Execution on n0159.lr6

----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------

Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with  this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

----------------------------------------------------------------------

Starting at 2022-01-14  17:34:53.869 (GMT -0800)
Using    20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3

----------------------------------------------------------------------


+ Start of Input Records
#
# input file for test31
#
# Ar SCF, (2p)^-1 photoionization
#
  LMax   5     # maximum l to be used for wave functions
  EMax  50.0    # EMax, maximum asymptotic energy in eV
  FegeEng 13.0   # Energy correction (in eV) used in the fege potential

  ScatEng  0.341 4.241 5.471 9.541   # list of scattering energies

 InitSym 'AG'      # Initial state symmetry
 InitSpinDeg 1     # Initial state spin degeneracy
 OrbOccInit 2 2 6 2 6  # Orbital occupation of initial state
 OrbOcc     2 2 6 2 5  # occupation of the orbital groups of target
 SpinDeg 1         # Spin degeneracy of the total scattering state (=1 singlet)
 TargSym 'T1U'      # Symmetry of the target state
 TargSpinDeg 2     # Target spin degeneracy
 IPot 15.759   # ionization potentail

Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test31.g03' 'gaussian'
GetBlms
ExpOrb

 ScatSym     'T1U'  # Scattering symmetry of total final state
 ScatContSym 'AG'  # Scattering symmetry of continuum electron

FileName 'MatrixElements' 'test31AG.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
 ScatSym     'T1U'  # Scattering symmetry of total final state
 ScatContSym 'HG'  # Scattering symmetry of continuum electron

FileName 'MatrixElements' 'test31HG.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
GetCro 'test31AG.idy' 'test31HG.idy'
#
  DPotEng  15.  # Energy (in eV) for the local exchange potential
  ResSearchEng
  1                   # nengrb - number of energy step regions
  1. 0.5     # first energy and step (in eV)
   20.0          # final ending point, engrb(nengrb+1)
   10.                 # eendzi, largest imaginary part
   2.                # estpzi, imaginary energy step

GetDPot
ResSearch

#
+ End of input reached
+ Data Record LMax - 5
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 0.341 4.241 5.471 9.541
+ Data Record InitSym - 'AG'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 6 2 6
+ Data Record OrbOcc - 2 2 6 2 5
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'T1U'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 15.759

+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test31.g03' 'gaussian'

----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------

Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is  0.5291772083000000
Expansion center is (in Angstroms) -
     0.0000000000   0.0000000000   0.0000000000
Command line = #HF/6-311G SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag =    T
Normal Mode flag =    F
Selecting orbitals
from     1  to     9  number already selected     0
Number of orbitals selected is     9
Highest orbital read in is =    9
Time Now =         0.0037  Delta time =         0.0037 End GaussianCnv

Atoms found    1  Coordinates in Angstroms
Z = 18 ZS = 18 r =   0.0000000000   0.0000000000   0.0000000000
Maximum distance from expansion center is    0.0000000000

+ Command GetBlms
+

----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------

Found point group  Ih
Reduce angular grid using nthd =  2  nphid =  4
Found point group for abelian subgroup D2h
Time Now =         0.0686  Delta time =         0.0648 End GetPGroup
List of unique axes
  N  Vector                      Z   R
  1  0.00000  0.00000  1.00000
List of corresponding x axes
  N  Vector
  1  1.00000  0.00000  0.00000
Computed default value of LMaxA =    5
Determining angular grid in GetAxMax  LMax =    5  LMaxA =    5  LMaxAb =   10
MMax =    3  MMaxAbFlag =    2
For axis     1  mvals:
   0   1   2   3   4   5
On the double L grid used for products
For axis     1  mvals:
   0   1   2   3   4   5   6   7   8   9  10

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is Ih
LMax     5
 The dimension of each irreducable representation is
    AG    (  1)    T1G   (  3)    T2G   (  3)    GG    (  4)    HG    (  5)
    AU    (  1)    T1U   (  3)    T2U   (  3)    GU    (  4)    HU    (  5)
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
    18    29    30     2     5     4     3
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1          1       1  1  1  1  1  1  1
 T1G       1         2          0       0  0  0  0  0  0  0
 T1G       2         3          0       0  0  0  0  0  0  0
 T1G       3         4          0       0  0  0  0  0  0  0
 T2G       1         5          0       0  0  0  0  0  0  0
 T2G       2         6          0       0  0  0  0  0  0  0
 T2G       3         7          0       0  0  0  0  0  0  0
 GG        1         8          1      -1 -1  1  1 -1 -1  1
 GG        2         9          1      -1  1 -1  1 -1  1 -1
 GG        3        10          1       1 -1 -1  1  1 -1 -1
 GG        4        11          1       1  1  1  1  1  1  1
 HG        1        12          2      -1 -1  1  1 -1 -1  1
 HG        2        13          2      -1  1 -1  1 -1  1 -1
 HG        3        14          2       1 -1 -1  1  1 -1 -1
 HG        4        15          2       1  1  1  1  1  1  1
 HG        5        16          2       1  1  1  1  1  1  1
 AU        1        17          0       1  1  1 -1 -1 -1 -1
 T1U       1        18          2      -1 -1  1 -1  1  1 -1
 T1U       2        19          2      -1  1 -1 -1  1 -1  1
 T1U       3        20          2       1 -1 -1 -1 -1  1  1
 T2U       1        21          2      -1 -1  1 -1  1  1 -1
 T2U       2        22          2      -1  1 -1 -1  1 -1  1
 T2U       3        23          2       1 -1 -1 -1 -1  1  1
 GU        1        24          1      -1 -1  1 -1  1  1 -1
 GU        2        25          1      -1  1 -1 -1  1 -1  1
 GU        3        26          1       1 -1 -1 -1 -1  1  1
 GU        4        27          1       1  1  1 -1 -1 -1 -1
 HU        1        28          1      -1 -1  1 -1  1  1 -1
 HU        2        29          1      -1  1 -1 -1  1 -1  1
 HU        3        30          1       1 -1 -1 -1 -1  1  1
 HU        4        31          1       1  1  1 -1 -1 -1 -1
 HU        5        32          1       1  1  1 -1 -1 -1 -1
Time Now =         0.1978  Delta time =         0.1293 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
AG    1    0(   1)    1(   1)    2(   1)    3(   1)    4(   1)    5(   1)
T1G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)
T1G   2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)
T1G   3    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)
T2G   1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)
T2G   2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)
T2G   3    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)
GG    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)
GG    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)
GG    3    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)
GG    4    0(   0)    1(   0)    2(   0)    3(   0)    4(   1)    5(   1)
HG    1    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)
HG    2    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)
HG    3    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)
HG    4    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)
HG    5    0(   0)    1(   0)    2(   1)    3(   1)    4(   2)    5(   2)
AU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   0)
T1U   1    0(   0)    1(   1)    2(   1)    3(   1)    4(   1)    5(   2)
T1U   2    0(   0)    1(   1)    2(   1)    3(   1)    4(   1)    5(   2)
T1U   3    0(   0)    1(   1)    2(   1)    3(   1)    4(   1)    5(   2)
T2U   1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)
T2U   2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)
T2U   3    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   2)
GU    1    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)
GU    2    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)
GU    3    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)
GU    4    0(   0)    1(   0)    2(   0)    3(   1)    4(   1)    5(   1)
HU    1    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)
HU    2    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)
HU    3    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)
HU    4    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)
HU    5    0(   0)    1(   0)    2(   0)    3(   0)    4(   0)    5(   1)

----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------

Point group is D2h
LMax    10
 The dimension of each irreducable representation is
    AG    (  1)    B1G   (  1)    B2G   (  1)    B3G   (  1)    AU    (  1)
    B1U   (  1)    B2U   (  1)    B3U   (  1)
Abelian axes
    1       1.000000       0.000000       0.000000
    2       0.000000       1.000000       0.000000
    3       0.000000       0.000000       1.000000
Symmetry operation directions
  1       0.000000       0.000000       1.000000 ang =  0  1 type = 0 axis = 3
  2       0.000000       0.000000       1.000000 ang =  1  2 type = 2 axis = 3
  3       0.000000       1.000000       0.000000 ang =  1  2 type = 2 axis = 2
  4       1.000000       0.000000       0.000000 ang =  1  2 type = 2 axis = 1
  5       0.000000       0.000000       1.000000 ang =  1  2 type = 3 axis = 3
  6       0.000000       0.000000       1.000000 ang =  0  1 type = 1 axis = 3
  7       0.000000       1.000000       0.000000 ang =  0  1 type = 1 axis = 2
  8       1.000000       0.000000       0.000000 ang =  0  1 type = 1 axis = 1
irep =    1  sym =AG    1  eigs =   1   1   1   1   1   1   1   1
irep =    2  sym =B1G   1  eigs =   1   1  -1  -1   1   1  -1  -1
irep =    3  sym =B2G   1  eigs =   1  -1   1  -1   1  -1   1  -1
irep =    4  sym =B3G   1  eigs =   1  -1  -1   1   1  -1  -1   1
irep =    5  sym =AU    1  eigs =   1   1   1   1  -1  -1  -1  -1
irep =    6  sym =B1U   1  eigs =   1   1  -1  -1  -1  -1   1   1
irep =    7  sym =B2U   1  eigs =   1  -1   1  -1  -1   1  -1   1
irep =    8  sym =B3U   1  eigs =   1  -1  -1   1  -1   1   1  -1
 Number of symmetry operations in the abelian subgroup (excluding E) =    7
 The operations are -
     2     3     4     5     6     7     8
  Rep  Component  Sym Num  Num Found  Eigenvalues of abelian sub-group
 AG        1         1         21       1  1  1  1  1  1  1
 B1G       1         2         15       1 -1 -1  1  1 -1 -1
 B2G       1         3         15      -1  1 -1  1 -1  1 -1
 B3G       1         4         15      -1 -1  1  1 -1 -1  1
 AU        1         5         10       1  1  1 -1 -1 -1 -1
 B1U       1         6         15       1 -1 -1 -1 -1  1  1
 B2U       1         7         15      -1  1 -1 -1  1 -1  1
 B3U       1         8         15      -1 -1  1 -1  1  1 -1
Time Now =         0.1993  Delta time =         0.0015 End SymGen

+ Command ExpOrb
+
In GetRMax, RMaxEps =  0.10000000E-05  RMax =    5.8403030373 Angs

----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------

HFacGauss    10.00000
HFacWave     10.00000
GridFac       1
MinExpFac   300.00000
Maximum R in the grid (RMax) =     5.84030 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) =   10.0
In regions controlled by the wave length (HFacWave) =   10.0
Factor used to control the minimum exponent at each center (MinExpFac) =  300.0
Maximum asymptotic kinetic energy (EMAx) =  50.00000 eV
Maximum step size (MaxStep) =   5.84030 Angs
Factor to increase grid by (GridFac) =     1

    1  Center at =     0.00000 Angs  Alpha Max = 0.11802E+06

Generated Grid

  irg  nin  ntot      step Angs     R end Angs
    1    8     8    0.15403E-03     0.00123
    2    8    16    0.16422E-03     0.00255
    3    8    24    0.20243E-03     0.00417
    4    8    32    0.30713E-03     0.00662
    5    8    40    0.48829E-03     0.01053
    6    8    48    0.77632E-03     0.01674
    7    8    56    0.12342E-02     0.02661
    8    8    64    0.19623E-02     0.04231
    9    8    72    0.31198E-02     0.06727
   10    8    80    0.49600E-02     0.10695
   11    8    88    0.78857E-02     0.17004
   12    8    96    0.12537E-01     0.27033
   13    8   104    0.19932E-01     0.42979
   14    8   112    0.31690E-01     0.68331
   15    8   120    0.41476E-01     1.01512
   16    8   128    0.47960E-01     1.39880
   17    8   136    0.53302E-01     1.82522
   18    8   144    0.57657E-01     2.28647
   19    8   152    0.61204E-01     2.77611
   20    8   160    0.64108E-01     3.28897
   21    8   168    0.66502E-01     3.82099
   22    8   176    0.68496E-01     4.36896
   23    8   184    0.70171E-01     4.93032
   24    8   192    0.71592E-01     5.50306
   25    8   200    0.42155E-01     5.84030
Time Now =         0.2009  Delta time =         0.0016 End GenGrid

