Execution on n0158.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:42.463 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test30
#
# N2 molden SCF, (3-sigma-g)^-1 resonance with CalcInt test
#
LMax 22 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatEng 10.0 # list of scattering energies
InitSym 'SG' # Initial state symmetry
InitSpinDeg 1 # Initial state spin degeneracy
OrbOccInit 2 2 2 2 2 4 # Orbital occupation of initial state
OrbOcc 2 2 2 2 1 4 # occupation of the orbital groups of target
SpinDeg 1 # Spin degeneracy of the total scattering state (=1 singlet)
TargSym 'SG' # Symmetry of the target state
TargSpinDeg 2 # Target spin degeneracy
IPot 15.581 # ionization potentail
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test30.molden2012' 'molden'
GetBlms
ExpOrb
ScatSym 'SU' # Scattering symmetry of total final state
ScatContSym 'SU' # Scattering symmetry of continuum electron
DPotEng 15. # Energy (in eV) for the local exchange potential
ResSearchEng
1 # nengrb - number of energy step regions
1. 0.5 # first energy and step (in eV)
20.0 # final ending point, engrb(nengrb+1)
10. # eendzi, largest imaginary part
2. # estpzi, imaginary energy step
GenFormPhIon
DipoleOp
GetPot
GetDPot
ResSearch
# ResWvFun 1
ResWvFun 1 0.1024307311204628E+02 -0.2705143870004660E+01
CalcInt 'ExpOrb' 3 'ExpOrb' 3
CalcInt 'ExpOrb' 3 'ExpOrb' 5
CalcInt 'ExpOrb' 5 'ExpOrb' 5
CalcInt 'DipoleOp' 1 'ExpOrb' 4
CalcInt 'DipoleOp' 2 'ExpOrb' 4
CalcInt 'DipoleOp' 1 'ResWvFun' 1
CalcInt 'DipoleOp' 2 'ResWvFun' 1
CalcInt 'ExpOrb' 4 'ResWvFun' 1
PlaneWvCharge 1
ScatEng 10.
CalcInt 'DipoleOp' 1 'PlaneWv' 9
#
#
+ End of input reached
+ Data Record LMax - 22
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 10.0
+ Data Record InitSym - 'SG'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 2 2 2 4
+ Data Record OrbOcc - 2 2 2 2 1 4
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'SG'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 15.581
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test30.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 110 basis functions
Selecting orbitals
Number of orbitals selected is 7
Selecting 1 1 SymOrb = 1.1 Ene = -15.6842 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 1.5 Ene = -15.6806 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 2.1 Ene = -1.4752 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 2.5 Ene = -0.7786 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 3.1 Ene = -0.6350 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 1.3 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 1.2 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Atoms found 2 Coordinates in Angstroms
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 -0.5470000000
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 0.5470000000
Maximum distance from expansion center is 0.5470000000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group DAh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.0417 Delta time = 0.0417 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 7 0.54700 7 0.54700
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 11
Determining angular grid in GetAxMax LMax = 22 LMaxA = 11 LMaxAb = 44
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 3 3 3 3 3 3 3 3
3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 14 14 14 14 14 14 14 14 14 14 14 6 6 6 6 6 6
6 6 6 6 6
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is DAh
LMax 22
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
12 22 32 2 3 21 31
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
SG 1 1 13 1 1 1 1 1 1 1
A2G 1 2 1 1 -1 -1 1 1 -1 -1
B1G 1 3 3 -1 1 -1 1 -1 1 -1
B2G 1 4 3 -1 -1 1 1 -1 -1 1
