1U
List of unique symmetry types
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
Unique dipole matrix type 1 Dipole symmetry type =T1U
Final state symmetry type = T1U Target sym =T1U
Continuum type =AG
In the product of the symmetry types T1U T1G
Each irreducable representation is present the number of times indicated
In the product of the symmetry types T1U T2G
Each irreducable representation is present the number of times indicated
In the product of the symmetry types T1U GG
Each irreducable representation is present the number of times indicated
T2U ( 1)
GU ( 1)
HU ( 1)
In the product of the symmetry types T1U HG
Each irreducable representation is present the number of times indicated
T1U ( 1)
T2U ( 1)
GU ( 1)
HU ( 1)
Unique dipole matrix type 2 Dipole symmetry type =T1U
Final state symmetry type = T1U Target sym =T1U
Continuum type =HG
In the product of the symmetry types T1U AU
Each irreducable representation is present the number of times indicated
T1G ( 1)
In the product of the symmetry types T1U T1U
Each irreducable representation is present the number of times indicated
AG ( 1)
T1G ( 1)
HG ( 1)
In the product of the symmetry types T1U T2U
Each irreducable representation is present the number of times indicated
GG ( 1)
HG ( 1)
In the product of the symmetry types T1U GU
Each irreducable representation is present the number of times indicated
T2G ( 1)
GG ( 1)
HG ( 1)
In the product of the symmetry types T1U HU
Each irreducable representation is present the number of times indicated
T1G ( 1)
T2G ( 1)
GG ( 1)
HG ( 1)
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
Irreducible representation containing the dipole operator is T1U
Number of different dipole operators in this representation is 1
In the product of the symmetry types T1U AG
Each irreducable representation is present the number of times indicated
T1U ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
2 ( -0.16653345E-16, 0.00000000E+00)
3 ( 0.15681900E-15, 0.00000000E+00)
Vector of the total symmetry
ie = 2 ij = 1
1 ( -0.16653345E-16, 0.00000000E+00)
2 ( 0.10000000E+01, 0.00000000E+00)
3 ( -0.17069679E-15, 0.00000000E+00)
Vector of the total symmetry
ie = 3 ij = 1
1 ( 0.15681900E-15, 0.00000000E+00)
2 ( -0.17069679E-15, 0.00000000E+00)
3 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Component Dipole Op Sym = 2 goes to Total Sym component 2 phase = 1.0
Component Dipole Op Sym = 3 goes to Total Sym component 3 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 1.00000000 0.00000000 0.00000000
sym comp = 2
coefficients = 0.00000000 1.00000000 0.00000000
sym comp = 3
coefficients = 0.00000000 0.00000000 1.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 4 Orb 7 Coef = 0.4472135955
2 Cont comp 5 Orb 7 Coef = -0.7745966692
3 Cont comp 3 Orb 8 Coef = -0.7745966692
4 Cont comp 2 Orb 9 Coef = -0.7745966692
Symmetry type to write out (SymTyp) =HG
Time Now = 2.6863 Delta time = 0.0566 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 17.00000000
Time Now = 2.6984 Delta time = 0.0121 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.17000000E+02 facnorm = 0.10000000E+01
Time Now = 2.6991 Delta time = 0.0007 Electronic part
Time Now = 2.6991 Delta time = 0.0000 End StPot
+ Command PhIon
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.34100000E+00 eV ( 0.12531520E-01 AU)
Time Now = 2.6994 Delta time = 0.0004 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = HG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 25
Number of partial waves (np) = 2
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 5
Number of partial waves in the asymptotic region (npasym) = 2
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 22
Maximum number of asymptotic partial waves = 21
Maximum l used in usual function (lmax) = 5
Maximum m used in usual function (LMax) = 5
Maxamum l used in expanding static potential (lpotct) = 10
Maximum l used in exapnding the exchange potential (lmaxab) = 10
Higest l included in the expansion of the wave function (lnp) = 4
Higest l included in the K matrix (lna) = 2
Highest l used at large r (lpasym) = 5
Higest l used in the asymptotic potential (lpzb) = 10
Maximum L used in the homogeneous solution (LMaxHomo) = 5
Number of partial waves in the homogeneous solution (npHomo) = 2
Time Now = 2.7002 Delta time = 0.0008 Energy independent setup
Compute solution for E = 0.3410000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.16653345E-15 Asymp Coef = 0.52722214E-11 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33448149E-18 Asymp Moment = 0.50099944E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.56419276E-18 Asymp Moment = 0.84506996E-16 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25895382E-19 Asymp Moment = 0.23813913E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.82819617E-20 Asymp Moment = -0.76162579E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.22119144E-19 Asymp Moment = -0.20341208E-15 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.74894515E-15
i = 2 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.74894516E-15
i = 3 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.74894516E-15
i = 4 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.74894516E-15
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.44946931E-03 Asymp Moment = -0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.81940275E-21 Asymp Moment = 0.75353918E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.83819180E-21 Asymp Moment = 0.77081797E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.89363742E-22 Asymp Moment = -0.82180687E-18 (e Angs^(n-1))
For potential 5
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16333127E-21 Asymp Moment = -0.15020271E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27507998E-21 Asymp Moment = -0.25296906E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.71868840E-23 Asymp Moment = 0.32562719E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.13192768E-23 Asymp Moment = -0.59774500E-18 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.65661001E-22 Asymp Moment = 0.29750038E-16 (e Angs^(n-1))
For potential 6
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.28289805E-21 Asymp Moment = 0.26015872E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.47645251E-21 Asymp Moment = 0.43815527E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12448048E-22 Asymp Moment = -0.56400284E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.22850544E-23 Asymp Moment = 0.10353247E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.11372819E-21 Asymp Moment = -0.51528578E-16 (e Angs^(n-1))
For potential 7
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.45174076E-21 Asymp Moment = 0.41542985E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.19736389E-22 Asymp Moment = -0.18149979E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.10403087E-21 Asymp Moment = -0.47134862E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.95135605E-23 Asymp Moment = -0.43104550E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.27822427E-22 Asymp Moment = 0.12605935E-16 (e Angs^(n-1))
For potential 8
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.78243795E-21 Asymp Moment = -0.71954562E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.34184429E-22 Asymp Moment = 0.31436686E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.18018674E-21 Asymp Moment = 0.81639976E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.16477970E-22 Asymp Moment = 0.74659270E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.48189858E-22 Asymp Moment = -0.21834119E-16 (e Angs^(n-1))