----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------

Maximum scattering l (lmax) =    5
Maximum scattering m (mmaxs) =    5
Maximum numerical integration l (lmaxi) =   10
Maximum numerical integration m (mmaxi) =   10
Maximum l to include in the asymptotic region (lmasym) =    5
Parameter used to determine the cutoff points (PCutRd) =  0.10000000E-07 au
Maximum E used to determine grid (in eV) =       50.00000
Print flag (iprnfg) =    0
lmasymtyts =    0
 Actual value of lmasym found =      5
Number of regions of the same l expansion (NAngReg) =    2
Angular regions
    1 L =    2  from (    1)         0.00015  to (    7)         0.00108
    2 L =    5  from (    8)         0.00123  to (  200)         5.84030
There are     1 angular regions for computing spherical harmonics
    1 lval =    5
Maximum number of processors is       24
Last grid points by processor WorkExp =     1.500
Proc id =   -1  Last grid point =       1
Proc id =    0  Last grid point =      16
Proc id =    1  Last grid point =      32
Proc id =    2  Last grid point =      40
Proc id =    3  Last grid point =      48
Proc id =    4  Last grid point =      56
Proc id =    5  Last grid point =      72
Proc id =    6  Last grid point =      80
Proc id =    7  Last grid point =      88
Proc id =    8  Last grid point =      96
Proc id =    9  Last grid point =     104
Proc id =   10  Last grid point =     120
Proc id =   11  Last grid point =     128
Proc id =   12  Last grid point =     136
Proc id =   13  Last grid point =     144
Proc id =   14  Last grid point =     152
Proc id =   15  Last grid point =     168
Proc id =   16  Last grid point =     176
Proc id =   17  Last grid point =     184
Proc id =   18  Last grid point =     192
Proc id =   19  Last grid point =     200
Time Now =         0.2012  Delta time =         0.0003 End AngGCt

----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------


 R of maximum density
     1  Orig    1  Eng = -118.608390  AG    1 at max irg =   56  r =   0.02661
     2  Orig    2  Eng =  -12.320674  AG    1 at max irg =   88  r =   0.17004
     3  Orig    3  Eng =   -9.570498  T1U   1 at max irg =   88  r =   0.17004
     4  Orig    4  Eng =   -9.570498  T1U   2 at max irg =   88  r =   0.17004
     5  Orig    5  Eng =   -9.570498  T1U   3 at max irg =   88  r =   0.17004
     6  Orig    6  Eng =   -1.276169  AG    1 at max irg =  112  r =   0.68331
     7  Orig    7  Eng =   -0.590124  T1U   1 at max irg =  112  r =   0.68331
     8  Orig    8  Eng =   -0.590124  T1U   2 at max irg =  112  r =   0.68331
     9  Orig    9  Eng =   -0.590124  T1U   3 at max irg =  112  r =   0.68331

Rotation coefficients for orbital     1  grp =    1 AG    1
     1  1.0000000000

Rotation coefficients for orbital     2  grp =    2 AG    1
     1  1.0000000000

Rotation coefficients for orbital     3  grp =    3 T1U   1
     1 -0.0000000000    2  1.0000000000    3 -0.0000000000

Rotation coefficients for orbital     4  grp =    3 T1U   2
     1  1.0000000000    2  0.0000000000    3  0.0000000000

Rotation coefficients for orbital     5  grp =    3 T1U   3
     1 -0.0000000000    2  0.0000000000    3  1.0000000000

Rotation coefficients for orbital     6  grp =    4 AG    1
     1  1.0000000000

Rotation coefficients for orbital     7  grp =    5 T1U   1
     1 -0.0000000000    2  1.0000000000    3  0.0000000000

Rotation coefficients for orbital     8  grp =    5 T1U   2
     1 -0.0000000000    2 -0.0000000000    3  1.0000000000

Rotation coefficients for orbital     9  grp =    5 T1U   3
     1  1.0000000000    2  0.0000000000    3  0.0000000000
Number of orbital groups and degeneracis are         5
  1  1  3  1  3
Number of orbital groups and number of electrons when fully occupied
         5
  2  2  6  2  6
Time Now =         0.2060  Delta time =         0.0048 End RotOrb

----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------

 First orbital group to expand (mofr) =    1
 Last orbital group to expand (moto) =    5
Orbital     1 of  AG    1 symmetry normalization integral =  0.99999999
Orbital     2 of  AG    1 symmetry normalization integral =  1.00000001
Orbital     3 of  T1U   1 symmetry normalization integral =  0.99999996
Orbital     4 of  AG    1 symmetry normalization integral =  0.99999999
Orbital     5 of  T1U   1 symmetry normalization integral =  0.99999997
Time Now =         0.2072  Delta time =         0.0013 End ExpOrb
+ Data Record ScatSym - 'T1U'
+ Data Record ScatContSym - 'AG'

+ Command FileName
+ 'MatrixElements' 'test31AG.idy' 'REWIND'
Opening file test31AG.idy at position REWIND

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    5
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - AG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - AG    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =  18  name - T1U   1
Orbital     2  is num     4  type =  19  name - T1U   2
Orbital     3  is num     5  type =  20  name - T1U   3
Set    4  has degeneracy     1
Orbital     1  is num     6  type =   1  name - AG    1
Set    5  has degeneracy     3
Orbital     1  is num     7  type =  18  name - T1U   1
Orbital     2  is num     8  type =  19  name - T1U   2
Orbital     3  is num     9  type =  20  name - T1U   3
Orbital occupations by degenerate group
    1  AG       occ = 2
    2  AG       occ = 2
    3  T1U      occ = 6
    4  AG       occ = 2
    5  T1U      occ = 5
The dimension of each irreducable representation is
    AG    (  1)    T1G   (  3)    T2G   (  3)    GG    (  4)    HG    (  5)
    AU    (  1)    T1U   (  3)    T2U   (  3)    GU    (  4)    HU    (  5)
Symmetry of the continuum orbital is AG
Symmetry of the total state is T1U
Spin degeneracy of the total state is =    1
Symmetry of the target state is T1U
Spin degeneracy of the target state is =    2
Symmetry of the initial state is AG
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  AG       occ = 2
    2  AG       occ = 2
    3  T1U      occ = 6
    4  AG       occ = 2
    5  T1U      occ = 6
Open shell symmetry types
    1  T1U    iele =    5
Use only configuration of type T1U
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T1U   (  1)

 representation T1U    component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T1U    component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T1U    component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T1U    iele =    5
    2  AG     iele =    1
Use only configuration of type T1U
 Each irreducable representation is present the number of times indicated
    T1U   (  1)

 representation T1U    component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    3    5    6    8
    2:   0.70711   0.00000    2    3    4    5    6    7

 representation T1U    component     2  fun    1
Symmeterized Function from AddNewShell
    1:   0.70711   0.00000    1    2    3    4    6    8
    2:  -0.70711   0.00000    1    3    4    5    6    7

 representation T1U    component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.70711   0.00000    1    2    3    4    5    8
    2:   0.70711   0.00000    1    2    4    5    6    7
Open shell symmetry types
    1  T1U    iele =    5
Use only configuration of type T1U
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T1U   (  1)

 representation T1U    component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T1U    component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T1U    component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   20
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   19
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   20
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   19
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   20
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   19
Closed shell target
Time Now =         0.2401  Delta time =         0.0329 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   20
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   19
Configuration     2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   20
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   19
Configuration     3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   20
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   19
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   20
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   19
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   20
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   19
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   20
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   19
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    1
Symmetry of target =    7
Symmetry of total states =    7

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.10000000E+01  0.00000000E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.10000000E+01  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.10000000E+01
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18
One electron matrix elements between initial and final states
    1:   -1.414213562    0.000000000  <   13|   19>

Reduced formula list
    1    5    1 -0.1414213562E+01
Time Now =         0.2406  Delta time =         0.0004 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    1
Symmetry of the continuum orbital (iContSym) =     1 or AG
Symmetry of total final state (iTotalSym) =     7 or T1U
Symmetry of the initial state (iInitSym) =     1 or AG
Symmetry of the ionized target state (iTargSym) =     7 or T1U
List of unique symmetry types
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Unique dipole matrix type     1 Dipole symmetry type =T1U
     Final state symmetry type = T1U    Target sym =T1U
     Continuum type =AG
In the product of the symmetry types T1U   T1G
 Each irreducable representation is present the number of times indicated
In the product of the symmetry types T1U   T2G
 Each irreducable representation is present the number of times indicated
In the product of the symmetry types T1U   GG
 Each irreducable representation is present the number of times indicated
    T2U   (  1)
    GU    (  1)
    HU    (  1)
In the product of the symmetry types T1U   HG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
    T2U   (  1)
    GU    (  1)
    HU    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T1U
     Final state symmetry type = T1U    Target sym =T1U
     Continuum type =HG
In the product of the symmetry types T1U   AU
 Each irreducable representation is present the number of times indicated
    T1G   (  1)
In the product of the symmetry types T1U   T1U
 Each irreducable representation is present the number of times indicated
    AG    (  1)
    T1G   (  1)
    HG    (  1)
In the product of the symmetry types T1U   T2U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
    HG    (  1)
In the product of the symmetry types T1U   GU
 Each irreducable representation is present the number of times indicated
    T2G   (  1)
    GG    (  1)
    HG    (  1)
In the product of the symmetry types T1U   HU
 Each irreducable representation is present the number of times indicated
    T1G   (  1)
    T2G   (  1)
    GG    (  1)
    HG    (  1)
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Irreducible representation containing the dipole operator is T1U
Number of different dipole operators in this representation is     1
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 ( -0.16653345E-16,  0.00000000E+00)
    3 (  0.15681900E-15,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 ( -0.16653345E-16,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 ( -0.17069679E-15,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.15681900E-15,  0.00000000E+00)
    2 ( -0.17069679E-15,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  2
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  1  Orb  7  Coef =  -1.4142135620
Symmetry type to write out (SymTyp) =AG
Time Now =         0.2556  Delta time =         0.0150 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     17.00000000
Time Now =         0.2576  Delta time =         0.0020 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.17000000E+02 facnorm =  0.10000000E+01
Time Now =         0.2583  Delta time =         0.0007 Electronic part
Time Now =         0.2583  Delta time =         0.0000 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.34100000E+00 eV (  0.12531520E-01 AU)
Time Now =         0.2587  Delta time =         0.0004 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = AG    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    25
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    5
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    3
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =   21
Maximum l used in usual function (lmax) =    5
Maximum m used in usual function (LMax) =    5
Maxamum l used in expanding static potential (lpotct) =   10
Maximum l used in exapnding the exchange potential (lmaxab) =   10
Higest l included in the expansion of the wave function (lnp) =    0
Higest l included in the K matrix (lna) =    0
Highest l used at large r (lpasym) =    5
Higest l used in the asymptotic potential (lpzb) =   10
Maximum L used in the homogeneous solution (LMaxHomo) =    5
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =         0.2595  Delta time =         0.0008 Energy independent setup