PG 1 5 12 -1 -1 1 1 -1 -1 1
PG 2 6 12 -1 1 -1 1 -1 1 -1
DG 1 7 13 1 -1 -1 1 1 -1 -1
DG 2 8 13 1 1 1 1 1 1 1
FG 1 9 12 -1 -1 1 1 -1 -1 1
FG 2 10 12 -1 1 -1 1 -1 1 -1
GG 1 11 7 1 -1 -1 1 1 -1 -1
GG 2 12 7 1 1 1 1 1 1 1
SU 1 13 12 1 -1 -1 -1 -1 1 1
A2U 1 14 1 1 1 1 -1 -1 -1 -1
B1U 1 15 4 -1 -1 1 -1 1 1 -1
B2U 1 16 4 -1 1 -1 -1 1 -1 1
PU 1 17 14 -1 -1 1 -1 1 1 -1
PU 2 18 14 -1 1 -1 -1 1 -1 1
DU 1 19 12 1 -1 -1 -1 -1 1 1
DU 2 20 12 1 1 1 -1 -1 -1 -1
FU 1 21 13 -1 -1 1 -1 1 1 -1
FU 2 22 13 -1 1 -1 -1 1 -1 1
GU 1 23 7 1 -1 -1 -1 -1 1 1
GU 2 24 7 1 1 1 -1 -1 -1 -1
Time Now = 0.7837 Delta time = 0.7420 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG 1 0( 1) 1( 1) 2( 2) 3( 2) 4( 3) 5( 3) 6( 4) 7( 4) 8( 5) 9( 5)
10( 7) 11( 7)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 1) 11( 1)
B1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
B2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
PG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
PG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
DG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
DG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
FG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
FG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
GG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
GG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
SU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 5)
10( 5) 11( 7)
A2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 0) 11( 1)
B1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
B2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
PU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
PU 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
DU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
DU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
FU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
FU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
GU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
GU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 44
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 142 1 1 1 1 1 1 1
B1G 1 2 119 1 -1 -1 1 1 -1 -1
B2G 1 3 119 -1 -1 1 1 -1 -1 1
B3G 1 4 119 -1 1 -1 1 -1 1 -1
AU 1 5 112 1 1 1 -1 -1 -1 -1
B1U 1 6 134 1 -1 -1 -1 -1 1 1
B2U 1 7 123 -1 -1 1 -1 1 1 -1
B3U 1 8 123 -1 1 -1 -1 1 -1 1
Time Now = 0.7885 Delta time = 0.0048 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 9.6359860816 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 9.63599 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.54700 Angs Alpha Max = 0.14700E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.18998E-02 0.01520
2 8 16 0.26749E-02 0.03660
3 8 24 0.43054E-02 0.07104
4 8 32 0.57696E-02 0.11720
5 8 40 0.67259E-02 0.17101
6 8 48 0.68378E-02 0.22571
7 8 56 0.62927E-02 0.27605
8 8 64 0.55946E-02 0.32081
9 8 72 0.49428E-02 0.36035
10 8 80 0.49699E-02 0.40011
11 8 88 0.55183E-02 0.44425
12 8 96 0.46796E-02 0.48169
13 8 104 0.29745E-02 0.50549
14 8 112 0.18907E-02 0.52061
15 8 120 0.12018E-02 0.53023
16 8 128 0.76392E-03 0.53634
17 8 136 0.53578E-03 0.54062
18 8 144 0.45350E-03 0.54425
19 8 152 0.34340E-03 0.54700
20 8 160 0.43646E-03 0.55049
21 8 168 0.46530E-03 0.55421
22 8 176 0.57358E-03 0.55880
23 8 184 0.87025E-03 0.56576
24 8 192 0.13836E-02 0.57683
25 8 200 0.21997E-02 0.59443
26 8 208 0.34972E-02 0.62241
27 8 216 0.55601E-02 0.66689
28 8 224 0.88398E-02 0.73761
29 8 232 0.10173E-01 0.81899
30 8 240 0.11296E-01 0.90936
31 8 248 0.15091E-01 1.03009
32 8 256 0.21623E-01 1.20307
33 8 264 0.32069E-01 1.45962
34 8 272 0.42541E-01 1.79995
35 8 280 0.47749E-01 2.18194
36 8 288 0.52186E-01 2.59943
37 8 296 0.55941E-01 3.04696
38 8 304 0.59116E-01 3.51989
