Execution on n0159.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:42.420 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test27
#
# positron scattering from CH4 in A1 symmetry
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm 0 0 # no charge on the molecule and all orbitals are doubly occupied
VCorr 'BN'
AsyPol
0.25 # SwitchD, distance where switching function is down to 0.1
1 # nterm, number of terms needed to define asymptotic potential
1 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
17.50 # value of the spherical polarizability
3 # icrtyp, flag to determine where r match is, 3 for second crossing
# or at nearest approach
0 # ilntyp, flag to determine what matching line is used, 0 - use
# l = 0 radial function as matching function
ScatContSym 'A1' # Scattering symmetry
LMaxK 3 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test27.g03' 'gaussian'
GetBlms
ExpOrb
GetPot
GrnType 1
ScatPos 0.1 0.5 1.0
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'BN'
+ Data Record AsyPol
+ 0.25 / 1 / 1 / 1 / 17.50 / 3 / 0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 3
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test27.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # HF/STO-3G SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 5 number already selected 0
Number of orbitals selected is 5
Highest orbital read in is = 5
Time Now = 0.0211 Delta time = 0.0211 End GaussianCnv
Atoms found 5 Coordinates in Angstroms
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = 0.6254700000 0.6254700000 0.6254700000
Z = 1 ZS = 1 r = -0.6254700000 -0.6254700000 0.6254700000
Z = 1 ZS = 1 r = 0.6254700000 -0.6254700000 -0.6254700000
Z = 1 ZS = 1 r = -0.6254700000 0.6254700000 -0.6254700000
Maximum distance from expansion center is 1.0833458186
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Td
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup D2
Time Now = 0.0611 Delta time = 0.0399 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.57735 0.57735 0.57735 1 1.08335
3 -0.57735 -0.57735 0.57735 1 1.08335
4 0.57735 -0.57735 -0.57735 1 1.08335
5 -0.57735 0.57735 -0.57735 1 1.08335
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 0.81650 -0.40825 -0.40825
3 0.81650 -0.40825 0.40825
4 0.81650 0.40825 0.40825
5 0.81650 0.40825 -0.40825
Computed default value of LMaxA = 13
Determining angular grid in GetAxMax LMax = 15 LMaxA = 13 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 -1 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Td
LMax 15
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) E ( 2) T1 ( 3) T2 ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
8 11 14
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 15 1 1 1
A2 1 2 7 1 1 1
E 1 3 20 1 1 1
E 2 4 20 1 1 1
T1 1 5 27 -1 -1 1
T1 2 6 27 -1 1 -1
T1 3 7 27 1 -1 -1
T2 1 8 36 -1 -1 1
T2 2 9 36 -1 1 -1
T2 3 10 36 1 -1 -1
Time Now = 0.2938 Delta time = 0.2327 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 1) 2( 1) 3( 2) 4( 3) 5( 3) 6( 4) 7( 5) 8( 6) 9( 7)
10( 8) 11( 9) 12( 11) 13( 12)
A2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 2)
10( 3) 11( 3) 12( 4) 13( 5)
E 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
E 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
T1 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T2 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 3 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2
LMax 30
The dimension of each irreducable representation is
A ( 1) B1 ( 1) B2 ( 1) B3 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
irep = 1 sym =A 1 eigs = 1 1 1 1
irep = 2 sym =B1 1 eigs = 1 1 -1 -1
irep = 3 sym =B2 1 eigs = 1 -1 -1 1
irep = 4 sym =B3 1 eigs = 1 -1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A 1 1 241 1 1 1
B1 1 2 240 1 -1 -1
B2 1 3 240 -1 -1 1
B3 1 4 240 -1 1 -1
Time Now = 0.2996 Delta time = 0.0058 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 6.0716362768 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 6.07164 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 0.01058 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10800E+05
2 Center at = 1.08335 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.50920E-03 0.00407
2 8 16 0.54286E-03 0.00842
3 8 24 0.66917E-03 0.01377
4 8 32 0.10153E-02 0.02189
5 8 40 0.16142E-02 0.03481
6 8 48 0.25663E-02 0.05534
7 8 56 0.40801E-02 0.08798
8 8 64 0.64868E-02 0.13987
9 8 72 0.10071E-01 0.22044
10 64 136 0.10584E-01 0.89779