For potential 9
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.32119641E-01 Asymp Coef = -0.10168639E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.77850368E-04 Asymp Moment = -0.11660732E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.24582082E-21 Asymp Moment = -0.22606175E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.25145754E-21 Asymp Moment = -0.23124539E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.26809123E-22 Asymp Moment = 0.24654206E-18 (e Angs^(n-1))
For potential 10
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.55632850E-01 Asymp Coef = 0.17612599E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.42577416E-21 Asymp Moment = 0.39155045E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43553723E-21 Asymp Moment = 0.40052877E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.46434762E-22 Asymp Moment = -0.42702338E-18 (e Angs^(n-1))
For potential 11
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.55632850E-01 Asymp Coef = 0.17612599E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.42577416E-21 Asymp Moment = 0.39155045E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43553723E-21 Asymp Moment = 0.40052877E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.46434762E-22 Asymp Moment = -0.42702338E-18 (e Angs^(n-1))
For potential 12
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.73746247E-21 Asymp Moment = -0.67818526E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.75437262E-21 Asymp Moment = -0.69373617E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.80427368E-22 Asymp Moment = 0.73962619E-18 (e Angs^(n-1))
For potential 13
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.44946931E-03 Asymp Moment = 0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.31886056E-20 Asymp Moment = 0.29323056E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.88169435E-21 Asymp Moment = -0.81082379E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.59035673E-21 Asymp Moment = 0.54290387E-17 (e Angs^(n-1))
For potential 14
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79390714E-21 Asymp Moment = 0.73009291E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17951082E-20 Asymp Moment = 0.16508175E-16 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12697369E-21 Asymp Moment = -0.57529920E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.39184124E-22 Asymp Moment = 0.17753753E-16 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.25475408E-22 Asymp Moment = -0.11542534E-16 (e Angs^(n-1))
For potential 15
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.40452238E-03 Asymp Moment = -0.60590942E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.28697450E-20 Asymp Moment = -0.26390750E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79352491E-21 Asymp Moment = 0.72974141E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.53132105E-21 Asymp Moment = -0.48861349E-17 (e Angs^(n-1))
For potential 16
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.45174076E-21 Asymp Moment = 0.41542985E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.19736389E-22 Asymp Moment = -0.18149979E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.10403087E-21 Asymp Moment = -0.47134862E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.95135605E-23 Asymp Moment = -0.43104550E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.27822427E-22 Asymp Moment = 0.12605935E-16 (e Angs^(n-1))
For potential 17
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.78243795E-21 Asymp Moment = -0.71954562E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.34184429E-22 Asymp Moment = 0.31436686E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.18018674E-21 Asymp Moment = 0.81639976E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.16477970E-22 Asymp Moment = 0.74659270E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.48189858E-22 Asymp Moment = -0.21834119E-16 (e Angs^(n-1))
For potential 18
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.21275093E-19 Asymp Moment = -0.31866666E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.52443071E-21 Asymp Moment = 0.48227699E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.86702182E-21 Asymp Moment = -0.79733064E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47849805E-20 Asymp Moment = -0.44003640E-16 (e Angs^(n-1))
For potential 19
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.19147584E-19 Asymp Moment = 0.28679999E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.46710221E-03 Asymp Moment = 0.69964394E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47198764E-21 Asymp Moment = -0.43404929E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.78031964E-21 Asymp Moment = 0.71759757E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43064825E-20 Asymp Moment = 0.39603276E-16 (e Angs^(n-1))
For potential 20
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79390714E-21 Asymp Moment = 0.73009291E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17951082E-20 Asymp Moment = 0.16508175E-16 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12697369E-21 Asymp Moment = -0.57529920E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.39184124E-22 Asymp Moment = 0.17753753E-16 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.25475408E-22 Asymp Moment = -0.11542534E-16 (e Angs^(n-1))
For potential 21
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16333127E-21 Asymp Moment = -0.15020271E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27507998E-21 Asymp Moment = -0.25296906E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.71868840E-23 Asymp Moment = 0.32562719E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.13192768E-23 Asymp Moment = -0.59774500E-18 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.65661001E-22 Asymp Moment = 0.29750038E-16 (e Angs^(n-1))
For potential 22
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.28289805E-21 Asymp Moment = 0.26015872E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.47645251E-21 Asymp Moment = 0.43815527E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12448048E-22 Asymp Moment = -0.56400284E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.22850544E-23 Asymp Moment = 0.10353247E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.11372819E-21 Asymp Moment = -0.51528578E-16 (e Angs^(n-1))
Number of asymptotic regions = 56
Final point in integration = 0.46325688E+03 Angstroms
Time Now = 3.1341 Delta time = 0.4339 End SolveHomo
Final Dipole matrix
ROW 1
(-0.28046413E+01, 0.11955847E+00)
ROW 2
(-0.13412268E+01, 0.57200294E-01)
MaxIter = 6 c.s. = 9.68246851 rmsk= 0.00000252 Abs eps 0.61817860E-05 Rel eps 0.54582578E-03
Time Now = 4.2809 Delta time = 1.1468 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.42410000E+01 eV ( 0.15585389E+00 AU)
Time Now = 4.2813 Delta time = 0.0004 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = HG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 25
Number of partial waves (np) = 2
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 5
Number of partial waves in the asymptotic region (npasym) = 2
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 22
