Execution on n0149.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:32.816 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test26
#
# electron scattering from N2O in C-inf-v symmetry
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0 # charge, formula type
VCorr 'PZ'
FegeEng 11.0 # Energy correction (in eV) used in the fege potential
LMaxK 5 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test26.molden2012' 'molden'
GetBlms
ExpOrb
GetPot
ScatEng 0.5 1.0
ScatContSym 'S' # Scattering symmetry
Scat
ScatContSym 'A2' # Scattering symmetry
Scat
ScatContSym 'B1' # Scattering symmetry
Scat
ScatContSym 'B2' # Scattering symmetry
Scat
ScatContSym 'P' # Scattering symmetry
Scat
ScatContSym 'D' # Scattering symmetry
Scat
ScatContSym 'F' # Scattering symmetry
Scat
ScatContSym 'G' # Scattering symmetry
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record FegeEng - 11.0
+ Data Record LMaxK - 5
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test26.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 165 basis functions
Selecting orbitals
Number of orbitals selected is 11
Selecting 1 1 SymOrb = 1.1 Ene = -20.6585 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 2.1 Ene = -15.8462 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 3.1 Ene = -15.6997 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 4.1 Ene = -1.6145 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 5.1 Ene = -1.4241 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 6.1 Ene = -0.8343 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 1.3 Ene = -0.7633 Spin =Alpha Occup = 2.000000
Selecting 8 8 SymOrb = 1.2 Ene = -0.7633 Spin =Alpha Occup = 2.000000
Selecting 9 9 SymOrb = 7.1 Ene = -0.6990 Spin =Alpha Occup = 2.000000
Selecting 10 10 SymOrb = 2.2 Ene = -0.4918 Spin =Alpha Occup = 2.000000
Selecting 11 11 SymOrb = 2.3 Ene = -0.4918 Spin =Alpha Occup = 2.000000
Atoms found 3 Coordinates in Angstroms
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 -1.1996367307
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 -0.0714367307
Z = 8 ZS = 8 r = 0.0000000000 0.0000000000 1.1127632693
Maximum distance from expansion center is 1.1996367307
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
#############################################################################
Expansion center is not at the center of charge
For high symmetry systems, a better expansion point may be
0.0000000000 0.0000000000 0.0002087238
#############################################################################
Found point group CAv
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup C2v
Time Now = 0.0603 Delta time = 0.0603 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 7 1.19964 7 0.07144 8 1.11276
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 13
Determining angular grid in GetAxMax LMax = 15 LMaxA = 13 LMaxAb = 30
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 16 16 6 6
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is CAv
LMax 15
The dimension of each irreducable representation is
S ( 1) A2 ( 1) B1 ( 1) B2 ( 1) P ( 2)
D ( 2) F ( 2) G ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
11 16 6
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
S 1 1 20 1 1 1
A2 1 2 4 -1 -1 1
B1 1 3 9 1 -1 -1
B2 1 4 9 -1 1 -1
P 1 5 23 -1 1 -1
P 2 6 23 1 -1 -1
D 1 7 22 -1 -1 1
D 2 8 22 1 1 1
F 1 9 21 -1 1 -1
F 2 10 21 1 -1 -1
G 1 11 18 -1 -1 1
G 2 12 18 1 1 1