Compute solution for E =    0.3410000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.16653345E-15 Asymp Coef   =   0.52722214E-11 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.33448149E-18 Asymp Moment =   0.50099944E-16 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.56419276E-18 Asymp Moment =   0.84506996E-16 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.25895382E-19 Asymp Moment =   0.23813913E-15 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.82819617E-20 Asymp Moment =  -0.76162579E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.22119144E-19 Asymp Moment =  -0.20341208E-15 (e Angs^(n-1))
For potential     2
 i =  1  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.74894515E-15
 i =  2  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.74894516E-15
 i =  3  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.74894516E-15
 i =  4  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.74894516E-15
For potential     3
For potential     4
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.21413094E+00 Asymp Coef   =  -0.67790927E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.89893862E-03 Asymp Moment =   0.13464654E+00 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16388055E-20 Asymp Moment =  -0.15070784E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16763836E-20 Asymp Moment =  -0.15416359E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17872748E-21 Asymp Moment =   0.16436138E-17 (e Angs^(n-1))
For potential     5
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.44946931E-03 Asymp Moment =   0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.31886056E-20 Asymp Moment =   0.29323056E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.88169435E-21 Asymp Moment =  -0.81082379E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.59035673E-21 Asymp Moment =   0.54290387E-17 (e Angs^(n-1))
For potential     6
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.21275093E-19 Asymp Moment =  -0.31866666E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.52443071E-21 Asymp Moment =   0.48227699E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.86702182E-21 Asymp Moment =  -0.79733064E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47849805E-20 Asymp Moment =  -0.44003640E-16 (e Angs^(n-1))
Number of asymptotic regions =      70
Final point in integration =   0.57799834E+03 Angstroms
Time Now =         0.3475  Delta time =         0.0879 End SolveHomo
      Final Dipole matrix
     ROW  1
  ( 0.12121364E+01,-0.31445493E+00)
     ROW  2
  ( 0.64617149E+00,-0.16763114E+00)
MaxIter =   5 c.s. =      2.01379430 rmsk=     0.00000000  Abs eps    0.12368166E-05  Rel eps    0.25052088E-08
Time Now =         0.7653  Delta time =         0.4178 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.42410000E+01 eV (  0.15585389E+00 AU)
Time Now =         0.7656  Delta time =         0.0003 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = AG    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    25
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    5
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    3
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =   21
Maximum l used in usual function (lmax) =    5
Maximum m used in usual function (LMax) =    5
Maxamum l used in expanding static potential (lpotct) =   10
Maximum l used in exapnding the exchange potential (lmaxab) =   10
Higest l included in the expansion of the wave function (lnp) =    0
Higest l included in the K matrix (lna) =    0
Highest l used at large r (lpasym) =    5
Higest l used in the asymptotic potential (lpzb) =   10
Maximum L used in the homogeneous solution (LMaxHomo) =    5
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =         0.7663  Delta time =         0.0007 Energy independent setup

Compute solution for E =    4.2410000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.16653345E-15 Asymp Coef   =   0.52722214E-11 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.33448149E-18 Asymp Moment =   0.50099944E-16 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.56419276E-18 Asymp Moment =   0.84506996E-16 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.25895382E-19 Asymp Moment =   0.23813913E-15 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.82819617E-20 Asymp Moment =  -0.76162579E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.22119144E-19 Asymp Moment =  -0.20341208E-15 (e Angs^(n-1))
For potential     2
 i =  1  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.57270400E-15
 i =  2  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.57270400E-15
 i =  3  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.57270400E-15
 i =  4  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.57270401E-15
For potential     3
For potential     4
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.21413094E+00 Asymp Coef   =  -0.67790927E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.89893862E-03 Asymp Moment =   0.13464654E+00 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16388055E-20 Asymp Moment =  -0.15070784E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16763836E-20 Asymp Moment =  -0.15416359E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17872748E-21 Asymp Moment =   0.16436138E-17 (e Angs^(n-1))
For potential     5
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.44946931E-03 Asymp Moment =   0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.31886056E-20 Asymp Moment =   0.29323056E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.88169435E-21 Asymp Moment =  -0.81082379E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.59035673E-21 Asymp Moment =   0.54290387E-17 (e Angs^(n-1))
For potential     6
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.21275093E-19 Asymp Moment =  -0.31866666E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.52443071E-21 Asymp Moment =   0.48227699E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.86702182E-21 Asymp Moment =  -0.79733064E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47849805E-20 Asymp Moment =  -0.44003640E-16 (e Angs^(n-1))
Number of asymptotic regions =     119
Final point in integration =   0.28633520E+03 Angstroms
Time Now =         0.8822  Delta time =         0.1159 End SolveHomo
      Final Dipole matrix
     ROW  1
  ( 0.90767030E+00,-0.14226480E+00)
     ROW  2
  ( 0.59779512E+00,-0.93696131E-01)
MaxIter =   5 c.s. =      1.21024261 rmsk=     0.00000000  Abs eps    0.10000000E-05  Rel eps    0.15333819E-08
Time Now =         1.3082  Delta time =         0.4260 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.54710000E+01 eV (  0.20105556E+00 AU)
Time Now =         1.3086  Delta time =         0.0004 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = AG    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    25
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    5
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    3
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =   21
Maximum l used in usual function (lmax) =    5
Maximum m used in usual function (LMax) =    5
Maxamum l used in expanding static potential (lpotct) =   10
Maximum l used in exapnding the exchange potential (lmaxab) =   10
Higest l included in the expansion of the wave function (lnp) =    0
Higest l included in the K matrix (lna) =    0
Highest l used at large r (lpasym) =    5
Higest l used in the asymptotic potential (lpzb) =   10
Maximum L used in the homogeneous solution (LMaxHomo) =    5
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =         1.3092  Delta time =         0.0007 Energy independent setup

Compute solution for E =    5.4710000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.16653345E-15 Asymp Coef   =   0.52722214E-11 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.33448149E-18 Asymp Moment =   0.50099944E-16 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.56419276E-18 Asymp Moment =   0.84506996E-16 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.25895382E-19 Asymp Moment =   0.23813913E-15 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.82819617E-20 Asymp Moment =  -0.76162579E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.22119144E-19 Asymp Moment =  -0.20341208E-15 (e Angs^(n-1))
For potential     2
 i =  1  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.51991424E-15
 i =  2  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.51991424E-15
 i =  3  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.51991424E-15
 i =  4  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.51991424E-15
For potential     3
For potential     4
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.21413094E+00 Asymp Coef   =  -0.67790927E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.89893862E-03 Asymp Moment =   0.13464654E+00 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16388055E-20 Asymp Moment =  -0.15070784E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16763836E-20 Asymp Moment =  -0.15416359E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17872748E-21 Asymp Moment =   0.16436138E-17 (e Angs^(n-1))
For potential     5
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.44946931E-03 Asymp Moment =   0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.31886056E-20 Asymp Moment =   0.29323056E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.88169435E-21 Asymp Moment =  -0.81082379E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.59035673E-21 Asymp Moment =   0.54290387E-17 (e Angs^(n-1))
For potential     6
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.21275093E-19 Asymp Moment =  -0.31866666E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.52443071E-21 Asymp Moment =   0.48227699E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.86702182E-21 Asymp Moment =  -0.79733064E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47849805E-20 Asymp Moment =  -0.44003640E-16 (e Angs^(n-1))
Number of asymptotic regions =     126
Final point in integration =   0.26755807E+03 Angstroms
Time Now =         1.4401  Delta time =         0.1309 End SolveHomo
      Final Dipole matrix
     ROW  1
  ( 0.82909548E+00,-0.10522404E+00)
     ROW  2
  ( 0.58441111E+00,-0.74170100E-01)
MaxIter =   5 c.s. =      1.04550896 rmsk=     0.00000000  Abs eps    0.10000000E-05  Rel eps    0.13350348E-08
Time Now =         1.8610  Delta time =         0.4209 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.95410000E+01 eV (  0.35062532E+00 AU)
Time Now =         1.8613  Delta time =         0.0003 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = AG    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    25
Number of partial waves (np) =     1
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    5
Number of partial waves in the asymptotic region (npasym) =    1
Number of orthogonality constraints (NOrthUse) =    3
Number of different asymptotic potentials =    6
Maximum number of asymptotic partial waves =   21
Maximum l used in usual function (lmax) =    5
Maximum m used in usual function (LMax) =    5
Maxamum l used in expanding static potential (lpotct) =   10
Maximum l used in exapnding the exchange potential (lmaxab) =   10
Higest l included in the expansion of the wave function (lnp) =    0
Higest l included in the K matrix (lna) =    0
Highest l used at large r (lpasym) =    5
Higest l used in the asymptotic potential (lpzb) =   10
Maximum L used in the homogeneous solution (LMaxHomo) =    5
Number of partial waves in the homogeneous solution (npHomo) =    1
Time Now =         1.8620  Delta time =         0.0007 Energy independent setup

Compute solution for E =    9.5410000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.16653345E-15 Asymp Coef   =   0.52722214E-11 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.33448149E-18 Asymp Moment =   0.50099944E-16 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.56419276E-18 Asymp Moment =   0.84506996E-16 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.25895382E-19 Asymp Moment =   0.23813913E-15 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.82819617E-20 Asymp Moment =  -0.76162579E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.22119144E-19 Asymp Moment =  -0.20341208E-15 (e Angs^(n-1))
For potential     2
 i =  1  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.42920225E-15
 i =  2  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.42920225E-15
 i =  3  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.42920225E-15
 i =  4  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.42920225E-15
For potential     3
For potential     4
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.21413094E+00 Asymp Coef   =  -0.67790927E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.89893862E-03 Asymp Moment =   0.13464654E+00 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16388055E-20 Asymp Moment =  -0.15070784E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16763836E-20 Asymp Moment =  -0.15416359E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17872748E-21 Asymp Moment =   0.16436138E-17 (e Angs^(n-1))
For potential     5
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.44946931E-03 Asymp Moment =   0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.31886056E-20 Asymp Moment =   0.29323056E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.88169435E-21 Asymp Moment =  -0.81082379E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.59035673E-21 Asymp Moment =   0.54290387E-17 (e Angs^(n-1))
For potential     6
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.21275093E-19 Asymp Moment =  -0.31866666E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.52443071E-21 Asymp Moment =   0.48227699E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.86702182E-21 Asymp Moment =  -0.79733064E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47849805E-20 Asymp Moment =  -0.44003640E-16 (e Angs^(n-1))
Number of asymptotic regions =     142
Final point in integration =   0.22953605E+03 Angstroms
Time Now =         2.0043  Delta time =         0.1423 End SolveHomo
      Final Dipole matrix
     ROW  1
  ( 0.62058680E+00,-0.21903453E-01)
     ROW  2
  ( 0.54538422E+00,-0.19249190E-01)
MaxIter =   5 c.s. =      0.68342221 rmsk=     0.00000000  Abs eps    0.10000000E-05  Rel eps    0.87656758E-09
Time Now =         2.4264  Delta time =         0.4222 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =         2.4267  Delta time =         0.0003 End CnvIdy
Found     4 energies :
     0.34100000     4.24100000     5.47100000     9.54100000
List of matrix element types found   Number =    1
    1  Cont Sym AG     Targ Sym T1U    Total Sym T1U
Keeping     4 energies :
     0.34100000     4.24100000     5.47100000     9.54100000
Time Now =         2.4268  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.7590 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    16.1000  0.47651010E+01
    20.0000  0.31862739E+01
    21.2300  0.27986943E+01
    25.3000  0.18412938E+01

     Sigma MIXED    at all energies
      Eng
    16.1000  0.42933190E+01
    20.0000  0.28551437E+01
    21.2300  0.25285410E+01
    25.3000  0.17404166E+01

     Sigma VELOCITY at all energies
      Eng
    16.1000  0.38682471E+01
    20.0000  0.25584259E+01
    21.2300  0.22844652E+01
    25.3000  0.16450661E+01

     Beta LENGTH   at all energies
      Eng
    16.1000  0.00000000E+00
    20.0000  0.00000000E+00
    21.2300  0.00000000E+00
    25.3000  0.00000000E+00

     Beta MIXED    at all energies
      Eng
    16.1000  0.00000000E+00
    20.0000  0.00000000E+00
    21.2300  0.00000000E+00
    25.3000  0.00000000E+00

     Beta VELOCITY at all energies
      Eng
    16.1000  0.00000000E+00
    20.0000  0.00000000E+00
    21.2300  0.00000000E+00
    25.3000  0.00000000E+00

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     16.1000     4.7651     4.2933     3.8682     0.0000     0.0000     0.0000
EPhi     20.0000     3.1863     2.8551     2.5584     0.0000     0.0000     0.0000
EPhi     21.2300     2.7987     2.5285     2.2845     0.0000     0.0000     0.0000
EPhi     25.3000     1.8413     1.7404     1.6451     0.0000     0.0000     0.0000
Time Now =         2.4276  Delta time =         0.0008 End CrossSection
+ Data Record ScatSym - 'T1U'
+ Data Record ScatContSym - 'HG'