Maximum number of asymptotic partial waves = 21
Maximum l used in usual function (lmax) = 5
Maximum m used in usual function (LMax) = 5
Maxamum l used in expanding static potential (lpotct) = 10
Maximum l used in exapnding the exchange potential (lmaxab) = 10
Higest l included in the expansion of the wave function (lnp) = 4
Higest l included in the K matrix (lna) = 2
Highest l used at large r (lpasym) = 5
Higest l used in the asymptotic potential (lpzb) = 10
Maximum L used in the homogeneous solution (LMaxHomo) = 5
Number of partial waves in the homogeneous solution (npHomo) = 2
Time Now = 4.2821 Delta time = 0.0008 Energy independent setup
Compute solution for E = 4.2410000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.16653345E-15 Asymp Coef = 0.52722214E-11 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33448149E-18 Asymp Moment = 0.50099944E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.56419276E-18 Asymp Moment = 0.84506996E-16 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25895382E-19 Asymp Moment = 0.23813913E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.82819617E-20 Asymp Moment = -0.76162579E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.22119144E-19 Asymp Moment = -0.20341208E-15 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.57270400E-15
i = 2 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.57270400E-15
i = 3 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.57270400E-15
i = 4 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.57270401E-15
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.44946931E-03 Asymp Moment = -0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.81940275E-21 Asymp Moment = 0.75353918E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.83819180E-21 Asymp Moment = 0.77081797E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.89363742E-22 Asymp Moment = -0.82180687E-18 (e Angs^(n-1))
For potential 5
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16333127E-21 Asymp Moment = -0.15020271E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27507998E-21 Asymp Moment = -0.25296906E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.71868840E-23 Asymp Moment = 0.32562719E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.13192768E-23 Asymp Moment = -0.59774500E-18 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.65661001E-22 Asymp Moment = 0.29750038E-16 (e Angs^(n-1))
For potential 6
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.28289805E-21 Asymp Moment = 0.26015872E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.47645251E-21 Asymp Moment = 0.43815527E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12448048E-22 Asymp Moment = -0.56400284E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.22850544E-23 Asymp Moment = 0.10353247E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.11372819E-21 Asymp Moment = -0.51528578E-16 (e Angs^(n-1))
For potential 7
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.45174076E-21 Asymp Moment = 0.41542985E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.19736389E-22 Asymp Moment = -0.18149979E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.10403087E-21 Asymp Moment = -0.47134862E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.95135605E-23 Asymp Moment = -0.43104550E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.27822427E-22 Asymp Moment = 0.12605935E-16 (e Angs^(n-1))
For potential 8
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.78243795E-21 Asymp Moment = -0.71954562E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.34184429E-22 Asymp Moment = 0.31436686E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.18018674E-21 Asymp Moment = 0.81639976E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.16477970E-22 Asymp Moment = 0.74659270E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.48189858E-22 Asymp Moment = -0.21834119E-16 (e Angs^(n-1))
For potential 9
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.32119641E-01 Asymp Coef = -0.10168639E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.77850368E-04 Asymp Moment = -0.11660732E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.24582082E-21 Asymp Moment = -0.22606175E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.25145754E-21 Asymp Moment = -0.23124539E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.26809123E-22 Asymp Moment = 0.24654206E-18 (e Angs^(n-1))
For potential 10
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.55632850E-01 Asymp Coef = 0.17612599E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.42577416E-21 Asymp Moment = 0.39155045E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43553723E-21 Asymp Moment = 0.40052877E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.46434762E-22 Asymp Moment = -0.42702338E-18 (e Angs^(n-1))
For potential 11
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.55632850E-01 Asymp Coef = 0.17612599E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.42577416E-21 Asymp Moment = 0.39155045E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43553723E-21 Asymp Moment = 0.40052877E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.46434762E-22 Asymp Moment = -0.42702338E-18 (e Angs^(n-1))
For potential 12
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.73746247E-21 Asymp Moment = -0.67818526E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.75437262E-21 Asymp Moment = -0.69373617E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.80427368E-22 Asymp Moment = 0.73962619E-18 (e Angs^(n-1))
For potential 13
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.44946931E-03 Asymp Moment = 0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.31886056E-20 Asymp Moment = 0.29323056E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.88169435E-21 Asymp Moment = -0.81082379E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.59035673E-21 Asymp Moment = 0.54290387E-17 (e Angs^(n-1))
For potential 14
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79390714E-21 Asymp Moment = 0.73009291E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17951082E-20 Asymp Moment = 0.16508175E-16 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12697369E-21 Asymp Moment = -0.57529920E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.39184124E-22 Asymp Moment = 0.17753753E-16 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.25475408E-22 Asymp Moment = -0.11542534E-16 (e Angs^(n-1))
For potential 15
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.40452238E-03 Asymp Moment = -0.60590942E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.28697450E-20 Asymp Moment = -0.26390750E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79352491E-21 Asymp Moment = 0.72974141E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.53132105E-21 Asymp Moment = -0.48861349E-17 (e Angs^(n-1))
For potential 16
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.45174076E-21 Asymp Moment = 0.41542985E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.19736389E-22 Asymp Moment = -0.18149979E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.10403087E-21 Asymp Moment = -0.47134862E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.95135605E-23 Asymp Moment = -0.43104550E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.27822427E-22 Asymp Moment = 0.12605935E-16 (e Angs^(n-1))
For potential 17