39 8 312 0.61806E-01 4.01434
40 8 320 0.64096E-01 4.52711
41 8 328 0.66056E-01 5.05556
42 8 336 0.67743E-01 5.59750
43 8 344 0.69206E-01 6.15115
44 8 352 0.70482E-01 6.71501
45 8 360 0.71602E-01 7.28782
46 8 368 0.72590E-01 7.86855
47 8 376 0.73468E-01 8.45629
48 8 384 0.74251E-01 9.05029
49 8 392 0.73212E-01 9.63599
Time Now = 0.8000 Delta time = 0.0115 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 22
Maximum scattering m (mmaxs) = 22
Maximum numerical integration l (lmaxi) = 44
Maximum numerical integration m (mmaxi) = 44
Maximum l to include in the asymptotic region (lmasym) = 11
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 10
Actual value of lmasym found = 11
Number of regions of the same l expansion (NAngReg) = 10
Angular regions
1 L = 2 from ( 1) 0.00190 to ( 7) 0.01330
2 L = 4 from ( 8) 0.01520 to ( 15) 0.03392
3 L = 6 from ( 16) 0.03660 to ( 23) 0.06674
4 L = 7 from ( 24) 0.07104 to ( 31) 0.11143
5 L = 9 from ( 32) 0.11720 to ( 39) 0.16428
6 L = 11 from ( 40) 0.17101 to ( 47) 0.21887
7 L = 19 from ( 48) 0.22571 to ( 71) 0.35540
8 L = 22 from ( 72) 0.36035 to ( 240) 0.90936
9 L = 19 from ( 241) 0.92445 to ( 256) 1.20307
10 L = 11 from ( 257) 1.23514 to ( 392) 9.63599
There are 2 angular regions for computing spherical harmonics
1 lval = 11
2 lval = 22
Maximum number of processors is 48
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 56
Proc id = 1 Last grid point = 72
Proc id = 2 Last grid point = 88
Proc id = 3 Last grid point = 96
Proc id = 4 Last grid point = 112
Proc id = 5 Last grid point = 128
Proc id = 6 Last grid point = 136
Proc id = 7 Last grid point = 152
Proc id = 8 Last grid point = 160
Proc id = 9 Last grid point = 176
Proc id = 10 Last grid point = 192
Proc id = 11 Last grid point = 200
Proc id = 12 Last grid point = 216
Proc id = 13 Last grid point = 224
Proc id = 14 Last grid point = 240
Proc id = 15 Last grid point = 256
Proc id = 16 Last grid point = 288
Proc id = 17 Last grid point = 320
Proc id = 18 Last grid point = 360
Proc id = 19 Last grid point = 392
Time Now = 0.8039 Delta time = 0.0039 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -15.684200 SG 1 at max irg = 160 r = 0.55049
2 Orig 2 Eng = -15.680600 SU 1 at max irg = 160 r = 0.55049
3 Orig 3 Eng = -1.475200 SG 1 at max irg = 152 r = 0.54700
4 Orig 4 Eng = -0.778600 SU 1 at max irg = 240 r = 0.90936
5 Orig 5 Eng = -0.635000 SG 1 at max irg = 240 r = 0.90936
6 Orig 6 Eng = -0.616100 PU 1 at max irg = 216 r = 0.66689
7 Orig 7 Eng = -0.616100 PU 2 at max irg = 216 r = 0.66689
Rotation coefficients for orbital 1 grp = 1 SG 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 SU 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 SG 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 SU 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 SG 1
1 1.0000000000
Rotation coefficients for orbital 6 grp = 6 PU 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 7 grp = 6 PU 2
1 -0.0000000000 2 1.0000000000
Number of orbital groups and degeneracis are 6
1 1 1 1 1 2
Number of orbital groups and number of electrons when fully occupied
6
2 2 2 2 2 4
Time Now = 0.8719 Delta time = 0.0679 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 6
Orbital 1 of SG 1 symmetry normalization integral = 0.99799208
Orbital 2 of SU 1 symmetry normalization integral = 0.99757111
Orbital 3 of SG 1 symmetry normalization integral = 0.99989267
Orbital 4 of SU 1 symmetry normalization integral = 0.99989730
Orbital 5 of SG 1 symmetry normalization integral = 0.99999037
Orbital 6 of PU 1 symmetry normalization integral = 0.99999969
Time Now = 1.0041 Delta time = 0.1322 End ExpOrb
+ Data Record ScatSym - 'SU'
+ Data Record ScatContSym - 'SU'
+ Data Record DPotEng - 15.