+ Command FileName
+ 'MatrixElements' 'test31HG.idy' 'REWIND'
Opening file test31HG.idy at position REWIND

+ Command GenFormPhIon
+

----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------

Number of sets of degenerate orbitals =    5
Set    1  has degeneracy     1
Orbital     1  is num     1  type =   1  name - AG    1
Set    2  has degeneracy     1
Orbital     1  is num     2  type =   1  name - AG    1
Set    3  has degeneracy     3
Orbital     1  is num     3  type =  18  name - T1U   1
Orbital     2  is num     4  type =  19  name - T1U   2
Orbital     3  is num     5  type =  20  name - T1U   3
Set    4  has degeneracy     1
Orbital     1  is num     6  type =   1  name - AG    1
Set    5  has degeneracy     3
Orbital     1  is num     7  type =  18  name - T1U   1
Orbital     2  is num     8  type =  19  name - T1U   2
Orbital     3  is num     9  type =  20  name - T1U   3
Orbital occupations by degenerate group
    1  AG       occ = 2
    2  AG       occ = 2
    3  T1U      occ = 6
    4  AG       occ = 2
    5  T1U      occ = 5
The dimension of each irreducable representation is
    AG    (  1)    T1G   (  3)    T2G   (  3)    GG    (  4)    HG    (  5)
    AU    (  1)    T1U   (  3)    T2U   (  3)    GU    (  4)    HU    (  5)
Symmetry of the continuum orbital is HG
Symmetry of the total state is T1U
Spin degeneracy of the total state is =    1
Symmetry of the target state is T1U
Spin degeneracy of the target state is =    2
Symmetry of the initial state is AG
Spin degeneracy of the initial state is =    1
Orbital occupations of initial state by degenerate group
    1  AG       occ = 2
    2  AG       occ = 2
    3  T1U      occ = 6
    4  AG       occ = 2
    5  T1U      occ = 6
Open shell symmetry types
    1  T1U    iele =    5
Use only configuration of type T1U
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T1U   (  1)

 representation T1U    component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T1U    component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T1U    component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Open shell symmetry types
    1  T1U    iele =    5
    2  HG     iele =    1
Use only configuration of type T1U
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
    T2U   (  1)
    GU    (  1)
    HU    (  1)

 representation T1U    component     1  fun    1
Symmeterized Function from AddNewShell
    1:  -0.38730   0.00000    1    2    3    4    5   13
    2:   0.38730   0.00000    1    2    3    4    6   14
    3:   0.22361   0.00000    1    2    3    5    6   15
    4:  -0.38730   0.00000    1    2    3    5    6   16
    5:   0.38730   0.00000    1    2    4    5    6    8
    6:  -0.38730   0.00000    1    3    4    5    6    9
    7:  -0.22361   0.00000    2    3    4    5    6   10
    8:   0.38730   0.00000    2    3    4    5    6   11

 representation T1U    component     2  fun    1
Symmeterized Function from AddNewShell
    1:  -0.38730   0.00000    1    2    3    4    5   12
    2:  -0.22361   0.00000    1    2    3    4    6   15
    3:  -0.38730   0.00000    1    2    3    4    6   16
    4:  -0.38730   0.00000    1    2    3    5    6   14
    5:   0.38730   0.00000    1    2    4    5    6    7
    6:   0.22361   0.00000    1    3    4    5    6   10
    7:   0.38730   0.00000    1    3    4    5    6   11
    8:   0.38730   0.00000    2    3    4    5    6    9

 representation T1U    component     3  fun    1
Symmeterized Function from AddNewShell
    1:  -0.44721   0.00000    1    2    3    4    5   15
    2:   0.38730   0.00000    1    2    3    4    6   12
    3:  -0.38730   0.00000    1    2    3    5    6   13
    4:   0.44721   0.00000    1    2    4    5    6   10
    5:  -0.38730   0.00000    1    3    4    5    6    7
    6:   0.38730   0.00000    2    3    4    5    6    8
Open shell symmetry types
    1  T1U    iele =    5
Use only configuration of type T1U
MS2 =    1  SDGN =    2
NumAlpha =    3
List of determinants found
    1:   1.00000   0.00000    1    2    3    4    5
    2:   1.00000   0.00000    1    2    3    4    6
    3:   1.00000   0.00000    1    2    3    5    6
Spin adapted configurations
Configuration    1
    1:   1.00000   0.00000    1    2    3    4    5
Configuration    2
    1:   1.00000   0.00000    1    2    3    4    6
Configuration    3
    1:   1.00000   0.00000    1    2    3    5    6
 Each irreducable representation is present the number of times indicated
    T1U   (  1)

 representation T1U    component     1  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    5    6

 representation T1U    component     2  fun    1
Symmeterized Function
    1:  -1.00000   0.00000    1    2    3    4    6

 representation T1U    component     3  fun    1
Symmeterized Function
    1:   1.00000   0.00000    1    2    3    4    5
Direct product basis set
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   24
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   19
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   25
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   20
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   26
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   21
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   27
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   22
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   28
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   23
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   24
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   19
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   25
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   20
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   26
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   21
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   27
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   22
Direct product basis function
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   28
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   23
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   24
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   19
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   25
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   20
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   26
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   21
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   27
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   22
Direct product basis function
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   28
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   23
Closed shell target
Time Now =         2.6282  Delta time =         0.2006 End SymProd

----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------

Configuration     1
    1:  -0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   25
    2:   0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   26
    3:   0.22361   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   27
    4:  -0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   28
    5:   0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   20
    6:  -0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   21
    7:  -0.22361   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   22
    8:   0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   23
Configuration     2
    1:  -0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   24
    2:  -0.22361   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   27
    3:  -0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   28
    4:  -0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   26
    5:   0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   19
    6:   0.22361   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   22
    7:   0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   23
    8:   0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   21
Configuration     3
    1:  -0.44721   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   27
    2:   0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   24
    3:  -0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   25
    4:   0.44721   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   22
    5:  -0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   19
    6:   0.38730   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   20
Direct product Configuration Cont sym =    1  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   24
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   19
Direct product Configuration Cont sym =    2  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   25
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   20
Direct product Configuration Cont sym =    3  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   26
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   21
Direct product Configuration Cont sym =    4  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   27
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   22
Direct product Configuration Cont sym =    5  Targ sym =    1
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   17   18   28
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   14   15   16   17   18   23
Direct product Configuration Cont sym =    1  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   24
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   19
Direct product Configuration Cont sym =    2  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   25
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   20
Direct product Configuration Cont sym =    3  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   26
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   21
Direct product Configuration Cont sym =    4  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   27
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   22
Direct product Configuration Cont sym =    5  Targ sym =    2
    1:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   18   28
    2:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   15   16   17   18   23
Direct product Configuration Cont sym =    1  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   24
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   19
Direct product Configuration Cont sym =    2  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   25
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   20
Direct product Configuration Cont sym =    3  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   26
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   21
Direct product Configuration Cont sym =    4  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   27
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   22
Direct product Configuration Cont sym =    5  Targ sym =    3
    1:  -0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   28
    2:   0.70711   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   16   17   18   23
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum =    5
Symmetry of target =    7
Symmetry of total states =    7

Total symmetry component =    1

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.00000000E+00
   2   0.00000000E+00  0.00000000E+00  0.54772256E+00
   3   0.00000000E+00  0.54772256E+00  0.00000000E+00
   4  -0.31622777E+00  0.00000000E+00  0.00000000E+00
   5   0.54772256E+00  0.00000000E+00  0.00000000E+00

Total symmetry component =    2

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.00000000E+00  0.54772256E+00
   2   0.00000000E+00  0.00000000E+00  0.00000000E+00
   3   0.54772256E+00  0.00000000E+00  0.00000000E+00
   4   0.00000000E+00 -0.31622777E+00  0.00000000E+00
   5   0.00000000E+00 -0.54772256E+00  0.00000000E+00

Total symmetry component =    3

Cont      Target Component
Comp        1               2               3
   1   0.00000000E+00  0.54772256E+00  0.00000000E+00
   2   0.54772256E+00  0.00000000E+00  0.00000000E+00
   3   0.00000000E+00  0.00000000E+00  0.00000000E+00
   4   0.00000000E+00  0.00000000E+00  0.63245553E+00
   5   0.00000000E+00  0.00000000E+00  0.00000000E+00
Initial State Configuration
    1:   1.00000   0.00000    1    2    3    4    5    6    7    8    9   10
                             11   12   13   14   15   16   17   18
One electron matrix elements between initial and final states
    1:    0.447213595    0.000000000  <   13|   22>
    2:   -0.774596669    0.000000000  <   13|   23>
    3:   -0.774596669    0.000000000  <   14|   21>
    4:   -0.774596669    0.000000000  <   15|   20>

Reduced formula list
    4    5    1  0.4472135955E+00
    5    5    1 -0.7745966692E+00
    3    5    2 -0.7745966692E+00
    2    5    3 -0.7745966692E+00
Time Now =         2.6296  Delta time =         0.0014 End MatEle

+ Command DipoleOp
+

----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------

Number of orbitals in formula for the dipole operator (NOrbSel) =    4
Symmetry of the continuum orbital (iContSym) =     5 or HG
Symmetry of total final state (iTotalSym) =     7 or T1U
Symmetry of the initial state (iInitSym) =     1 or AG
Symmetry of the ionized target state (iTargSym) =     7 or T1U
List of unique symmetry types
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Unique dipole matrix type     1 Dipole symmetry type =T1U
     Final state symmetry type = T1U    Target sym =T1U
     Continuum type =AG
In the product of the symmetry types T1U   T1G
 Each irreducable representation is present the number of times indicated
In the product of the symmetry types T1U   T2G
 Each irreducable representation is present the number of times indicated
In the product of the symmetry types T1U   GG
 Each irreducable representation is present the number of times indicated
    T2U   (  1)
    GU    (  1)
    HU    (  1)
In the product of the symmetry types T1U   HG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
    T2U   (  1)
    GU    (  1)
    HU    (  1)
Unique dipole matrix type     2 Dipole symmetry type =T1U
     Final state symmetry type = T1U    Target sym =T1U
     Continuum type =HG
In the product of the symmetry types T1U   AU
 Each irreducable representation is present the number of times indicated
    T1G   (  1)
In the product of the symmetry types T1U   T1U
 Each irreducable representation is present the number of times indicated
    AG    (  1)
    T1G   (  1)
    HG    (  1)
In the product of the symmetry types T1U   T2U
 Each irreducable representation is present the number of times indicated
    GG    (  1)
    HG    (  1)
In the product of the symmetry types T1U   GU
 Each irreducable representation is present the number of times indicated
    T2G   (  1)
    GG    (  1)
    HG    (  1)
In the product of the symmetry types T1U   HU
 Each irreducable representation is present the number of times indicated
    T1G   (  1)
    T2G   (  1)
    GG    (  1)
    HG    (  1)
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Irreducible representation containing the dipole operator is T1U
Number of different dipole operators in this representation is     1
In the product of the symmetry types T1U   AG
 Each irreducable representation is present the number of times indicated
    T1U   (  1)
Vector of the total symmetry
ie =    1  ij =    1
    1 (  0.10000000E+01,  0.00000000E+00)
    2 ( -0.16653345E-16,  0.00000000E+00)
    3 (  0.15681900E-15,  0.00000000E+00)
Vector of the total symmetry
ie =    2  ij =    1
    1 ( -0.16653345E-16,  0.00000000E+00)
    2 (  0.10000000E+01,  0.00000000E+00)
    3 ( -0.17069679E-15,  0.00000000E+00)
Vector of the total symmetry
ie =    3  ij =    1
    1 (  0.15681900E-15,  0.00000000E+00)
    2 ( -0.17069679E-15,  0.00000000E+00)
    3 (  0.10000000E+01,  0.00000000E+00)
Component Dipole Op Sym =  1 goes to Total Sym component   1 phase = 1.0
Component Dipole Op Sym =  2 goes to Total Sym component   2 phase = 1.0
Component Dipole Op Sym =  3 goes to Total Sym component   3 phase = 1.0

Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp =  1
  coefficients =  1.00000000  0.00000000  0.00000000
sym comp =  2
  coefficients =  0.00000000  1.00000000  0.00000000
sym comp =  3
  coefficients =  0.00000000  0.00000000  1.00000000

Formula for dipole operator

Dipole operator sym comp 1  index =    1
  1  Cont comp  4  Orb  7  Coef =   0.4472135955
  2  Cont comp  5  Orb  7  Coef =  -0.7745966692
  3  Cont comp  3  Orb  8  Coef =  -0.7745966692
  4  Cont comp  2  Orb  9  Coef =  -0.7745966692
Symmetry type to write out (SymTyp) =HG
Time Now =         2.6863  Delta time =         0.0566 End DipoleOp

+ Command GetPot
+

----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------

Total density =     17.00000000
Time Now =         2.6984  Delta time =         0.0121 End Den

----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------

 vasymp =  0.17000000E+02 facnorm =  0.10000000E+01
Time Now =         2.6991  Delta time =         0.0007 Electronic part
Time Now =         2.6991  Delta time =         0.0000 End StPot

+ Command PhIon
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.34100000E+00 eV (  0.12531520E-01 AU)
Time Now =         2.6994  Delta time =         0.0004 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = HG    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    25
Number of partial waves (np) =     2
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    5
Number of partial waves in the asymptotic region (npasym) =    2
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   22
Maximum number of asymptotic partial waves =   21
Maximum l used in usual function (lmax) =    5
Maximum m used in usual function (LMax) =    5
Maxamum l used in expanding static potential (lpotct) =   10
Maximum l used in exapnding the exchange potential (lmaxab) =   10
Higest l included in the expansion of the wave function (lnp) =    4
Higest l included in the K matrix (lna) =    2
Highest l used at large r (lpasym) =    5
Higest l used in the asymptotic potential (lpzb) =   10
Maximum L used in the homogeneous solution (LMaxHomo) =    5
Number of partial waves in the homogeneous solution (npHomo) =    2
Time Now =         2.7002  Delta time =         0.0008 Energy independent setup

Compute solution for E =    0.3410000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.16653345E-15 Asymp Coef   =   0.52722214E-11 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.33448149E-18 Asymp Moment =   0.50099944E-16 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.56419276E-18 Asymp Moment =   0.84506996E-16 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.25895382E-19 Asymp Moment =   0.23813913E-15 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.82819617E-20 Asymp Moment =  -0.76162579E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.22119144E-19 Asymp Moment =  -0.20341208E-15 (e Angs^(n-1))
For potential     2
 i =  1  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.74894515E-15
 i =  2  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.74894516E-15
 i =  3  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.74894516E-15
 i =  4  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.74894516E-15
For potential     3
For potential     4
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.44946931E-03 Asymp Moment =  -0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.81940275E-21 Asymp Moment =   0.75353918E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.83819180E-21 Asymp Moment =   0.77081797E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.89363742E-22 Asymp Moment =  -0.82180687E-18 (e Angs^(n-1))
For potential     5
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16333127E-21 Asymp Moment =  -0.15020271E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.27507998E-21 Asymp Moment =  -0.25296906E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.71868840E-23 Asymp Moment =   0.32562719E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.13192768E-23 Asymp Moment =  -0.59774500E-18 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.65661001E-22 Asymp Moment =   0.29750038E-16 (e Angs^(n-1))
For potential     6
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.28289805E-21 Asymp Moment =   0.26015872E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.47645251E-21 Asymp Moment =   0.43815527E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12448048E-22 Asymp Moment =  -0.56400284E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.22850544E-23 Asymp Moment =   0.10353247E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.11372819E-21 Asymp Moment =  -0.51528578E-16 (e Angs^(n-1))
For potential     7
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.45174076E-21 Asymp Moment =   0.41542985E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.19736389E-22 Asymp Moment =  -0.18149979E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.10403087E-21 Asymp Moment =  -0.47134862E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.95135605E-23 Asymp Moment =  -0.43104550E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.27822427E-22 Asymp Moment =   0.12605935E-16 (e Angs^(n-1))
For potential     8
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.78243795E-21 Asymp Moment =  -0.71954562E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.34184429E-22 Asymp Moment =   0.31436686E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.18018674E-21 Asymp Moment =   0.81639976E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.16477970E-22 Asymp Moment =   0.74659270E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.48189858E-22 Asymp Moment =  -0.21834119E-16 (e Angs^(n-1))
For potential     9
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.32119641E-01 Asymp Coef   =  -0.10168639E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.77850368E-04 Asymp Moment =  -0.11660732E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.24582082E-21 Asymp Moment =  -0.22606175E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.25145754E-21 Asymp Moment =  -0.23124539E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.26809123E-22 Asymp Moment =   0.24654206E-18 (e Angs^(n-1))
For potential    10
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.55632850E-01 Asymp Coef   =   0.17612599E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.42577416E-21 Asymp Moment =   0.39155045E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43553723E-21 Asymp Moment =   0.40052877E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.46434762E-22 Asymp Moment =  -0.42702338E-18 (e Angs^(n-1))
For potential    11
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.55632850E-01 Asymp Coef   =   0.17612599E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.42577416E-21 Asymp Moment =   0.39155045E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43553723E-21 Asymp Moment =   0.40052877E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.46434762E-22 Asymp Moment =  -0.42702338E-18 (e Angs^(n-1))
For potential    12
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.73746247E-21 Asymp Moment =  -0.67818526E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.75437262E-21 Asymp Moment =  -0.69373617E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.80427368E-22 Asymp Moment =   0.73962619E-18 (e Angs^(n-1))
For potential    13
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.44946931E-03 Asymp Moment =   0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.31886056E-20 Asymp Moment =   0.29323056E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.88169435E-21 Asymp Moment =  -0.81082379E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.59035673E-21 Asymp Moment =   0.54290387E-17 (e Angs^(n-1))
For potential    14
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79390714E-21 Asymp Moment =   0.73009291E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17951082E-20 Asymp Moment =   0.16508175E-16 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12697369E-21 Asymp Moment =  -0.57529920E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.39184124E-22 Asymp Moment =   0.17753753E-16 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.25475408E-22 Asymp Moment =  -0.11542534E-16 (e Angs^(n-1))
For potential    15
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.40452238E-03 Asymp Moment =  -0.60590942E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.28697450E-20 Asymp Moment =  -0.26390750E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79352491E-21 Asymp Moment =   0.72974141E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.53132105E-21 Asymp Moment =  -0.48861349E-17 (e Angs^(n-1))
For potential    16
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.45174076E-21 Asymp Moment =   0.41542985E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.19736389E-22 Asymp Moment =  -0.18149979E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.10403087E-21 Asymp Moment =  -0.47134862E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.95135605E-23 Asymp Moment =  -0.43104550E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.27822427E-22 Asymp Moment =   0.12605935E-16 (e Angs^(n-1))
For potential    17
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.78243795E-21 Asymp Moment =  -0.71954562E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.34184429E-22 Asymp Moment =   0.31436686E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.18018674E-21 Asymp Moment =   0.81639976E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.16477970E-22 Asymp Moment =   0.74659270E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.48189858E-22 Asymp Moment =  -0.21834119E-16 (e Angs^(n-1))
For potential    18
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.21275093E-19 Asymp Moment =  -0.31866666E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.52443071E-21 Asymp Moment =   0.48227699E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.86702182E-21 Asymp Moment =  -0.79733064E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47849805E-20 Asymp Moment =  -0.44003640E-16 (e Angs^(n-1))
For potential    19
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.19147584E-19 Asymp Moment =   0.28679999E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.46710221E-03 Asymp Moment =   0.69964394E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47198764E-21 Asymp Moment =  -0.43404929E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.78031964E-21 Asymp Moment =   0.71759757E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43064825E-20 Asymp Moment =   0.39603276E-16 (e Angs^(n-1))
For potential    20
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79390714E-21 Asymp Moment =   0.73009291E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17951082E-20 Asymp Moment =   0.16508175E-16 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12697369E-21 Asymp Moment =  -0.57529920E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.39184124E-22 Asymp Moment =   0.17753753E-16 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.25475408E-22 Asymp Moment =  -0.11542534E-16 (e Angs^(n-1))
For potential    21
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16333127E-21 Asymp Moment =  -0.15020271E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.27507998E-21 Asymp Moment =  -0.25296906E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.71868840E-23 Asymp Moment =   0.32562719E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.13192768E-23 Asymp Moment =  -0.59774500E-18 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.65661001E-22 Asymp Moment =   0.29750038E-16 (e Angs^(n-1))
For potential    22
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.28289805E-21 Asymp Moment =   0.26015872E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.47645251E-21 Asymp Moment =   0.43815527E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12448048E-22 Asymp Moment =  -0.56400284E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.22850544E-23 Asymp Moment =   0.10353247E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.11372819E-21 Asymp Moment =  -0.51528578E-16 (e Angs^(n-1))
Number of asymptotic regions =      56
Final point in integration =   0.46325688E+03 Angstroms
Time Now =         3.1341  Delta time =         0.4339 End SolveHomo
      Final Dipole matrix
     ROW  1
  (-0.28046413E+01, 0.11955847E+00)
     ROW  2
  (-0.13412268E+01, 0.57200294E-01)
MaxIter =   6 c.s. =      9.68246851 rmsk=     0.00000252  Abs eps    0.61817860E-05  Rel eps    0.54582578E-03
Time Now =         4.2809  Delta time =         1.1468 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.42410000E+01 eV (  0.15585389E+00 AU)
Time Now =         4.2813  Delta time =         0.0004 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = HG    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    25
Number of partial waves (np) =     2
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    5
Number of partial waves in the asymptotic region (npasym) =    2
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   22
Maximum number of asymptotic partial waves =   21
Maximum l used in usual function (lmax) =    5
Maximum m used in usual function (LMax) =    5
Maxamum l used in expanding static potential (lpotct) =   10
Maximum l used in exapnding the exchange potential (lmaxab) =   10
Higest l included in the expansion of the wave function (lnp) =    4
Higest l included in the K matrix (lna) =    2
Highest l used at large r (lpasym) =    5
Higest l used in the asymptotic potential (lpzb) =   10
Maximum L used in the homogeneous solution (LMaxHomo) =    5
Number of partial waves in the homogeneous solution (npHomo) =    2
Time Now =         4.2821  Delta time =         0.0008 Energy independent setup