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.78243795E-21 Asymp Moment = -0.71954562E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.34184429E-22 Asymp Moment = 0.31436686E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.18018674E-21 Asymp Moment = 0.81639976E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.16477970E-22 Asymp Moment = 0.74659270E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.48189858E-22 Asymp Moment = -0.21834119E-16 (e Angs^(n-1))
For potential 18
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.21275093E-19 Asymp Moment = -0.31866666E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.52443071E-21 Asymp Moment = 0.48227699E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.86702182E-21 Asymp Moment = -0.79733064E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47849805E-20 Asymp Moment = -0.44003640E-16 (e Angs^(n-1))
For potential 19
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.19147584E-19 Asymp Moment = 0.28679999E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.46710221E-03 Asymp Moment = 0.69964394E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47198764E-21 Asymp Moment = -0.43404929E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.78031964E-21 Asymp Moment = 0.71759757E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43064825E-20 Asymp Moment = 0.39603276E-16 (e Angs^(n-1))
For potential 20
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79390714E-21 Asymp Moment = 0.73009291E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17951082E-20 Asymp Moment = 0.16508175E-16 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12697369E-21 Asymp Moment = -0.57529920E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.39184124E-22 Asymp Moment = 0.17753753E-16 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.25475408E-22 Asymp Moment = -0.11542534E-16 (e Angs^(n-1))
For potential 21
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16333127E-21 Asymp Moment = -0.15020271E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27507998E-21 Asymp Moment = -0.25296906E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.71868840E-23 Asymp Moment = 0.32562719E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.13192768E-23 Asymp Moment = -0.59774500E-18 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.65661001E-22 Asymp Moment = 0.29750038E-16 (e Angs^(n-1))
For potential 22
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.28289805E-21 Asymp Moment = 0.26015872E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.47645251E-21 Asymp Moment = 0.43815527E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12448048E-22 Asymp Moment = -0.56400284E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.22850544E-23 Asymp Moment = 0.10353247E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.11372819E-21 Asymp Moment = -0.51528578E-16 (e Angs^(n-1))
Number of asymptotic regions = 95
Final point in integration = 0.22947571E+03 Angstroms
Time Now = 4.9844 Delta time = 0.7023 End SolveHomo
Final Dipole matrix
ROW 1
(-0.31885480E+01, 0.19884229E+00)
ROW 2
(-0.17242347E+01, 0.10752598E+00)
MaxIter = 6 c.s. = 13.19092339 rmsk= 0.00000004 Abs eps 0.27987004E-05 Rel eps 0.52772067E-05
Time Now = 6.1275 Delta time = 1.1431 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.54710000E+01 eV ( 0.20105556E+00 AU)
Time Now = 6.1279 Delta time = 0.0004 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = HG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 25
Number of partial waves (np) = 2
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 5
Number of partial waves in the asymptotic region (npasym) = 2
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 22
Maximum number of asymptotic partial waves = 21
Maximum l used in usual function (lmax) = 5
Maximum m used in usual function (LMax) = 5
Maxamum l used in expanding static potential (lpotct) = 10
Maximum l used in exapnding the exchange potential (lmaxab) = 10
Higest l included in the expansion of the wave function (lnp) = 4
Higest l included in the K matrix (lna) = 2
Highest l used at large r (lpasym) = 5
Higest l used in the asymptotic potential (lpzb) = 10
Maximum L used in the homogeneous solution (LMaxHomo) = 5
Number of partial waves in the homogeneous solution (npHomo) = 2
Time Now = 6.1286 Delta time = 0.0008 Energy independent setup
Compute solution for E = 5.4710000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.16653345E-15 Asymp Coef = 0.52722214E-11 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33448149E-18 Asymp Moment = 0.50099944E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.56419276E-18 Asymp Moment = 0.84506996E-16 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25895382E-19 Asymp Moment = 0.23813913E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.82819617E-20 Asymp Moment = -0.76162579E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.22119144E-19 Asymp Moment = -0.20341208E-15 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.51991424E-15
i = 2 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.51991424E-15
i = 3 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.51991424E-15
i = 4 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.51991424E-15
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.44946931E-03 Asymp Moment = -0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.81940275E-21 Asymp Moment = 0.75353918E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.83819180E-21 Asymp Moment = 0.77081797E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.89363742E-22 Asymp Moment = -0.82180687E-18 (e Angs^(n-1))
For potential 5
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16333127E-21 Asymp Moment = -0.15020271E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27507998E-21 Asymp Moment = -0.25296906E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.71868840E-23 Asymp Moment = 0.32562719E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.13192768E-23 Asymp Moment = -0.59774500E-18 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.65661001E-22 Asymp Moment = 0.29750038E-16 (e Angs^(n-1))
For potential 6
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.28289805E-21 Asymp Moment = 0.26015872E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.47645251E-21 Asymp Moment = 0.43815527E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12448048E-22 Asymp Moment = -0.56400284E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.22850544E-23 Asymp Moment = 0.10353247E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.11372819E-21 Asymp Moment = -0.51528578E-16 (e Angs^(n-1))
For potential 7
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.45174076E-21 Asymp Moment = 0.41542985E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.19736389E-22 Asymp Moment = -0.18149979E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.10403087E-21 Asymp Moment = -0.47134862E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.95135605E-23 Asymp Moment = -0.43104550E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.27822427E-22 Asymp Moment = 0.12605935E-16 (e Angs^(n-1))
For potential 8