+ Data Record ResSearchEng
+ 1 / 1. 0.5 / 20.0 / 10. / 2.
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 6
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - SG 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 13 name - SU 1
Set 3 has degeneracy 1
Orbital 1 is num 3 type = 1 name - SG 1
Set 4 has degeneracy 1
Orbital 1 is num 4 type = 13 name - SU 1
Set 5 has degeneracy 1
Orbital 1 is num 5 type = 1 name - SG 1
Set 6 has degeneracy 2
Orbital 1 is num 6 type = 17 name - PU 1
Orbital 2 is num 7 type = 18 name - PU 2
Orbital occupations by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 SG occ = 1
6 PU occ = 4
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Symmetry of the continuum orbital is SU
Symmetry of the total state is SU
Spin degeneracy of the total state is = 1
Symmetry of the target state is SG
Spin degeneracy of the target state is = 2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is = 1
Orbital occupations of initial state by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 SG occ = 2
6 PU occ = 4
Open shell symmetry types
1 SG iele = 1
Use only configuration of type SG
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SG ( 1)
representation SG component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Open shell symmetry types
1 SG iele = 1
2 SU iele = 1
Use only configuration of type SU
Each irreducable representation is present the number of times indicated
SU ( 1)
representation SU component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 4
2: 0.70711 0.00000 2 3
Open shell symmetry types
1 SG iele = 1
Use only configuration of type SG
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SG ( 1)
representation SG component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 16
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Closed shell target
Time Now = 1.0053 Delta time = 0.0012 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 16
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 16
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 9
Symmetry of target = 1
Symmetry of total states = 9
Total symmetry component = 1
Cont Target Component
Comp 1
1 0.10000000E+01
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14
One electron matrix elements between initial and final states
1: -1.414213562 0.000000000 < 9| 15>
Reduced formula list
1 5 1 -0.1414213562E+01
Time Now = 1.0056 Delta time = 0.0002 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 1
Symmetry of the continuum orbital (iContSym) = 9 or SU
Symmetry of total final state (iTotalSym) = 9 or SU
Symmetry of the initial state (iInitSym) = 1 or SG
Symmetry of the ionized target state (iTargSym) = 1 or SG
List of unique symmetry types
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types SU A2G
Each irreducable representation is present the number of times indicated
A2U ( 1)
In the product of the symmetry types SU B1G
Each irreducable representation is present the number of times indicated
B1U ( 1)
In the product of the symmetry types SU B2G
Each irreducable representation is present the number of times indicated
B2U ( 1)
In the product of the symmetry types SU PG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types SU DG
Each irreducable representation is present the number of times indicated
DU ( 1)
In the product of the symmetry types SU FG
Each irreducable representation is present the number of times indicated