Time Now = 0.1839 Delta time = 0.1235 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
S 1 0( 1) 1( 2) 2( 3) 3( 4) 4( 5) 5( 6) 6( 7) 7( 8) 8( 9) 9( 10)
10( 12) 11( 14) 12( 16) 13( 18)
A2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 1) 11( 2) 12( 3) 13( 4)
B1 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 2) 7( 3) 8( 4) 9( 5)
10( 6) 11( 7) 12( 8) 13( 9)
B2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 2) 7( 3) 8( 4) 9( 5)
10( 6) 11( 7) 12( 8) 13( 9)
P 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 5) 6( 6) 7( 7) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
P 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 5) 6( 6) 7( 7) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
D 1 0( 0) 1( 0) 2( 1) 3( 2) 4( 3) 5( 4) 6( 5) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14) 12( 17) 13( 20)
D 2 0( 0) 1( 0) 2( 1) 3( 2) 4( 3) 5( 4) 6( 5) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14) 12( 17) 13( 20)
F 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14) 12( 16) 13( 19)
F 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14) 12( 16) 13( 19)
G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 2) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14) 12( 16) 13( 18)
G 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 2) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 14) 12( 16) 13( 18)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 30
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
3 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
4 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 -1 1 -1
irep = 4 sym =B2 1 eigs = 1 1 -1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 222 1 1 1
A2 1 2 191 -1 -1 1
B1 1 3 204 -1 1 -1
B2 1 4 204 1 -1 -1
Time Now = 0.1875 Delta time = 0.0036 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 10.1920597341 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 10.19206 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 10.19206 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.07144 Angs Alpha Max = 0.14700E+05
3 Center at = 1.11276 Angs Alpha Max = 0.19200E+05
4 Center at = 1.19964 Angs Alpha Max = 0.14700E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.24811E-03 0.00198
2 8 16 0.34934E-03 0.00478
3 8 24 0.56228E-03 0.00928
4 8 32 0.75349E-03 0.01531
5 8 40 0.87839E-03 0.02233
6 8 48 0.89299E-03 0.02948
7 8 56 0.82181E-03 0.03605
8 8 64 0.79746E-03 0.04243
9 8 72 0.87999E-03 0.04947
10 8 80 0.10144E-02 0.05759
11 8 88 0.63907E-03 0.06270
12 8 96 0.49076E-03 0.06662
13 8 104 0.44016E-03 0.07015
14 8 112 0.16133E-03 0.07144
15 8 120 0.43646E-03 0.07493
16 8 128 0.46530E-03 0.07865
17 8 136 0.57358E-03 0.08324
18 8 144 0.87025E-03 0.09020
19 8 152 0.13836E-02 0.10127
20 8 160 0.21003E-02 0.11807
21 8 168 0.24487E-02 0.13766
22 8 176 0.30036E-02 0.16169
23 8 184 0.44832E-02 0.19756
24 8 192 0.69972E-02 0.25353
25 8 200 0.11546E-01 0.34590
26 8 208 0.14029E-01 0.45813
27 8 216 0.12903E-01 0.56136
28 8 224 0.12415E-01 0.66068
29 8 232 0.13702E-01 0.77030
30 8 240 0.15828E-01 0.89692
31 8 248 0.98306E-02 0.97556
32 8 256 0.62487E-02 1.02555
33 8 264 0.39719E-02 1.05733
34 8 272 0.25247E-02 1.07753
35 8 280 0.16048E-02 1.09037
36 8 288 0.10201E-02 1.09853
37 8 296 0.64840E-03 1.10371
38 8 304 0.46148E-03 1.10741
39 8 312 0.39438E-03 1.11056
40 8 320 0.27530E-03 1.11276
41 8 328 0.38190E-03 1.11582
42 8 336 0.40714E-03 1.11908
43 8 344 0.50188E-03 1.12309
44 8 352 0.76147E-03 1.12918
45 8 360 0.12106E-02 1.13887