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.78243795E-21 Asymp Moment = -0.71954562E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.34184429E-22 Asymp Moment = 0.31436686E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.18018674E-21 Asymp Moment = 0.81639976E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.16477970E-22 Asymp Moment = 0.74659270E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.48189858E-22 Asymp Moment = -0.21834119E-16 (e Angs^(n-1))
For potential 9
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.32119641E-01 Asymp Coef = -0.10168639E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.77850368E-04 Asymp Moment = -0.11660732E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.24582082E-21 Asymp Moment = -0.22606175E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.25145754E-21 Asymp Moment = -0.23124539E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.26809123E-22 Asymp Moment = 0.24654206E-18 (e Angs^(n-1))
For potential 10
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.55632850E-01 Asymp Coef = 0.17612599E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.42577416E-21 Asymp Moment = 0.39155045E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43553723E-21 Asymp Moment = 0.40052877E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.46434762E-22 Asymp Moment = -0.42702338E-18 (e Angs^(n-1))
For potential 11
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.55632850E-01 Asymp Coef = 0.17612599E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.42577416E-21 Asymp Moment = 0.39155045E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43553723E-21 Asymp Moment = 0.40052877E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.46434762E-22 Asymp Moment = -0.42702338E-18 (e Angs^(n-1))
For potential 12
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.73746247E-21 Asymp Moment = -0.67818526E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.75437262E-21 Asymp Moment = -0.69373617E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.80427368E-22 Asymp Moment = 0.73962619E-18 (e Angs^(n-1))
For potential 13
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.44946931E-03 Asymp Moment = 0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.31886056E-20 Asymp Moment = 0.29323056E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.88169435E-21 Asymp Moment = -0.81082379E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.59035673E-21 Asymp Moment = 0.54290387E-17 (e Angs^(n-1))
For potential 14
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79390714E-21 Asymp Moment = 0.73009291E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17951082E-20 Asymp Moment = 0.16508175E-16 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12697369E-21 Asymp Moment = -0.57529920E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.39184124E-22 Asymp Moment = 0.17753753E-16 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.25475408E-22 Asymp Moment = -0.11542534E-16 (e Angs^(n-1))
For potential 15
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.40452238E-03 Asymp Moment = -0.60590942E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.28697450E-20 Asymp Moment = -0.26390750E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79352491E-21 Asymp Moment = 0.72974141E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.53132105E-21 Asymp Moment = -0.48861349E-17 (e Angs^(n-1))
For potential 16
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.45174076E-21 Asymp Moment = 0.41542985E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.19736389E-22 Asymp Moment = -0.18149979E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.10403087E-21 Asymp Moment = -0.47134862E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.95135605E-23 Asymp Moment = -0.43104550E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.27822427E-22 Asymp Moment = 0.12605935E-16 (e Angs^(n-1))
For potential 17
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.78243795E-21 Asymp Moment = -0.71954562E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.34184429E-22 Asymp Moment = 0.31436686E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.18018674E-21 Asymp Moment = 0.81639976E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.16477970E-22 Asymp Moment = 0.74659270E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.48189858E-22 Asymp Moment = -0.21834119E-16 (e Angs^(n-1))
For potential 18
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.21275093E-19 Asymp Moment = -0.31866666E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.52443071E-21 Asymp Moment = 0.48227699E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.86702182E-21 Asymp Moment = -0.79733064E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47849805E-20 Asymp Moment = -0.44003640E-16 (e Angs^(n-1))
For potential 19
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.19147584E-19 Asymp Moment = 0.28679999E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.46710221E-03 Asymp Moment = 0.69964394E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47198764E-21 Asymp Moment = -0.43404929E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.78031964E-21 Asymp Moment = 0.71759757E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43064825E-20 Asymp Moment = 0.39603276E-16 (e Angs^(n-1))
For potential 20
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79390714E-21 Asymp Moment = 0.73009291E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17951082E-20 Asymp Moment = 0.16508175E-16 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12697369E-21 Asymp Moment = -0.57529920E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.39184124E-22 Asymp Moment = 0.17753753E-16 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.25475408E-22 Asymp Moment = -0.11542534E-16 (e Angs^(n-1))
For potential 21
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16333127E-21 Asymp Moment = -0.15020271E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27507998E-21 Asymp Moment = -0.25296906E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.71868840E-23 Asymp Moment = 0.32562719E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.13192768E-23 Asymp Moment = -0.59774500E-18 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.65661001E-22 Asymp Moment = 0.29750038E-16 (e Angs^(n-1))
For potential 22
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.28289805E-21 Asymp Moment = 0.26015872E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.47645251E-21 Asymp Moment = 0.43815527E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12448048E-22 Asymp Moment = -0.56400284E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.22850544E-23 Asymp Moment = 0.10353247E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.11372819E-21 Asymp Moment = -0.51528578E-16 (e Angs^(n-1))
Number of asymptotic regions = 101
Final point in integration = 0.21536217E+03 Angstroms
Time Now = 6.9261 Delta time = 0.7975 End SolveHomo
Final Dipole matrix
ROW 1
(-0.32063861E+01, 0.28456572E+00)
ROW 2
(-0.18046655E+01, 0.16016481E+00)
MaxIter = 6 c.s. = 13.64435995 rmsk= 0.00000132 Abs eps 0.25800124E-05 Rel eps 0.11675614E-04
Time Now = 8.0697 Delta time = 1.1437 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.95410000E+01 eV ( 0.35062532E+00 AU)
Time Now = 8.0702 Delta time = 0.0004 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = HG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 25
Number of partial waves (np) = 2
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 5
Number of partial waves in the asymptotic region (npasym) = 2