Compute solution for E =    4.2410000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.16653345E-15 Asymp Coef   =   0.52722214E-11 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.33448149E-18 Asymp Moment =   0.50099944E-16 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.56419276E-18 Asymp Moment =   0.84506996E-16 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.25895382E-19 Asymp Moment =   0.23813913E-15 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.82819617E-20 Asymp Moment =  -0.76162579E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.22119144E-19 Asymp Moment =  -0.20341208E-15 (e Angs^(n-1))
For potential     2
 i =  1  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.57270400E-15
 i =  2  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.57270400E-15
 i =  3  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.57270400E-15
 i =  4  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.57270401E-15
For potential     3
For potential     4
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.44946931E-03 Asymp Moment =  -0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.81940275E-21 Asymp Moment =   0.75353918E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.83819180E-21 Asymp Moment =   0.77081797E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.89363742E-22 Asymp Moment =  -0.82180687E-18 (e Angs^(n-1))
For potential     5
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16333127E-21 Asymp Moment =  -0.15020271E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.27507998E-21 Asymp Moment =  -0.25296906E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.71868840E-23 Asymp Moment =   0.32562719E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.13192768E-23 Asymp Moment =  -0.59774500E-18 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.65661001E-22 Asymp Moment =   0.29750038E-16 (e Angs^(n-1))
For potential     6
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.28289805E-21 Asymp Moment =   0.26015872E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.47645251E-21 Asymp Moment =   0.43815527E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12448048E-22 Asymp Moment =  -0.56400284E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.22850544E-23 Asymp Moment =   0.10353247E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.11372819E-21 Asymp Moment =  -0.51528578E-16 (e Angs^(n-1))
For potential     7
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.45174076E-21 Asymp Moment =   0.41542985E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.19736389E-22 Asymp Moment =  -0.18149979E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.10403087E-21 Asymp Moment =  -0.47134862E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.95135605E-23 Asymp Moment =  -0.43104550E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.27822427E-22 Asymp Moment =   0.12605935E-16 (e Angs^(n-1))
For potential     8
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.78243795E-21 Asymp Moment =  -0.71954562E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.34184429E-22 Asymp Moment =   0.31436686E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.18018674E-21 Asymp Moment =   0.81639976E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.16477970E-22 Asymp Moment =   0.74659270E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.48189858E-22 Asymp Moment =  -0.21834119E-16 (e Angs^(n-1))
For potential     9
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.32119641E-01 Asymp Coef   =  -0.10168639E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.77850368E-04 Asymp Moment =  -0.11660732E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.24582082E-21 Asymp Moment =  -0.22606175E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.25145754E-21 Asymp Moment =  -0.23124539E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.26809123E-22 Asymp Moment =   0.24654206E-18 (e Angs^(n-1))
For potential    10
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.55632850E-01 Asymp Coef   =   0.17612599E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.42577416E-21 Asymp Moment =   0.39155045E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43553723E-21 Asymp Moment =   0.40052877E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.46434762E-22 Asymp Moment =  -0.42702338E-18 (e Angs^(n-1))
For potential    11
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.55632850E-01 Asymp Coef   =   0.17612599E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.42577416E-21 Asymp Moment =   0.39155045E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43553723E-21 Asymp Moment =   0.40052877E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.46434762E-22 Asymp Moment =  -0.42702338E-18 (e Angs^(n-1))
For potential    12
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.73746247E-21 Asymp Moment =  -0.67818526E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.75437262E-21 Asymp Moment =  -0.69373617E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.80427368E-22 Asymp Moment =   0.73962619E-18 (e Angs^(n-1))
For potential    13
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.44946931E-03 Asymp Moment =   0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.31886056E-20 Asymp Moment =   0.29323056E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.88169435E-21 Asymp Moment =  -0.81082379E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.59035673E-21 Asymp Moment =   0.54290387E-17 (e Angs^(n-1))
For potential    14
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79390714E-21 Asymp Moment =   0.73009291E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17951082E-20 Asymp Moment =   0.16508175E-16 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12697369E-21 Asymp Moment =  -0.57529920E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.39184124E-22 Asymp Moment =   0.17753753E-16 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.25475408E-22 Asymp Moment =  -0.11542534E-16 (e Angs^(n-1))
For potential    15
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.40452238E-03 Asymp Moment =  -0.60590942E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.28697450E-20 Asymp Moment =  -0.26390750E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79352491E-21 Asymp Moment =   0.72974141E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.53132105E-21 Asymp Moment =  -0.48861349E-17 (e Angs^(n-1))
For potential    16
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.45174076E-21 Asymp Moment =   0.41542985E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.19736389E-22 Asymp Moment =  -0.18149979E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.10403087E-21 Asymp Moment =  -0.47134862E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.95135605E-23 Asymp Moment =  -0.43104550E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.27822427E-22 Asymp Moment =   0.12605935E-16 (e Angs^(n-1))
For potential    17
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.78243795E-21 Asymp Moment =  -0.71954562E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.34184429E-22 Asymp Moment =   0.31436686E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.18018674E-21 Asymp Moment =   0.81639976E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.16477970E-22 Asymp Moment =   0.74659270E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.48189858E-22 Asymp Moment =  -0.21834119E-16 (e Angs^(n-1))
For potential    18
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.21275093E-19 Asymp Moment =  -0.31866666E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.52443071E-21 Asymp Moment =   0.48227699E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.86702182E-21 Asymp Moment =  -0.79733064E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47849805E-20 Asymp Moment =  -0.44003640E-16 (e Angs^(n-1))
For potential    19
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.19147584E-19 Asymp Moment =   0.28679999E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.46710221E-03 Asymp Moment =   0.69964394E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47198764E-21 Asymp Moment =  -0.43404929E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.78031964E-21 Asymp Moment =   0.71759757E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43064825E-20 Asymp Moment =   0.39603276E-16 (e Angs^(n-1))
For potential    20
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79390714E-21 Asymp Moment =   0.73009291E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17951082E-20 Asymp Moment =   0.16508175E-16 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12697369E-21 Asymp Moment =  -0.57529920E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.39184124E-22 Asymp Moment =   0.17753753E-16 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.25475408E-22 Asymp Moment =  -0.11542534E-16 (e Angs^(n-1))
For potential    21
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16333127E-21 Asymp Moment =  -0.15020271E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.27507998E-21 Asymp Moment =  -0.25296906E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.71868840E-23 Asymp Moment =   0.32562719E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.13192768E-23 Asymp Moment =  -0.59774500E-18 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.65661001E-22 Asymp Moment =   0.29750038E-16 (e Angs^(n-1))
For potential    22
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.28289805E-21 Asymp Moment =   0.26015872E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.47645251E-21 Asymp Moment =   0.43815527E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12448048E-22 Asymp Moment =  -0.56400284E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.22850544E-23 Asymp Moment =   0.10353247E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.11372819E-21 Asymp Moment =  -0.51528578E-16 (e Angs^(n-1))
Number of asymptotic regions =      95
Final point in integration =   0.22947571E+03 Angstroms
Time Now =         4.9844  Delta time =         0.7023 End SolveHomo
      Final Dipole matrix
     ROW  1
  (-0.31885480E+01, 0.19884229E+00)
     ROW  2
  (-0.17242347E+01, 0.10752598E+00)
MaxIter =   6 c.s. =     13.19092339 rmsk=     0.00000004  Abs eps    0.27987004E-05  Rel eps    0.52772067E-05
Time Now =         6.1275  Delta time =         1.1431 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.54710000E+01 eV (  0.20105556E+00 AU)
Time Now =         6.1279  Delta time =         0.0004 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = HG    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    25
Number of partial waves (np) =     2
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    5
Number of partial waves in the asymptotic region (npasym) =    2
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   22
Maximum number of asymptotic partial waves =   21
Maximum l used in usual function (lmax) =    5
Maximum m used in usual function (LMax) =    5
Maxamum l used in expanding static potential (lpotct) =   10
Maximum l used in exapnding the exchange potential (lmaxab) =   10
Higest l included in the expansion of the wave function (lnp) =    4
Higest l included in the K matrix (lna) =    2
Highest l used at large r (lpasym) =    5
Higest l used in the asymptotic potential (lpzb) =   10
Maximum L used in the homogeneous solution (LMaxHomo) =    5
Number of partial waves in the homogeneous solution (npHomo) =    2
Time Now =         6.1286  Delta time =         0.0008 Energy independent setup

Compute solution for E =    5.4710000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.16653345E-15 Asymp Coef   =   0.52722214E-11 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.33448149E-18 Asymp Moment =   0.50099944E-16 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.56419276E-18 Asymp Moment =   0.84506996E-16 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.25895382E-19 Asymp Moment =   0.23813913E-15 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.82819617E-20 Asymp Moment =  -0.76162579E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.22119144E-19 Asymp Moment =  -0.20341208E-15 (e Angs^(n-1))
For potential     2
 i =  1  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.51991424E-15
 i =  2  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.51991424E-15
 i =  3  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.51991424E-15
 i =  4  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.51991424E-15
For potential     3
For potential     4
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.44946931E-03 Asymp Moment =  -0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.81940275E-21 Asymp Moment =   0.75353918E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.83819180E-21 Asymp Moment =   0.77081797E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.89363742E-22 Asymp Moment =  -0.82180687E-18 (e Angs^(n-1))
For potential     5
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16333127E-21 Asymp Moment =  -0.15020271E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.27507998E-21 Asymp Moment =  -0.25296906E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.71868840E-23 Asymp Moment =   0.32562719E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.13192768E-23 Asymp Moment =  -0.59774500E-18 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.65661001E-22 Asymp Moment =   0.29750038E-16 (e Angs^(n-1))
For potential     6
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.28289805E-21 Asymp Moment =   0.26015872E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.47645251E-21 Asymp Moment =   0.43815527E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12448048E-22 Asymp Moment =  -0.56400284E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.22850544E-23 Asymp Moment =   0.10353247E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.11372819E-21 Asymp Moment =  -0.51528578E-16 (e Angs^(n-1))
For potential     7
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.45174076E-21 Asymp Moment =   0.41542985E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.19736389E-22 Asymp Moment =  -0.18149979E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.10403087E-21 Asymp Moment =  -0.47134862E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.95135605E-23 Asymp Moment =  -0.43104550E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.27822427E-22 Asymp Moment =   0.12605935E-16 (e Angs^(n-1))
For potential     8
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.78243795E-21 Asymp Moment =  -0.71954562E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.34184429E-22 Asymp Moment =   0.31436686E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.18018674E-21 Asymp Moment =   0.81639976E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.16477970E-22 Asymp Moment =   0.74659270E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.48189858E-22 Asymp Moment =  -0.21834119E-16 (e Angs^(n-1))
For potential     9
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.32119641E-01 Asymp Coef   =  -0.10168639E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.77850368E-04 Asymp Moment =  -0.11660732E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.24582082E-21 Asymp Moment =  -0.22606175E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.25145754E-21 Asymp Moment =  -0.23124539E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.26809123E-22 Asymp Moment =   0.24654206E-18 (e Angs^(n-1))
For potential    10
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.55632850E-01 Asymp Coef   =   0.17612599E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.42577416E-21 Asymp Moment =   0.39155045E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43553723E-21 Asymp Moment =   0.40052877E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.46434762E-22 Asymp Moment =  -0.42702338E-18 (e Angs^(n-1))
For potential    11
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.55632850E-01 Asymp Coef   =   0.17612599E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.42577416E-21 Asymp Moment =   0.39155045E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43553723E-21 Asymp Moment =   0.40052877E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.46434762E-22 Asymp Moment =  -0.42702338E-18 (e Angs^(n-1))
For potential    12
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.73746247E-21 Asymp Moment =  -0.67818526E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.75437262E-21 Asymp Moment =  -0.69373617E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.80427368E-22 Asymp Moment =   0.73962619E-18 (e Angs^(n-1))
For potential    13
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.44946931E-03 Asymp Moment =   0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.31886056E-20 Asymp Moment =   0.29323056E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.88169435E-21 Asymp Moment =  -0.81082379E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.59035673E-21 Asymp Moment =   0.54290387E-17 (e Angs^(n-1))
For potential    14
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79390714E-21 Asymp Moment =   0.73009291E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17951082E-20 Asymp Moment =   0.16508175E-16 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12697369E-21 Asymp Moment =  -0.57529920E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.39184124E-22 Asymp Moment =   0.17753753E-16 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.25475408E-22 Asymp Moment =  -0.11542534E-16 (e Angs^(n-1))
For potential    15
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.40452238E-03 Asymp Moment =  -0.60590942E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.28697450E-20 Asymp Moment =  -0.26390750E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79352491E-21 Asymp Moment =   0.72974141E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.53132105E-21 Asymp Moment =  -0.48861349E-17 (e Angs^(n-1))
For potential    16
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.45174076E-21 Asymp Moment =   0.41542985E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.19736389E-22 Asymp Moment =  -0.18149979E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.10403087E-21 Asymp Moment =  -0.47134862E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.95135605E-23 Asymp Moment =  -0.43104550E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.27822427E-22 Asymp Moment =   0.12605935E-16 (e Angs^(n-1))
For potential    17
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.78243795E-21 Asymp Moment =  -0.71954562E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.34184429E-22 Asymp Moment =   0.31436686E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.18018674E-21 Asymp Moment =   0.81639976E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.16477970E-22 Asymp Moment =   0.74659270E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.48189858E-22 Asymp Moment =  -0.21834119E-16 (e Angs^(n-1))
For potential    18
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.21275093E-19 Asymp Moment =  -0.31866666E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.52443071E-21 Asymp Moment =   0.48227699E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.86702182E-21 Asymp Moment =  -0.79733064E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47849805E-20 Asymp Moment =  -0.44003640E-16 (e Angs^(n-1))
For potential    19
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.19147584E-19 Asymp Moment =   0.28679999E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.46710221E-03 Asymp Moment =   0.69964394E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47198764E-21 Asymp Moment =  -0.43404929E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.78031964E-21 Asymp Moment =   0.71759757E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43064825E-20 Asymp Moment =   0.39603276E-16 (e Angs^(n-1))
For potential    20
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79390714E-21 Asymp Moment =   0.73009291E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17951082E-20 Asymp Moment =   0.16508175E-16 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12697369E-21 Asymp Moment =  -0.57529920E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.39184124E-22 Asymp Moment =   0.17753753E-16 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.25475408E-22 Asymp Moment =  -0.11542534E-16 (e Angs^(n-1))
For potential    21
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16333127E-21 Asymp Moment =  -0.15020271E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.27507998E-21 Asymp Moment =  -0.25296906E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.71868840E-23 Asymp Moment =   0.32562719E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.13192768E-23 Asymp Moment =  -0.59774500E-18 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.65661001E-22 Asymp Moment =   0.29750038E-16 (e Angs^(n-1))
For potential    22
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.28289805E-21 Asymp Moment =   0.26015872E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.47645251E-21 Asymp Moment =   0.43815527E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12448048E-22 Asymp Moment =  -0.56400284E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.22850544E-23 Asymp Moment =   0.10353247E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.11372819E-21 Asymp Moment =  -0.51528578E-16 (e Angs^(n-1))
Number of asymptotic regions =     101
Final point in integration =   0.21536217E+03 Angstroms
Time Now =         6.9261  Delta time =         0.7975 End SolveHomo
      Final Dipole matrix
     ROW  1
  (-0.32063861E+01, 0.28456572E+00)
     ROW  2
  (-0.18046655E+01, 0.16016481E+00)
MaxIter =   6 c.s. =     13.64435995 rmsk=     0.00000132  Abs eps    0.25800124E-05  Rel eps    0.11675614E-04
Time Now =         8.0697  Delta time =         1.1437 End ScatStab