FU ( 1)
In the product of the symmetry types SU GG
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types SU SU
Each irreducable representation is present the number of times indicated
SG ( 1)
Unique dipole matrix type 1 Dipole symmetry type =SU
Final state symmetry type = SU Target sym =SG
Continuum type =SU
In the product of the symmetry types SU A2U
Each irreducable representation is present the number of times indicated
A2G ( 1)
In the product of the symmetry types SU B1U
Each irreducable representation is present the number of times indicated
B1G ( 1)
In the product of the symmetry types SU B2U
Each irreducable representation is present the number of times indicated
B2G ( 1)
In the product of the symmetry types SU PU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types SU DU
Each irreducable representation is present the number of times indicated
DG ( 1)
In the product of the symmetry types SU FU
Each irreducable representation is present the number of times indicated
FG ( 1)
In the product of the symmetry types SU GU
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU A2G
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU B1G
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PU B2G
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PU PG
Each irreducable representation is present the number of times indicated
SU ( 1)
A2U ( 1)
DU ( 1)
In the product of the symmetry types PU DG
Each irreducable representation is present the number of times indicated
PU ( 1)
FU ( 1)
In the product of the symmetry types PU FG
Each irreducable representation is present the number of times indicated
DU ( 1)
GU ( 1)
In the product of the symmetry types PU GG
Each irreducable representation is present the number of times indicated
B1U ( 1)
B2U ( 1)
FU ( 1)
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PU A2U
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PU B1U
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PU B2U
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PU PU
Each irreducable representation is present the number of times indicated
SG ( 1)
A2G ( 1)
DG ( 1)
Unique dipole matrix type 2 Dipole symmetry type =PU
Final state symmetry type = PU Target sym =SG
Continuum type =PU
In the product of the symmetry types PU DU
Each irreducable representation is present the number of times indicated
PG ( 1)
FG ( 1)
In the product of the symmetry types PU FU
Each irreducable representation is present the number of times indicated
DG ( 1)
GG ( 1)
In the product of the symmetry types PU GU
Each irreducable representation is present the number of times indicated
B1G ( 1)
B2G ( 1)
FG ( 1)
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
Irreducible representation containing the dipole operator is SU
Number of different dipole operators in this representation is 1
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 0.00000000 0.00000000 1.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 1 Orb 5 Coef = -1.4142135620
Symmetry type to write out (SymTyp) =SU
Time Now = 2.5380 Delta time = 1.5324 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 13.00000000
Time Now = 2.5441 Delta time = 0.0061 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.13000000E+02 facnorm = 0.10000000E+01
Time Now = 2.5522 Delta time = 0.0081 Electronic part
Time Now = 2.5526 Delta time = 0.0004 End StPot
+ Command GetDPot