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 22
Maximum number of asymptotic partial waves = 21
Maximum l used in usual function (lmax) = 5
Maximum m used in usual function (LMax) = 5
Maxamum l used in expanding static potential (lpotct) = 10
Maximum l used in exapnding the exchange potential (lmaxab) = 10
Higest l included in the expansion of the wave function (lnp) = 4
Higest l included in the K matrix (lna) = 2
Highest l used at large r (lpasym) = 5
Higest l used in the asymptotic potential (lpzb) = 10
Maximum L used in the homogeneous solution (LMaxHomo) = 5
Number of partial waves in the homogeneous solution (npHomo) = 2
Time Now = 8.0709 Delta time = 0.0008 Energy independent setup
Compute solution for E = 9.5410000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.16653345E-15 Asymp Coef = 0.52722214E-11 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.33448149E-18 Asymp Moment = 0.50099944E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.56419276E-18 Asymp Moment = 0.84506996E-16 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25895382E-19 Asymp Moment = 0.23813913E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.82819617E-20 Asymp Moment = -0.76162579E-16 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.22119144E-19 Asymp Moment = -0.20341208E-15 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.42920225E-15
i = 2 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.42920225E-15
i = 3 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.42920225E-15
i = 4 exps = -0.44146293E+02 -0.20000000E+01 stpote = -0.42920225E-15
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.44946931E-03 Asymp Moment = -0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.81940275E-21 Asymp Moment = 0.75353918E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.83819180E-21 Asymp Moment = 0.77081797E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.89363742E-22 Asymp Moment = -0.82180687E-18 (e Angs^(n-1))
For potential 5
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16333127E-21 Asymp Moment = -0.15020271E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27507998E-21 Asymp Moment = -0.25296906E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.71868840E-23 Asymp Moment = 0.32562719E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.13192768E-23 Asymp Moment = -0.59774500E-18 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.65661001E-22 Asymp Moment = 0.29750038E-16 (e Angs^(n-1))
For potential 6
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.28289805E-21 Asymp Moment = 0.26015872E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.47645251E-21 Asymp Moment = 0.43815527E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12448048E-22 Asymp Moment = -0.56400284E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.22850544E-23 Asymp Moment = 0.10353247E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.11372819E-21 Asymp Moment = -0.51528578E-16 (e Angs^(n-1))
For potential 7
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.45174076E-21 Asymp Moment = 0.41542985E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.19736389E-22 Asymp Moment = -0.18149979E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.10403087E-21 Asymp Moment = -0.47134862E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.95135605E-23 Asymp Moment = -0.43104550E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.27822427E-22 Asymp Moment = 0.12605935E-16 (e Angs^(n-1))
For potential 8
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.78243795E-21 Asymp Moment = -0.71954562E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.34184429E-22 Asymp Moment = 0.31436686E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.18018674E-21 Asymp Moment = 0.81639976E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.16477970E-22 Asymp Moment = 0.74659270E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.48189858E-22 Asymp Moment = -0.21834119E-16 (e Angs^(n-1))
For potential 9
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.32119641E-01 Asymp Coef = -0.10168639E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.77850368E-04 Asymp Moment = -0.11660732E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.24582082E-21 Asymp Moment = -0.22606175E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.25145754E-21 Asymp Moment = -0.23124539E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.26809123E-22 Asymp Moment = 0.24654206E-18 (e Angs^(n-1))
For potential 10
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.55632850E-01 Asymp Coef = 0.17612599E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.42577416E-21 Asymp Moment = 0.39155045E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43553723E-21 Asymp Moment = 0.40052877E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.46434762E-22 Asymp Moment = -0.42702338E-18 (e Angs^(n-1))
For potential 11
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.55632850E-01 Asymp Coef = 0.17612599E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.13484079E-03 Asymp Moment = 0.20196981E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.42577416E-21 Asymp Moment = 0.39155045E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43553723E-21 Asymp Moment = 0.40052877E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.46434762E-22 Asymp Moment = -0.42702338E-18 (e Angs^(n-1))
For potential 12
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.73746247E-21 Asymp Moment = -0.67818526E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.75437262E-21 Asymp Moment = -0.69373617E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.80427368E-22 Asymp Moment = 0.73962619E-18 (e Angs^(n-1))
For potential 13
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.44946931E-03 Asymp Moment = 0.67323269E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25950123E-03 Asymp Moment = 0.38869108E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.31886056E-20 Asymp Moment = 0.29323056E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.88169435E-21 Asymp Moment = -0.81082379E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.59035673E-21 Asymp Moment = 0.54290387E-17 (e Angs^(n-1))
For potential 14
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79390714E-21 Asymp Moment = 0.73009291E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17951082E-20 Asymp Moment = 0.16508175E-16 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12697369E-21 Asymp Moment = -0.57529920E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.39184124E-22 Asymp Moment = 0.17753753E-16 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.25475408E-22 Asymp Moment = -0.11542534E-16 (e Angs^(n-1))
For potential 15
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.40452238E-03 Asymp Moment = -0.60590942E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.28697450E-20 Asymp Moment = -0.26390750E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79352491E-21 Asymp Moment = 0.72974141E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.53132105E-21 Asymp Moment = -0.48861349E-17 (e Angs^(n-1))
For potential 16
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.45174076E-21 Asymp Moment = 0.41542985E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.19736389E-22 Asymp Moment = -0.18149979E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.10403087E-21 Asymp Moment = -0.47134862E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.95135605E-23 Asymp Moment = -0.43104550E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.27822427E-22 Asymp Moment = 0.12605935E-16 (e Angs^(n-1))