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.95410000E+01 eV (  0.35062532E+00 AU)
Time Now =         8.0702  Delta time =         0.0004 End Fege

----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------

Unit for output of final k matrices (iukmat) =    60
Symmetry type of scattering solution (symtps) = HG    1
Form of the Green's operator used (iGrnType) =    -1
Flag for dipole operator (DipoleFlag) =      T
Maximum l for computed scattering solutions (LMaxK) =    3
Maximum number of iterations (itmax) =   15
Convergence criterion on change in rmsq k matrix (cutkdf) =  0.10000000E-05
Maximum l to include in potential (lpotct) =   -1
No exchange flag =   F
Runge Kutta factor  used (RungeKuttaFac) =    4
Error estimate for integrals used in convergence test (EpsIntError) =  0.10000000E-07
General print flag (iprnfg) =    0
Number of integration regions (NIntRegionR) =   40
Factor for number of points in asymptotic region (HFacWaveAsym) =  10.0
Asymptotic cutoff (EpsAsym) =  0.10000000E-06
Asymptotic cutoff type (iAsymCond) =    1
Number of integration regions used =    25
Number of partial waves (np) =     2
Number of asymptotic solutions on the right (NAsymR) =     1
Number of asymptotic solutions on the left (NAsymL) =     2
First solution on left to compute is (NAsymLF) =     1
Last solution on left to compute is (NAsymLL) =     2
Maximum in the asymptotic region (lpasym) =    5
Number of partial waves in the asymptotic region (npasym) =    2
Number of orthogonality constraints (NOrthUse) =    0
Number of different asymptotic potentials =   22
Maximum number of asymptotic partial waves =   21
Maximum l used in usual function (lmax) =    5
Maximum m used in usual function (LMax) =    5
Maxamum l used in expanding static potential (lpotct) =   10
Maximum l used in exapnding the exchange potential (lmaxab) =   10
Higest l included in the expansion of the wave function (lnp) =    4
Higest l included in the K matrix (lna) =    2
Highest l used at large r (lpasym) =    5
Higest l used in the asymptotic potential (lpzb) =   10
Maximum L used in the homogeneous solution (LMaxHomo) =    5
Number of partial waves in the homogeneous solution (npHomo) =    2
Time Now =         8.0709  Delta time =         0.0008 Energy independent setup

Compute solution for E =    9.5410000000 eV
Found fege potential
Charge on the molecule (zz) =  1.0
Assumed asymptotic polarization is  0.00000000E+00 au
 stpote at the end of the grid
For potential     1
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.16653345E-15 Asymp Coef   =   0.52722214E-11 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.33448149E-18 Asymp Moment =   0.50099944E-16 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.56419276E-18 Asymp Moment =   0.84506996E-16 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.25895382E-19 Asymp Moment =   0.23813913E-15 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.82819617E-20 Asymp Moment =  -0.76162579E-16 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.22119144E-19 Asymp Moment =  -0.20341208E-15 (e Angs^(n-1))
For potential     2
 i =  1  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.42920225E-15
 i =  2  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.42920225E-15
 i =  3  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.42920225E-15
 i =  4  exps = -0.44146293E+02 -0.20000000E+01  stpote = -0.42920225E-15
For potential     3
For potential     4
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.44946931E-03 Asymp Moment =  -0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.81940275E-21 Asymp Moment =   0.75353918E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.83819180E-21 Asymp Moment =   0.77081797E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.89363742E-22 Asymp Moment =  -0.82180687E-18 (e Angs^(n-1))
For potential     5
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16333127E-21 Asymp Moment =  -0.15020271E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.27507998E-21 Asymp Moment =  -0.25296906E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.71868840E-23 Asymp Moment =   0.32562719E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.13192768E-23 Asymp Moment =  -0.59774500E-18 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.65661001E-22 Asymp Moment =   0.29750038E-16 (e Angs^(n-1))
For potential     6
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.28289805E-21 Asymp Moment =   0.26015872E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.47645251E-21 Asymp Moment =   0.43815527E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12448048E-22 Asymp Moment =  -0.56400284E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.22850544E-23 Asymp Moment =   0.10353247E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.11372819E-21 Asymp Moment =  -0.51528578E-16 (e Angs^(n-1))
For potential     7
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.45174076E-21 Asymp Moment =   0.41542985E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.19736389E-22 Asymp Moment =  -0.18149979E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.10403087E-21 Asymp Moment =  -0.47134862E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.95135605E-23 Asymp Moment =  -0.43104550E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.27822427E-22 Asymp Moment =   0.12605935E-16 (e Angs^(n-1))
For potential     8
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.78243795E-21 Asymp Moment =  -0.71954562E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.34184429E-22 Asymp Moment =   0.31436686E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.18018674E-21 Asymp Moment =   0.81639976E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.16477970E-22 Asymp Moment =   0.74659270E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.48189858E-22 Asymp Moment =  -0.21834119E-16 (e Angs^(n-1))
For potential     9
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.32119641E-01 Asymp Coef   =  -0.10168639E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.77850368E-04 Asymp Moment =  -0.11660732E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.24582082E-21 Asymp Moment =  -0.22606175E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.25145754E-21 Asymp Moment =  -0.23124539E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.26809123E-22 Asymp Moment =   0.24654206E-18 (e Angs^(n-1))
For potential    10
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.55632850E-01 Asymp Coef   =   0.17612599E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.42577416E-21 Asymp Moment =   0.39155045E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43553723E-21 Asymp Moment =   0.40052877E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.46434762E-22 Asymp Moment =  -0.42702338E-18 (e Angs^(n-1))
For potential    11
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.55632850E-01 Asymp Coef   =   0.17612599E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.13484079E-03 Asymp Moment =   0.20196981E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.42577416E-21 Asymp Moment =   0.39155045E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43553723E-21 Asymp Moment =   0.40052877E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.46434762E-22 Asymp Moment =  -0.42702338E-18 (e Angs^(n-1))
For potential    12
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.73746247E-21 Asymp Moment =  -0.67818526E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.75437262E-21 Asymp Moment =  -0.69373617E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.80427368E-22 Asymp Moment =   0.73962619E-18 (e Angs^(n-1))
For potential    13
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.44946931E-03 Asymp Moment =   0.67323269E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.25950123E-03 Asymp Moment =   0.38869108E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.31886056E-20 Asymp Moment =   0.29323056E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.88169435E-21 Asymp Moment =  -0.81082379E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.59035673E-21 Asymp Moment =   0.54290387E-17 (e Angs^(n-1))
For potential    14
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79390714E-21 Asymp Moment =   0.73009291E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17951082E-20 Asymp Moment =   0.16508175E-16 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12697369E-21 Asymp Moment =  -0.57529920E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.39184124E-22 Asymp Moment =   0.17753753E-16 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.25475408E-22 Asymp Moment =  -0.11542534E-16 (e Angs^(n-1))
For potential    15
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.40452238E-03 Asymp Moment =  -0.60590942E-01 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.28697450E-20 Asymp Moment =  -0.26390750E-16 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79352491E-21 Asymp Moment =   0.72974141E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.53132105E-21 Asymp Moment =  -0.48861349E-17 (e Angs^(n-1))
For potential    16
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.45174076E-21 Asymp Moment =   0.41542985E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.19736389E-22 Asymp Moment =  -0.18149979E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.10403087E-21 Asymp Moment =  -0.47134862E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.95135605E-23 Asymp Moment =  -0.43104550E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.27822427E-22 Asymp Moment =   0.12605935E-16 (e Angs^(n-1))
For potential    17
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.78243795E-21 Asymp Moment =  -0.71954562E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.34184429E-22 Asymp Moment =   0.31436686E-18 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.18018674E-21 Asymp Moment =   0.81639976E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.16477970E-22 Asymp Moment =   0.74659270E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.48189858E-22 Asymp Moment =  -0.21834119E-16 (e Angs^(n-1))
For potential    18
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) =  0.10706547E+00 Asymp Coef   =   0.33895463E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) =  0.21275093E-19 Asymp Moment =  -0.31866666E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) =  0.51900245E-03 Asymp Moment =  -0.77738215E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) = -0.52443071E-21 Asymp Moment =   0.48227699E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) =  0.86702182E-21 Asymp Moment =  -0.79733064E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47849805E-20 Asymp Moment =  -0.44003640E-16 (e Angs^(n-1))
For potential    19
 i =  1  lval =   0  1/r^n n =   4  StPot(RMax) = -0.96358923E-01 Asymp Coef   =  -0.30505917E+04 (eV Angs^(n))
 i =  2  lval =   2  1/r^n n =   3  StPot(RMax) = -0.19147584E-19 Asymp Moment =   0.28679999E-17 (e Angs^(n-1))
 i =  3  lval =   2  1/r^n n =   3  StPot(RMax) = -0.46710221E-03 Asymp Moment =   0.69964394E-01 (e Angs^(n-1))
 i =  4  lval =   4  1/r^n n =   5  StPot(RMax) =  0.47198764E-21 Asymp Moment =  -0.43404929E-17 (e Angs^(n-1))
 i =  5  lval =   4  1/r^n n =   5  StPot(RMax) = -0.78031964E-21 Asymp Moment =   0.71759757E-17 (e Angs^(n-1))
 i =  6  lval =   4  1/r^n n =   5  StPot(RMax) = -0.43064825E-20 Asymp Moment =   0.39603276E-16 (e Angs^(n-1))
For potential    20
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.79390714E-21 Asymp Moment =   0.73009291E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.17951082E-20 Asymp Moment =   0.16508175E-16 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12697369E-21 Asymp Moment =  -0.57529920E-16 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.39184124E-22 Asymp Moment =   0.17753753E-16 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.25475408E-22 Asymp Moment =  -0.11542534E-16 (e Angs^(n-1))
For potential    21
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) =  0.23355110E-03 Asymp Moment =  -0.34982197E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) =  0.16333127E-21 Asymp Moment =  -0.15020271E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) =  0.27507998E-21 Asymp Moment =  -0.25296906E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) = -0.71868840E-23 Asymp Moment =   0.32562719E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) =  0.13192768E-23 Asymp Moment =  -0.59774500E-18 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) = -0.65661001E-22 Asymp Moment =   0.29750038E-16 (e Angs^(n-1))
For potential    22
 i =  1  lval =   2  1/r^n n =   3  StPot(RMax) = -0.40452238E-03 Asymp Moment =   0.60590942E-01 (e Angs^(n-1))
 i =  2  lval =   4  1/r^n n =   5  StPot(RMax) = -0.28289805E-21 Asymp Moment =   0.26015872E-17 (e Angs^(n-1))
 i =  3  lval =   4  1/r^n n =   5  StPot(RMax) = -0.47645251E-21 Asymp Moment =   0.43815527E-17 (e Angs^(n-1))
 i =  4  lval =   6  1/r^n n =   7  StPot(RMax) =  0.12448048E-22 Asymp Moment =  -0.56400284E-17 (e Angs^(n-1))
 i =  5  lval =   6  1/r^n n =   7  StPot(RMax) = -0.22850544E-23 Asymp Moment =   0.10353247E-17 (e Angs^(n-1))
 i =  6  lval =   6  1/r^n n =   7  StPot(RMax) =  0.11372819E-21 Asymp Moment =  -0.51528578E-16 (e Angs^(n-1))
Number of asymptotic regions =     114
Final point in integration =   0.18519586E+03 Angstroms
Time Now =         8.9156  Delta time =         0.8447 End SolveHomo
      Final Dipole matrix
     ROW  1
  (-0.30056596E+01, 0.74900152E+00)
     ROW  2
  (-0.19285887E+01, 0.48059880E+00)
MaxIter =   6 c.s. =     13.54542277 rmsk=     0.00000001  Abs eps    0.22104103E-05  Rel eps    0.77537400E-06
Time Now =        10.0564  Delta time =         1.1408 End ScatStab