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.15000000E+02 eV ( 0.55123989E+00 AU)
Time Now = 2.5608 Delta time = 0.0082 End Fege
----------------------------------------------------------------------
DPot - compute diabatic local potential
----------------------------------------------------------------------
Symmetry type of adibatic potential (symtps) =SU
For a linear molueule, use partial waves with m = 0
Positron flag = F
Maximum L to include in the diagonal representation (LMaxA) = 11
Maximum np to to write out (nppx) = 6
Unit for plot data (iuvpot) = 0
General print flag (iprnfg) = 0
Charge at the origin is = 0
Charge = 1
Number of radial regions (nrlast) = 49
Found fege potential
Maximum l used in usual function (LMax) = 22
Time Now = 2.5689 Delta time = 0.0081 End DPot
+ Command ResSearch
+
----------------------------------------------------------------------
Resonance - program to find resonances
----------------------------------------------------------------------
iuwavf, unit for adiabatic wave function = 0
iuwavo, unit for spherical wave function = 0
iureng, unit to save energies on = 0
idstop, flag to indicate what calculations to do = 0000
Print flag = 0
Runge Kutta Factor = 4
Resonance search type (ResSearchType) = 0
Symmetry type of adibatic potential (symtps) =SU
Number of energy regions = 1
Region 1 starts at E = 0.10000000E+01 eV with step size = 0.50000000E+00 eV
End point of last region E = 0.20000000E+02 eV
Largest imaginary part = 0.10000000E+02 eV
Imaginary step size = 0.20000000E+01 eV
Charge on the molecule is 1
vmin = -0.15457561E+04 eV
Time Now = 2.5694 Delta time = 0.0005 Starting docalc
Number of energies (neng) = 39
E (eV) Phase Sum T sum
1.0000000000 -0.13517768E+01 0.53511838E+02
1.5000000000 -0.13736167E+01 0.36050815E+02
2.0000000000 -0.13923155E+01 0.27266152E+02
2.5000000000 -0.14071863E+01 0.21961467E+02
3.0000000000 -0.14182229E+01 0.18405884E+02
3.5000000000 -0.14254453E+01 0.15858751E+02
4.0000000000 -0.14285118E+01 0.13951268E+02
4.5000000000 -0.14267128E+01 0.12480743E+02
5.0000000000 -0.14191164E+01 0.11328410E+02
5.5000000000 -0.14046481E+01 0.10422223E+02
6.0000000000 -0.13820369E+01 0.97185653E+01
6.5000000000 -0.13496726E+01 0.91927499E+01
7.0000000000 -0.13054588E+01 0.88336104E+01
7.5000000000 -0.12467485E+01 0.86391500E+01
8.0000000000 -0.11704613E+01 0.86102201E+01
8.5000000000 -0.10735411E+01 0.87384445E+01
9.0000000000 -0.95398281E+00 0.89856432E+01
9.5000000000 -0.81252703E+00 0.92610690E+01
10.0000000000 -0.65444615E+00 0.94230934E+01
10.5000000000 -0.48978640E+00 0.93363699E+01
11.0000000000 -0.33068218E+00 0.89564897E+01
11.5000000000 -0.18708758E+00 0.83524381E+01
12.0000000000 -0.64175815E-01 0.76442763E+01
12.5000000000 0.37345157E-01 0.69329507E+01
13.0000000000 0.11943723E+00 0.62753517E+01
13.5000000000 0.18507707E+00 0.56926141E+01
14.0000000000 0.23728595E+00 0.51858006E+01
14.5000000000 0.27871780E+00 0.47473861E+01
15.0000000000 0.31155445E+00 0.43674484E+01
15.5000000000 0.33753386E+00 0.40364036E+01
16.0000000000 0.35802129E+00 0.37459580E+01
16.5000000000 0.37408468E+00 0.34892659E+01
17.0000000000 0.38656022E+00 0.32607854E+01
17.5000000000 0.39610516E+00 0.30560526E+01
18.0000000000 0.40323878E+00 0.28714645E+01
18.5000000000 0.40837365E+00 0.27040964E+01
19.0000000000 0.41183967E+00 0.25515597E+01
19.5000000000 0.41390263E+00 0.24118921E+01
20.0000000000 0.41477867E+00 0.22834738E+01
Special Points