For potential 17
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.78243795E-21 Asymp Moment = -0.71954562E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.34184429E-22 Asymp Moment = 0.31436686E-18 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.18018674E-21 Asymp Moment = 0.81639976E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.16477970E-22 Asymp Moment = 0.74659270E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.48189858E-22 Asymp Moment = -0.21834119E-16 (e Angs^(n-1))
For potential 18
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.10706547E+00 Asymp Coef = 0.33895463E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.21275093E-19 Asymp Moment = -0.31866666E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.51900245E-03 Asymp Moment = -0.77738215E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.52443071E-21 Asymp Moment = 0.48227699E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.86702182E-21 Asymp Moment = -0.79733064E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47849805E-20 Asymp Moment = -0.44003640E-16 (e Angs^(n-1))
For potential 19
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.96358923E-01 Asymp Coef = -0.30505917E+04 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.19147584E-19 Asymp Moment = 0.28679999E-17 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.46710221E-03 Asymp Moment = 0.69964394E-01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = 0.47198764E-21 Asymp Moment = -0.43404929E-17 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.78031964E-21 Asymp Moment = 0.71759757E-17 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.43064825E-20 Asymp Moment = 0.39603276E-16 (e Angs^(n-1))
For potential 20
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.79390714E-21 Asymp Moment = 0.73009291E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.17951082E-20 Asymp Moment = 0.16508175E-16 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12697369E-21 Asymp Moment = -0.57529920E-16 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.39184124E-22 Asymp Moment = 0.17753753E-16 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.25475408E-22 Asymp Moment = -0.11542534E-16 (e Angs^(n-1))
For potential 21
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = 0.23355110E-03 Asymp Moment = -0.34982197E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = 0.16333127E-21 Asymp Moment = -0.15020271E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27507998E-21 Asymp Moment = -0.25296906E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = -0.71868840E-23 Asymp Moment = 0.32562719E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = 0.13192768E-23 Asymp Moment = -0.59774500E-18 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = -0.65661001E-22 Asymp Moment = 0.29750038E-16 (e Angs^(n-1))
For potential 22
i = 1 lval = 2 1/r^n n = 3 StPot(RMax) = -0.40452238E-03 Asymp Moment = 0.60590942E-01 (e Angs^(n-1))
i = 2 lval = 4 1/r^n n = 5 StPot(RMax) = -0.28289805E-21 Asymp Moment = 0.26015872E-17 (e Angs^(n-1))
i = 3 lval = 4 1/r^n n = 5 StPot(RMax) = -0.47645251E-21 Asymp Moment = 0.43815527E-17 (e Angs^(n-1))
i = 4 lval = 6 1/r^n n = 7 StPot(RMax) = 0.12448048E-22 Asymp Moment = -0.56400284E-17 (e Angs^(n-1))
i = 5 lval = 6 1/r^n n = 7 StPot(RMax) = -0.22850544E-23 Asymp Moment = 0.10353247E-17 (e Angs^(n-1))
i = 6 lval = 6 1/r^n n = 7 StPot(RMax) = 0.11372819E-21 Asymp Moment = -0.51528578E-16 (e Angs^(n-1))
Number of asymptotic regions = 114
Final point in integration = 0.18519586E+03 Angstroms
Time Now = 8.9156 Delta time = 0.8447 End SolveHomo
Final Dipole matrix
ROW 1
(-0.30056596E+01, 0.74900152E+00)
ROW 2
(-0.19285887E+01, 0.48059880E+00)
MaxIter = 6 c.s. = 13.54542277 rmsk= 0.00000001 Abs eps 0.22104103E-05 Rel eps 0.77537400E-06
Time Now = 10.0564 Delta time = 1.1408 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 10.0568 Delta time = 0.0004 End CnvIdy
Found 4 energies :
0.34100000 4.24100000 5.47100000 9.54100000
List of matrix element types found Number = 1
1 Cont Sym HG Targ Sym T1U Total Sym T1U
Keeping 4 energies :
0.34100000 4.24100000 5.47100000 9.54100000
Time Now = 10.0568 Delta time = 0.0000 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 15.7590 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
16.1000 0.23945607E+02
20.0000 0.38526398E+02
21.2300 0.41518895E+02
25.3000 0.45816511E+02
Sigma MIXED at all energies
Eng
16.1000 0.19354228E+02
20.0000 0.28345391E+02
21.2300 0.29952104E+02
25.3000 0.31619278E+02
Sigma VELOCITY at all energies
Eng
16.1000 0.15643209E+02
20.0000 0.20854822E+02
21.2300 0.21607716E+02
25.3000 0.21821363E+02
Beta LENGTH at all energies
Eng
16.1000 0.10000000E+01
20.0000 0.10000000E+01
21.2300 0.10000000E+01
25.3000 0.10000000E+01
Beta MIXED at all energies
Eng
16.1000 0.10000000E+01
20.0000 0.10000000E+01
21.2300 0.10000000E+01
25.3000 0.10000000E+01
Beta VELOCITY at all energies
Eng
16.1000 0.10000000E+01
20.0000 0.10000000E+01
21.2300 0.10000000E+01
25.3000 0.10000000E+01
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 16.1000 23.9456 19.3542 15.6432 1.0000 1.0000 1.0000
EPhi 20.0000 38.5264 28.3454 20.8548 1.0000 1.0000 1.0000
EPhi 21.2300 41.5189 29.9521 21.6077 1.0000 1.0000 1.0000
EPhi 25.3000 45.8165 31.6193 21.8214 1.0000 1.0000 1.0000
Time Now = 10.0575 Delta time = 0.0006 End CrossSection
+ Command GetCro
+ 'test31AG.idy' 'test31HG.idy'
Taking dipole matrix from file test31AG.idy
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 10.0577 Delta time = 0.0002 End CnvIdy
Taking dipole matrix from file test31HG.idy
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 10.0580 Delta time = 0.0003 End CnvIdy
Found 4 energies :
0.34100000 4.24100000 5.47100000 9.54100000
List of matrix element types found Number = 2
1 Cont Sym AG Targ Sym T1U Total Sym T1U
2 Cont Sym HG Targ Sym T1U Total Sym T1U
Keeping 4 energies :
0.34100000 4.24100000 5.47100000 9.54100000
Time Now = 10.0581 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 15.7590 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
16.1000 0.28710708E+02
20.0000 0.41712672E+02
21.2300 0.44317589E+02
25.3000 0.47657805E+02
Sigma MIXED at all energies
Eng
16.1000 0.23647547E+02
20.0000 0.31200535E+02
21.2300 0.32480645E+02
25.3000 0.33359695E+02
Sigma VELOCITY at all energies
Eng
16.1000 0.19511456E+02
20.0000 0.23413248E+02
21.2300 0.23892182E+02
25.3000 0.23466429E+02
Beta LENGTH at all energies
Eng
16.1000 -0.18494607E+00
20.0000 0.69132165E+00
21.2300 0.84066148E+00
25.3000 0.11573706E+01
Beta MIXED at all energies
Eng
16.1000 -0.23885069E+00
20.0000 0.65510527E+00
21.2300 0.81552683E+00
25.3000 0.11767894E+01
Beta VELOCITY at all energies
Eng
16.1000 -0.29016646E+00
20.0000 0.61788653E+00
21.2300 0.78809680E+00
25.3000 0.11895644E+01
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 16.1000 28.7107 23.6475 19.5115 -0.1849 -0.2389 -0.2902
EPhi 20.0000 41.7127 31.2005 23.4132 0.6913 0.6551 0.6179
EPhi 21.2300 44.3176 32.4806 23.8922 0.8407 0.8155 0.7881
EPhi 25.3000 47.6578 33.3597 23.4664 1.1574 1.1768 1.1896
Time Now = 10.0587 Delta time = 0.0006 End CrossSection
+ Data Record DPotEng - 15.