46 8 368 0.19247E-02 1.15427
47 8 376 0.20665E-02 1.17080
48 8 384 0.13135E-02 1.18131
49 8 392 0.83492E-03 1.18798
50 8 400 0.56407E-03 1.19250
51 8 408 0.46335E-03 1.19620
52 8 416 0.42911E-03 1.19964
53 8 424 0.43646E-03 1.20313
54 8 432 0.46530E-03 1.20685
55 8 440 0.57358E-03 1.21144
56 8 448 0.87025E-03 1.21840
57 8 456 0.13836E-02 1.22947
58 8 464 0.21997E-02 1.24707
59 8 472 0.34972E-02 1.27505
60 8 480 0.55601E-02 1.31953
61 8 488 0.88398E-02 1.39025
62 8 496 0.14054E-01 1.50268
63 8 504 0.22344E-01 1.68143
64 8 512 0.31346E-01 1.93220
65 8 520 0.35860E-01 2.21908
66 8 528 0.40238E-01 2.54099
67 8 536 0.44103E-01 2.89381
68 8 544 0.47521E-01 3.27398
69 8 552 0.50548E-01 3.67836
70 8 560 0.53236E-01 4.10425
71 8 568 0.55627E-01 4.54926
72 8 576 0.57759E-01 5.01134
73 8 584 0.59666E-01 5.48866
74 8 592 0.61376E-01 5.97967
75 8 600 0.62914E-01 6.48299
76 8 608 0.64302E-01 6.99740
77 8 616 0.65557E-01 7.52186
78 8 624 0.66696E-01 8.05542
79 8 632 0.67733E-01 8.59729
80 8 640 0.68679E-01 9.14672
81 8 648 0.69545E-01 9.70308
82 8 656 0.61122E-01 10.19206
Time Now = 0.2137 Delta time = 0.0262 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 13
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 13
Actual value of lmasym found = 13
Number of regions of the same l expansion (NAngReg) = 12
Angular regions
1 L = 2 from ( 1) 0.00025 to ( 7) 0.00174
2 L = 3 from ( 8) 0.00198 to ( 23) 0.00872
3 L = 4 from ( 24) 0.00928 to ( 31) 0.01455
4 L = 5 from ( 32) 0.01531 to ( 39) 0.02145
5 L = 6 from ( 40) 0.02233 to ( 47) 0.02858
6 L = 8 from ( 48) 0.02948 to ( 55) 0.03523
7 L = 10 from ( 56) 0.03605 to ( 63) 0.04163
8 L = 13 from ( 64) 0.04243 to ( 71) 0.04859
9 L = 15 from ( 72) 0.04947 to ( 160) 0.11807
10 L = 13 from ( 161) 0.12052 to ( 215) 0.54846
11 L = 15 from ( 216) 0.56136 to ( 520) 2.21908
12 L = 13 from ( 521) 2.25932 to ( 656) 10.19206
There are 2 angular regions for computing spherical harmonics
1 lval = 13
2 lval = 15
Maximum number of processors is 81
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 80
Proc id = 1 Last grid point = 112
Proc id = 2 Last grid point = 144
Proc id = 3 Last grid point = 168
Proc id = 4 Last grid point = 208
Proc id = 5 Last grid point = 240
Proc id = 6 Last grid point = 264
Proc id = 7 Last grid point = 296
Proc id = 8 Last grid point = 320
Proc id = 9 Last grid point = 352
Proc id = 10 Last grid point = 376
Proc id = 11 Last grid point = 408
Proc id = 12 Last grid point = 432
Proc id = 13 Last grid point = 464
Proc id = 14 Last grid point = 496
Proc id = 15 Last grid point = 520
Proc id = 16 Last grid point = 552
Proc id = 17 Last grid point = 592
Proc id = 18 Last grid point = 624
Proc id = 19 Last grid point = 656
Time Now = 0.2253 Delta time = 0.0116 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -20.658500 S 1 at max irg = 328 r = 1.11582
2 Orig 2 Eng = -15.846200 S 1 at max irg = 152 r = 0.10127
3 Orig 3 Eng = -15.699700 S 1 at max irg = 424 r = 1.20313
4 Orig 4 Eng = -1.614500 S 1 at max irg = 232 r = 0.77030
5 Orig 5 Eng = -1.424100 S 1 at max irg = 240 r = 0.89692
6 Orig 6 Eng = -0.834300 S 1 at max irg = 488 r = 1.39025
7 Orig 7 Eng = -0.763300 P 1 at max irg = 336 r = 1.11908
8 Orig 8 Eng = -0.763300 P 2 at max irg = 336 r = 1.11908
9 Orig 9 Eng = -0.699000 S 1 at max irg = 496 r = 1.50268
10 Orig 10 Eng = -0.491800 P 1 at max irg = 400 r = 1.19250
11 Orig 11 Eng = -0.491800 P 2 at max irg = 400 r = 1.19250