eng = 1.00000 (eV) phase = -0.13517768E+01 tsum = 0.53511838E+02 first
eng = 4.00000 (eV) phase = -0.14285118E+01 tsum = 0.13951268E+02 min
eng = 8.00000 (eV) phase = -0.11704613E+01 tsum = 0.86102201E+01 min T
eng = 10.00000 (eV) phase = -0.65444615E+00 tsum = 0.94230934E+01 max T
eng = 20.00000 (eV) phase = 0.41477867E+00 tsum = 0.22834738E+01 last
Min - Max jumps
Time Now = 4.7988 Delta time = 2.2294 Begin resonance Search
The number of initial guesses of roots is 94
Sorted roots on unphysical sheet of open channels
1 0.1172795425716512E+01 -0.3653156123363135E+01 m2 = -0.113E-05 0.237E-05
2 0.1877360455604241E+01 -0.3806035824765514E+01 m2 = 0.303E-06 0.105E-06
3 0.2210906819318617E+01 -0.4667422210313979E+01 m2 = 0.286E-04 0.247E-05
4 0.3924328939729894E+01 -0.5118526713331491E+01 m2 = -0.106E-05 0.110E-06
5 0.4571074812204390E+01 -0.5148440586496817E+01 m2 = -0.133E-06 0.127E-06
6 0.5360273080615297E+01 -0.5372083688573094E+01 m2 = 0.673E-07 0.144E-07
7 0.6304524775882269E+01 -0.6486005783476636E+01 m2 = 0.802E-05 0.246E-05
8 0.6861791935527929E+01 -0.6736676397229456E+01 m2 = -0.158E-04 0.180E-04
9 0.8307591380380389E+01 -0.6739726292657521E+01 m2 = -0.375E-06 0.299E-06
10 0.9046270252126455E+01 -0.6714052737733754E+01 m2 = -0.290E-07 0.260E-07
11 0.9942086978573643E+01 -0.6996423161563715E+01 m2 = 0.415E-07 0.291E-07
12 0.1024307177668199E+02 -0.2705143263569728E+01 m2 = 0.148E-12 -0.103E-12
13 0.1137152828201109E+02 -0.8328579041151402E+01 m2 = 0.474E-05 0.136E-05
14 0.1220790401975573E+02 -0.8375893223291802E+01 m2 = 0.370E-05 -0.545E-06
15 0.1352230312037617E+02 -0.8410475916181108E+01 m2 = 0.139E-06 -0.126E-06
16 0.1419409135328368E+02 -0.8654949363954501E+01 m2 = 0.202E-06 -0.117E-06
17 0.1549282588270840E+02 -0.9177799383891172E+01 m2 = 0.532E-07 0.876E-08
18 0.1962692055692388E+02 -0.9986393840019810E+01 m2 = 0.358E-08 -0.448E-07
Selected roots on unphysical sheet of open channels
1 0.1024307177668199E+02 -0.2705143263569728E+01 m2 = 0.148E-12 -0.103E-12
Selected roots for comparison
SelcRoots 1 10.243072 -2.705143 eV
Time Now = 26.6212 Delta time = 21.8224 End Resonance
+ Command ResWvFun
+ 1 0.1024307311204628E+02 -0.2705143870004660E+01
----------------------------------------------------------------------
Resonance - program to find resonances
----------------------------------------------------------------------
iuwavf, unit for adiabatic wave function = 0
iuwavo, unit for spherical wave function = 0
iureng, unit to save energies on = 0
idstop, flag to indicate what calculations to do = 1000
Print flag = 0
Runge Kutta Factor = 4
Resonance search type (ResSearchType) = 0
Symmetry type of adibatic potential (symtps) =SU
Charge on the molecule is 1
vmin = -0.15457561E+04 eV
Time Now = 26.6216 Delta time = 0.0004 Starting docalc
Writing out wave function to iuwavf = 0 iuwavo = 0
Wave Function Energy = 10.24307311 -2.70514387 eV
T matrix eigenvalue ( 1) = 0.17640086E+07 -0.14465145E+06
det = 0.2246733969784187E-06 -0.2448553687376959E-06
b,e,d 1 0.1024307311204628E+02 -0.2705143870004660E+01 0.225E-06 -0.245E-06
b,e,drp 1 0.1024307311204628E+02 -0.2705143870004660E+01 0.332E-06 -0.828E+00
b,k,lnd 1 0.8750759720757011E+00 -0.1136040951642505E+00 -0.149E+02 -0.828E+00
b,e,lnd 1 0.1024307311204628E+02 -0.2705143870004660E+01 -0.149E+02 -0.828E+00
b,e2,lnd 1 0.9760274342130168E+02 -0.5541797287812311E+02 -0.149E+02 -0.828E+00