11 8 144 0.84583E-02 0.96545
12 8 152 0.53694E-02 1.00841
13 8 160 0.37587E-02 1.03848
14 8 168 0.31773E-02 1.06390
15 8 176 0.24310E-02 1.08335
16 8 184 0.30552E-02 1.10779
17 8 192 0.32571E-02 1.13384
18 8 200 0.40150E-02 1.16596
19 8 208 0.60918E-02 1.21470
20 8 216 0.96851E-02 1.29218
21 64 280 0.10584E-01 1.96953
22 64 344 0.10584E-01 2.64687
23 64 408 0.10584E-01 3.32422
24 64 472 0.10584E-01 4.00157
25 64 536 0.10584E-01 4.67891
26 64 600 0.10584E-01 5.35626
27 64 664 0.10584E-01 6.03361
28 8 672 0.47537E-02 6.07164
Time Now = 0.3080 Delta time = 0.0084 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 13
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 13
Actual value of lmasym found = 13
Number of regions of the same l expansion (NAngReg) = 10
Angular regions
1 L = 2 from ( 1) 0.00051 to ( 7) 0.00356
2 L = 5 from ( 8) 0.00407 to ( 23) 0.01310
3 L = 6 from ( 24) 0.01377 to ( 31) 0.02088
4 L = 7 from ( 32) 0.02189 to ( 47) 0.05277
5 L = 8 from ( 48) 0.05534 to ( 55) 0.08390
6 L = 10 from ( 56) 0.08798 to ( 63) 0.13338
7 L = 11 from ( 64) 0.13987 to ( 71) 0.21037
8 L = 13 from ( 72) 0.22044 to ( 119) 0.71787
9 L = 15 from ( 120) 0.72845 to ( 264) 1.80019
10 L = 13 from ( 265) 1.81077 to ( 672) 6.07164
There are 2 angular regions for computing spherical harmonics
1 lval = 13
2 lval = 15
Maximum number of processors is 83
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 80
Proc id = 1 Last grid point = 112
Proc id = 2 Last grid point = 144
Proc id = 3 Last grid point = 168
Proc id = 4 Last grid point = 200
Proc id = 5 Last grid point = 224
Proc id = 6 Last grid point = 248
Proc id = 7 Last grid point = 280
Proc id = 8 Last grid point = 312
Proc id = 9 Last grid point = 344
Proc id = 10 Last grid point = 376
Proc id = 11 Last grid point = 408
Proc id = 12 Last grid point = 448
Proc id = 13 Last grid point = 480
Proc id = 14 Last grid point = 512
Proc id = 15 Last grid point = 544
Proc id = 16 Last grid point = 576
Proc id = 17 Last grid point = 608
Proc id = 18 Last grid point = 640
Proc id = 19 Last grid point = 672
Time Now = 0.3280 Delta time = 0.0200 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -11.029715 A1 1 at max irg = 56 r = 0.08798
2 Orig 2 Eng = -0.911921 A1 1 at max irg = 120 r = 0.72845
3 Orig 3 Eng = -0.520362 T2 1 at max irg = 152 r = 1.00841
4 Orig 4 Eng = -0.520362 T2 2 at max irg = 152 r = 1.00841
5 Orig 5 Eng = -0.520362 T2 3 at max irg = 152 r = 1.00841
Rotation coefficients for orbital 1 grp = 1 A1 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A1 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 T2 1
1 1.0000000000 2 -0.0000000000 3 0.0000000000
Rotation coefficients for orbital 4 grp = 3 T2 2
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 5 grp = 3 T2 3
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Number of orbital groups and degeneracis are 3
1 1 3
Number of orbital groups and number of electrons when fully occupied
3
2 2 6
Time Now = 0.3569 Delta time = 0.0289 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 3
Orbital 1 of A1 1 symmetry normalization integral = 0.99999999
Orbital 2 of A1 1 symmetry normalization integral = 0.99999913
Orbital 3 of T2 1 symmetry normalization integral = 0.99999811
Time Now = 0.3942 Delta time = 0.0373 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 10.00000000
Time Now = 0.3998 Delta time = 0.0056 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.10000000E+02 facnorm = 0.10000000E+01
Time Now = 0.4320 Delta time = 0.0322 Electronic part
Time Now = 0.4341 Delta time = 0.0020 End StPot
----------------------------------------------------------------------
VcpBN - VCP Boronski and Nieminen polarization potential program
----------------------------------------------------------------------
Time Now = 0.4473 Delta time = 0.0132 End VcpBN
----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------
Switching distance (SwitchD) = 0.25000
Number of terms in the asymptotic polarization potential (nterm) = 1
Term = 1 At center = 1
Explicit coordinates = 0.00000000E+00 0.00000000E+00 0.00000000E+00
Type = 1
Polarizability = 0.17500000E+02 au
Last center is at (RCenterX) = 0.00000 Angs
Radial matching parameter (icrtyp) = 3
Matching line type (ilntyp) = 0
Matching point is at r = 1.1441757114 Angs
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at(RFirstWt) R = 0.38978 Angs
Last point of the switching region (RLastWt) R= 1.88486 Angs
Total asymptotic potential is 0.17500000E+02 a.u.