+ Command GetCro
+

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        10.0568  Delta time =         0.0004 End CnvIdy
Found     4 energies :
     0.34100000     4.24100000     5.47100000     9.54100000
List of matrix element types found   Number =    1
    1  Cont Sym HG     Targ Sym T1U    Total Sym T1U
Keeping     4 energies :
     0.34100000     4.24100000     5.47100000     9.54100000
Time Now =        10.0568  Delta time =         0.0000 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.7590 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    16.1000  0.23945607E+02
    20.0000  0.38526398E+02
    21.2300  0.41518895E+02
    25.3000  0.45816511E+02

     Sigma MIXED    at all energies
      Eng
    16.1000  0.19354228E+02
    20.0000  0.28345391E+02
    21.2300  0.29952104E+02
    25.3000  0.31619278E+02

     Sigma VELOCITY at all energies
      Eng
    16.1000  0.15643209E+02
    20.0000  0.20854822E+02
    21.2300  0.21607716E+02
    25.3000  0.21821363E+02

     Beta LENGTH   at all energies
      Eng
    16.1000  0.10000000E+01
    20.0000  0.10000000E+01
    21.2300  0.10000000E+01
    25.3000  0.10000000E+01

     Beta MIXED    at all energies
      Eng
    16.1000  0.10000000E+01
    20.0000  0.10000000E+01
    21.2300  0.10000000E+01
    25.3000  0.10000000E+01

     Beta VELOCITY at all energies
      Eng
    16.1000  0.10000000E+01
    20.0000  0.10000000E+01
    21.2300  0.10000000E+01
    25.3000  0.10000000E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     16.1000    23.9456    19.3542    15.6432     1.0000     1.0000     1.0000
EPhi     20.0000    38.5264    28.3454    20.8548     1.0000     1.0000     1.0000
EPhi     21.2300    41.5189    29.9521    21.6077     1.0000     1.0000     1.0000
EPhi     25.3000    45.8165    31.6193    21.8214     1.0000     1.0000     1.0000
Time Now =        10.0575  Delta time =         0.0006 End CrossSection

+ Command GetCro
+ 'test31AG.idy' 'test31HG.idy'
Taking dipole matrix from file test31AG.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        10.0577  Delta time =         0.0002 End CnvIdy
Taking dipole matrix from file test31HG.idy

----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------

Time Now =        10.0580  Delta time =         0.0003 End CnvIdy
Found     4 energies :
     0.34100000     4.24100000     5.47100000     9.54100000
List of matrix element types found   Number =    2
    1  Cont Sym AG     Targ Sym T1U    Total Sym T1U
    2  Cont Sym HG     Targ Sym T1U    Total Sym T1U
Keeping     4 energies :
     0.34100000     4.24100000     5.47100000     9.54100000
Time Now =        10.0581  Delta time =         0.0001 End SelIdy

----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------

Ionization potential (IPot) =     15.7590 eV
Label -
Cross section by partial wave      F
Cross Sections for

     Sigma LENGTH   at all energies
      Eng
    16.1000  0.28710708E+02
    20.0000  0.41712672E+02
    21.2300  0.44317589E+02
    25.3000  0.47657805E+02

     Sigma MIXED    at all energies
      Eng
    16.1000  0.23647547E+02
    20.0000  0.31200535E+02
    21.2300  0.32480645E+02
    25.3000  0.33359695E+02

     Sigma VELOCITY at all energies
      Eng
    16.1000  0.19511456E+02
    20.0000  0.23413248E+02
    21.2300  0.23892182E+02
    25.3000  0.23466429E+02

     Beta LENGTH   at all energies
      Eng
    16.1000 -0.18494607E+00
    20.0000  0.69132165E+00
    21.2300  0.84066148E+00
    25.3000  0.11573706E+01

     Beta MIXED    at all energies
      Eng
    16.1000 -0.23885069E+00
    20.0000  0.65510527E+00
    21.2300  0.81552683E+00
    25.3000  0.11767894E+01

     Beta VELOCITY at all energies
      Eng
    16.1000 -0.29016646E+00
    20.0000  0.61788653E+00
    21.2300  0.78809680E+00
    25.3000  0.11895644E+01

          COMPOSITE CROSS SECTIONS AT ALL ENERGIES
         Energy  SIGMA LEN  SIGMA MIX  SIGMA VEL   BETA LEN   BETA MIX   BETA VEL
EPhi     16.1000    28.7107    23.6475    19.5115    -0.1849    -0.2389    -0.2902
EPhi     20.0000    41.7127    31.2005    23.4132     0.6913     0.6551     0.6179
EPhi     21.2300    44.3176    32.4806    23.8922     0.8407     0.8155     0.7881
EPhi     25.3000    47.6578    33.3597    23.4664     1.1574     1.1768     1.1896
Time Now =        10.0587  Delta time =         0.0006 End CrossSection
+ Data Record DPotEng - 15.
+ Data Record ResSearchEng
+ 1 / 1. 0.5 / 20.0 / 10. / 2.

+ Command GetDPot
+

----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------

 Off set energy for computing fege eta (ecor) =  0.13000000E+02  eV
 Do E =  0.15000000E+02 eV (  0.55123989E+00 AU)
Time Now =        10.0591  Delta time =         0.0004 End Fege

----------------------------------------------------------------------
DPot - compute diabatic local potential
----------------------------------------------------------------------

Symmetry type of adibatic potential (symtps) =HG
For an atom, use partial waves with l =    2  m =   -1
Positron flag =    F
Maximum L to include in the diagonal representation (LMaxA) =     5
Maximum np to to write out (nppx) =    1
Unit for plot data (iuvpot) =    0
General print flag (iprnfg) =    0
Charge at the origin is =   18
Charge =  1
Number of radial regions (nrlast) =   25
Found fege potential
Maximum l used in usual function (LMax) =    5
Time Now =        10.0600  Delta time =         0.0009 End DPot

+ Command ResSearch
+

----------------------------------------------------------------------
Resonance - program to find resonances
----------------------------------------------------------------------

iuwavf, unit for adiabatic wave function =    0
iuwavo, unit for spherical wave function =    0
iureng, unit to save energies on =    0
idstop, flag to indicate what calculations to do = 0000
Print flag =    0
Runge Kutta Factor =    4
Resonance search type (ResSearchType) =    0
Symmetry type of adibatic potential (symtps) =HG
Number of energy regions =    1
Region     1 starts at E =  0.10000000E+01 eV with step size =  0.50000000E+00  eV
End point of last region E =  0.20000000E+02 eV
Largest imaginary part =  0.10000000E+02 eV
Imaginary step size =  0.20000000E+01 eV
Charge on the molecule is     1
vmin = -0.25892954E+02 eV
Time Now =        10.0604  Delta time =         0.0004 Starting docalc
 Number of energies (neng) =    39
     E (eV)       Phase Sum        T sum
    1.0000000000   0.77568332E+00   0.26682708E+02
    1.5000000000   0.88922126E+00   0.21880805E+02
    2.0000000000   0.99759791E+00   0.19208157E+02
    2.5000000000   0.10983222E+01   0.17260559E+02
    3.0000000000   0.11899542E+01   0.15634524E+02
    3.5000000000   0.12720080E+01   0.14202022E+02
    4.0000000000   0.13447029E+01   0.12921963E+02
    4.5000000000   0.14086913E+01   0.11778917E+02
    5.0000000000   0.14648371E+01   0.10762805E+02
    5.5000000000   0.15140632E+01   0.98632340E+01
    6.0000000000   0.15572619E+01   0.90687997E+01
    6.5000000000   0.15952490E+01   0.83677280E+01
    7.0000000000   0.16287465E+01   0.77486011E+01
    7.5000000000   0.16583803E+01   0.72008478E+01
    8.0000000000   0.16846871E+01   0.67149863E+01
    8.5000000000   0.17081236E+01   0.62826888E+01
    9.0000000000   0.17290778E+01   0.58967400E+01
    9.5000000000   0.17478784E+01   0.55509408E+01
   10.0000000000   0.17648046E+01   0.52399908E+01
   10.5000000000   0.17800937E+01   0.49593681E+01
   11.0000000000   0.17939478E+01   0.47052168E+01
   11.5000000000   0.18065399E+01   0.44742466E+01
   12.0000000000   0.18180181E+01   0.42636448E+01
   12.5000000000   0.18285100E+01   0.40710018E+01
   13.0000000000   0.18381256E+01   0.38942477E+01
   13.5000000000   0.18469601E+01   0.37315990E+01
   14.0000000000   0.18550966E+01   0.35815144E+01
   14.5000000000   0.18626071E+01   0.34426575E+01
   15.0000000000   0.18695549E+01   0.33138657E+01
   15.5000000000   0.18759955E+01   0.31941245E+01
   16.0000000000   0.18819775E+01   0.30825455E+01
   16.5000000000   0.18875442E+01   0.29783487E+01
   17.0000000000   0.18927336E+01   0.28808466E+01
   17.5000000000   0.18975795E+01   0.27894318E+01
   18.0000000000   0.19021121E+01   0.27035659E+01
   18.5000000000   0.19063583E+01   0.26227703E+01
   19.0000000000   0.19103420E+01   0.25466186E+01
   19.5000000000   0.19140848E+01   0.24747294E+01
   20.0000000000   0.19176060E+01   0.24067614E+01
 Special Points
 eng =    1.00000 (eV)  phase =  0.77568332E+00  tsum =  0.26682708E+02 first
 eng =   20.00000 (eV)  phase =  0.19176060E+01  tsum =  0.24067614E+01 last
 Min - Max jumps
Time Now =        10.1482  Delta time =         0.0878 Begin resonance Search
The number of initial guesses of roots is        0

 Sorted roots on unphysical sheet of open channels

 Selected roots on unphysical sheet of open channels

Selected roots for comparison (None found)

Time Now =        10.1560  Delta time =         0.0078 End Resonance
Time Now =        10.1562  Delta time =         0.0002 Finalize