b,e3,lnd 1 0.8498384471813482E+03 -0.8316798109737847E+03 -0.149E+02 -0.828E+00
Time Now = 26.7770 Delta time = 0.1553 End Resonance
+ Command CalcInt
+ 'ExpOrb' 3 'ExpOrb' 3
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =ExpOrb
Orbital to use on the left = 3
Orbital type on the right =ExpOrb
Orbital to use on the right = 3
Charge on molecule is 0
CalcInt value 0.10000000E+01 0.00000000E+00
Time Now = 26.7806 Delta time = 0.0036 End CalcInt
+ Command CalcInt
+ 'ExpOrb' 3 'ExpOrb' 5
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =ExpOrb
Orbital to use on the left = 3
Orbital type on the right =ExpOrb
Orbital to use on the right = 5
Charge on molecule is 0
CalcInt value 0.32067543E-04 0.00000000E+00
Time Now = 26.7807 Delta time = 0.0001 End CalcInt
+ Command CalcInt
+ 'ExpOrb' 5 'ExpOrb' 5
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =ExpOrb
Orbital to use on the left = 5
Orbital type on the right =ExpOrb
Orbital to use on the right = 5
Charge on molecule is 0
CalcInt value 0.10000000E+01 0.00000000E+00
Time Now = 26.7808 Delta time = 0.0001 End CalcInt
+ Command CalcInt
+ 'DipoleOp' 1 'ExpOrb' 4
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =DipoleOp
Orbital to use on the left = 1
Orbital type on the right =ExpOrb
Orbital to use on the right = 4
Charge on molecule is 0
CalcInt value 0.22452495E+01 0.00000000E+00
Time Now = 26.7809 Delta time = 0.0001 End CalcInt
+ Command CalcInt
+ 'DipoleOp' 2 'ExpOrb' 4
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =DipoleOp
Orbital to use on the left = 2
Orbital type on the right =ExpOrb
Orbital to use on the right = 4
Charge on molecule is 0
CalcInt value -0.25780620E+00 0.00000000E+00
Time Now = 26.7810 Delta time = 0.0001 End CalcInt
+ Command CalcInt
+ 'DipoleOp' 1 'ResWvFun' 1
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =DipoleOp
Orbital to use on the left = 1
Orbital type on the right =ResWvFun
Orbital to use on the right = 1
Charge on molecule is 0
CalcIntR value 0.14090941E+01 0.67031851E+00
Time Now = 26.7811 Delta time = 0.0001 End CalcInt
+ Command CalcInt
+ 'DipoleOp' 2 'ResWvFun' 1
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =DipoleOp
Orbital to use on the left = 2
Orbital type on the right =ResWvFun
Orbital to use on the right = 1
Charge on molecule is 0
CalcIntR value 0.14840455E+01 0.43493031E+00
Time Now = 26.7812 Delta time = 0.0001 End CalcInt
+ Command CalcInt
+ 'ExpOrb' 4 'ResWvFun' 1
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =ExpOrb
Orbital to use on the left = 4
Orbital type on the right =ResWvFun
Orbital to use on the right = 1
Charge on molecule is 0
CalcIntR value -0.14197162E-01 0.59016327E-02
Time Now = 26.7813 Delta time = 0.0001 End CalcInt
+ Data Record PlaneWvCharge - 1
+ Data Record ScatEng - 10.
+ Command CalcInt
+ 'DipoleOp' 1 'PlaneWv' 9
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =DipoleOp
Orbital to use on the left = 1
Orbital type on the right =PlaneWv
Orbital to use on the right = 9
Charge on molecule is 1
list of energies for plane wave calculations
10.00000
Energy of plane wave is 10.00000 eV
CalcIntL value 1 0.87565049E+00 0.00000000E+00
CalcIntL value 3 0.11694506E+01 0.00000000E+00
CalcIntL value 5 0.42212347E-01 0.00000000E+00
CalcIntL value 7 0.40627081E-03 0.00000000E+00
CalcIntL value 9 0.16061593E-05 0.00000000E+00
Time Now = 26.7819 Delta time = 0.0006 End CalcInt
Time Now = 26.7822 Delta time = 0.0003 Finalize