Time Now = 0.4614 Delta time = 0.0141 End AsyPol
+ Data Record GrnType - 1
+ Command ScatPos
+ 0.1 0.5 1.0
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = T
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 48
Number of partial waves (np) = 15
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Changed sign of static potential for positron scattering
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 12
Time Now = 0.4715 Delta time = 0.0101 Energy independent setup
Compute solution for E = 0.1000000000 eV
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.44408921E-15 Asymp Coef = 0.16422672E-10 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.66105032E-18 Asymp Moment = 0.11125275E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.74845003E-18 Asymp Moment = -0.12596186E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.24256654E-03 Asymp Moment = -0.34700915E+00 (e Angs^(n-1))
For potential 2
For potential 3
i = 1 lvals = 6 6 stpote = 0.00000000E+00 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.12045389E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.79744301E-19 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.11664108E-05 second term = -0.11664108E-05
Number of asymptotic regions = 8
Final point in integration = 0.22044724E+03 Angstroms
Time Now = 2.7002 Delta time = 2.2287 End SolveHomo
Final T matrix
ROW 1
( 0.32651115E+00, 0.87866933E+00) (-0.27404875E-04,-0.74038021E-04)
ROW 2
(-0.27404875E-04,-0.74038021E-04) ( 0.12769677E-02, 0.16434544E-05)
eigenphases
0.1276967E-02 0.1215012E+01
eigenphase sum 0.121629E+01 scattering length= -31.51293
eps+pi 0.435788E+01 eps+2*pi 0.749947E+01
MaxIter = 5 c.s. = 420.68693825 rmsk= 0.00000004 Abs eps 0.10000000E-05 Rel eps 0.53346636E-11
Time Now = 5.0042 Delta time = 2.3040 End ScatStab
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = T
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 48
Number of partial waves (np) = 15
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Changed sign of static potential for positron scattering
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 12
Time Now = 5.0117 Delta time = 0.0075 Energy independent setup
Compute solution for E = 0.5000000000 eV
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.44408921E-15 Asymp Coef = 0.16422672E-10 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.66105032E-18 Asymp Moment = 0.11125275E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.74845003E-18 Asymp Moment = -0.12596186E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.24256654E-03 Asymp Moment = -0.34700915E+00 (e Angs^(n-1))
For potential 2
For potential 3
i = 1 lvals = 6 6 stpote = 0.00000000E+00 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.12045389E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.79744301E-19 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.11664108E-05 second term = -0.11664108E-05
Number of asymptotic regions = 11
Final point in integration = 0.14740816E+03 Angstroms
Time Now = 7.2343 Delta time = 2.2227 End SolveHomo
Final T matrix
ROW 1
( 0.46863909E+00, 0.67428935E+00) (-0.44580714E-03,-0.65021791E-03)
ROW 2
(-0.44580714E-03,-0.65021791E-03) ( 0.63682474E-02, 0.41343486E-04)
eigenphases
0.6367992E-02 0.9634260E+00
eigenphase sum 0.969794E+00 scattering length= -7.60849
eps+pi 0.411139E+01 eps+2*pi 0.725298E+01
MaxIter = 5 c.s. = 64.57071126 rmsk= 0.00000020 Abs eps 0.10000000E-05 Rel eps 0.29439488E-11
Time Now = 9.5387 Delta time = 2.3043 End ScatStab
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = T
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 48
Number of partial waves (np) = 15
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Changed sign of static potential for positron scattering
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 12
Time Now = 9.5461 Delta time = 0.0075 Energy independent setup
Compute solution for E = 1.0000000000 eV
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.44408921E-15 Asymp Coef = 0.16422672E-10 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.66105032E-18 Asymp Moment = 0.11125275E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.74845003E-18 Asymp Moment = -0.12596186E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.24256654E-03 Asymp Moment = -0.34700915E+00 (e Angs^(n-1))
For potential 2
For potential 3
i = 1 lvals = 6 6 stpote = 0.00000000E+00 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.12045389E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.79744301E-19 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.11664108E-05 second term = -0.11664108E-05
Number of asymptotic regions = 13
Final point in integration = 0.12394836E+03 Angstroms
Time Now = 11.7617 Delta time = 2.2156 End SolveHomo
Final T matrix
ROW 1
( 0.49992273E+00, 0.50851080E+00) (-0.15187805E-02,-0.15845660E-02)
ROW 2
(-0.15187805E-02,-0.15845660E-02) ( 0.12716501E-01, 0.16722530E-03)
eigenphases
0.1271315E-01 0.7939143E+00
eigenphase sum 0.806627E+00 scattering length= -3.84862
eps+pi 0.394822E+01 eps+2*pi 0.708981E+01
MaxIter = 5 c.s. = 24.35427198 rmsk= 0.00000049 Abs eps 0.10000000E-05 Rel eps 0.24140177E-11
Time Now = 14.0637 Delta time = 2.3019 End ScatStab
+ Command TotalCrossSection
+
Using LMaxK 3
Continuum Symmetry A1 -
E (eV) XS(angs^2) EPS(radians)
0.100000 420.686938 1.216289
0.500000 64.570711 0.969794
1.000000 24.354272 0.806627
Largest value of LMaxK found 3
Total Cross Sections
Energy Total Cross Section
0.10000 420.68694
0.50000 64.57071
1.00000 24.35427
Time Now = 14.0646 Delta time = 0.0010 Finalize