+ Data Record ResSearchEng
+ 1 / 1. 0.5 / 20.0 / 10. / 2.
+ Command GetDPot
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.15000000E+02 eV ( 0.55123989E+00 AU)
Time Now = 10.0591 Delta time = 0.0004 End Fege
----------------------------------------------------------------------
DPot - compute diabatic local potential
----------------------------------------------------------------------
Symmetry type of adibatic potential (symtps) =HG
For an atom, use partial waves with l = 2 m = -1
Positron flag = F
Maximum L to include in the diagonal representation (LMaxA) = 5
Maximum np to to write out (nppx) = 1
Unit for plot data (iuvpot) = 0
General print flag (iprnfg) = 0
Charge at the origin is = 18
Charge = 1
Number of radial regions (nrlast) = 25
Found fege potential
Maximum l used in usual function (LMax) = 5
Time Now = 10.0600 Delta time = 0.0009 End DPot
+ Command ResSearch
+
----------------------------------------------------------------------
Resonance - program to find resonances
----------------------------------------------------------------------
iuwavf, unit for adiabatic wave function = 0
iuwavo, unit for spherical wave function = 0
iureng, unit to save energies on = 0
idstop, flag to indicate what calculations to do = 0000
Print flag = 0
Runge Kutta Factor = 4
Resonance search type (ResSearchType) = 0
Symmetry type of adibatic potential (symtps) =HG
Number of energy regions = 1
Region 1 starts at E = 0.10000000E+01 eV with step size = 0.50000000E+00 eV
End point of last region E = 0.20000000E+02 eV
Largest imaginary part = 0.10000000E+02 eV
Imaginary step size = 0.20000000E+01 eV
Charge on the molecule is 1
vmin = -0.25892954E+02 eV
Time Now = 10.0604 Delta time = 0.0004 Starting docalc
Number of energies (neng) = 39
E (eV) Phase Sum T sum
1.0000000000 0.77568332E+00 0.26682708E+02
1.5000000000 0.88922126E+00 0.21880805E+02
2.0000000000 0.99759791E+00 0.19208157E+02
2.5000000000 0.10983222E+01 0.17260559E+02
3.0000000000 0.11899542E+01 0.15634524E+02
3.5000000000 0.12720080E+01 0.14202022E+02
4.0000000000 0.13447029E+01 0.12921963E+02
4.5000000000 0.14086913E+01 0.11778917E+02
5.0000000000 0.14648371E+01 0.10762805E+02
5.5000000000 0.15140632E+01 0.98632340E+01
6.0000000000 0.15572619E+01 0.90687997E+01
6.5000000000 0.15952490E+01 0.83677280E+01
7.0000000000 0.16287465E+01 0.77486011E+01
7.5000000000 0.16583803E+01 0.72008478E+01
8.0000000000 0.16846871E+01 0.67149863E+01
8.5000000000 0.17081236E+01 0.62826888E+01
9.0000000000 0.17290778E+01 0.58967400E+01
9.5000000000 0.17478784E+01 0.55509408E+01
10.0000000000 0.17648046E+01 0.52399908E+01
10.5000000000 0.17800937E+01 0.49593681E+01
11.0000000000 0.17939478E+01 0.47052168E+01
11.5000000000 0.18065399E+01 0.44742466E+01
12.0000000000 0.18180181E+01 0.42636448E+01
12.5000000000 0.18285100E+01 0.40710018E+01
13.0000000000 0.18381256E+01 0.38942477E+01
13.5000000000 0.18469601E+01 0.37315990E+01
14.0000000000 0.18550966E+01 0.35815144E+01
14.5000000000 0.18626071E+01 0.34426575E+01
15.0000000000 0.18695549E+01 0.33138657E+01
15.5000000000 0.18759955E+01 0.31941245E+01
16.0000000000 0.18819775E+01 0.30825455E+01
16.5000000000 0.18875442E+01 0.29783487E+01
17.0000000000 0.18927336E+01 0.28808466E+01
17.5000000000 0.18975795E+01 0.27894318E+01
18.0000000000 0.19021121E+01 0.27035659E+01
18.5000000000 0.19063583E+01 0.26227703E+01
19.0000000000 0.19103420E+01 0.25466186E+01
19.5000000000 0.19140848E+01 0.24747294E+01
20.0000000000 0.19176060E+01 0.24067614E+01
Special Points
eng = 1.00000 (eV) phase = 0.77568332E+00 tsum = 0.26682708E+02 first
eng = 20.00000 (eV) phase = 0.19176060E+01 tsum = 0.24067614E+01 last
Min - Max jumps
Time Now = 10.1482 Delta time = 0.0878 Begin resonance Search
The number of initial guesses of roots is 0
Sorted roots on unphysical sheet of open channels
Selected roots on unphysical sheet of open channels
Selected roots for comparison (None found)
Time Now = 10.1560 Delta time = 0.0078 End Resonance
Time Now = 10.1562 Delta time = 0.0002 Finalize