Rotation coefficients for orbital 1 grp = 1 S 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 S 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 S 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 S 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 S 1
1 1.0000000000
Rotation coefficients for orbital 6 grp = 6 S 1
1 1.0000000000
Rotation coefficients for orbital 7 grp = 7 P 1
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 8 grp = 7 P 2
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 9 grp = 8 S 1
1 1.0000000000
Rotation coefficients for orbital 10 grp = 9 P 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 11 grp = 9 P 2
1 0.0000000000 2 1.0000000000
Number of orbital groups and degeneracis are 9
1 1 1 1 1 1 2 1 2
Number of orbital groups and number of electrons when fully occupied
9
2 2 2 2 2 2 4 2 4
Time Now = 0.3092 Delta time = 0.0838 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 9
Orbital 1 of S 1 symmetry normalization integral = 0.81878835
Orbital 2 of S 1 symmetry normalization integral = 0.99998680
Orbital 3 of S 1 symmetry normalization integral = 0.84555174
Orbital 4 of S 1 symmetry normalization integral = 0.99265639
Orbital 5 of S 1 symmetry normalization integral = 0.99186345
Orbital 6 of S 1 symmetry normalization integral = 0.99411081
Orbital 7 of P 1 symmetry normalization integral = 0.99936956
Orbital 8 of S 1 symmetry normalization integral = 0.99648221
Orbital 9 of P 1 symmetry normalization integral = 0.99826747
Time Now = 0.8771 Delta time = 0.5679 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 22.00000000
Time Now = 0.8821 Delta time = 0.0050 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.22000000E+02 facnorm = 0.10000000E+01
Time Now = 0.9028 Delta time = 0.0207 Electronic part
Time Now = 0.9048 Delta time = 0.0020 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 0.9165 Delta time = 0.0116 End VcpPol
+ Data Record ScatEng - 0.5 1.0
+ Data Record ScatContSym - 'S'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 0.9238 Delta time = 0.0074 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 20
Number of asymptotic solutions on the right (NAsymR) = 6
Number of asymptotic solutions on the left (NAsymL) = 6
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 6
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 18
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 18
Time Now = 0.9340 Delta time = 0.0102 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103314E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 33
Final point in integration = 0.44265103E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 3.6059 Delta time = 2.6719 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.20385196E+00-0.77713998E-01-0.47391621E-01 0.14379573E-02-0.68233346E-03
-0.13078488E-04
ROW 2
-0.77713998E-01-0.21390754E-01-0.61574105E-01-0.81109892E-02 0.55730715E-04
-0.64370596E-04
ROW 3
-0.47391622E-01-0.61574105E-01-0.42232978E-02-0.38855461E-01-0.41506709E-02
0.49490719E-04
ROW 4
0.14379554E-02-0.81109881E-02-0.38855461E-01-0.79731035E-02-0.28401113E-01
-0.26130828E-02
ROW 5
-0.68233349E-03 0.55730714E-04-0.41506709E-02-0.28401113E-01-0.55075845E-02
-0.22592055E-01
ROW 6
-0.13063862E-04-0.64367694E-04 0.49489995E-04-0.26130827E-02-0.22592055E-01
-0.36698395E-02
eigenphases
-0.2460650E+00 -0.6217234E-01 -0.2644128E-01 0.4106082E-02 0.2894138E-01
0.6010996E-01
eigenphase sum-0.241521E+00 scattering length= 1.28497
eps+pi 0.290007E+01 eps+2*pi 0.604166E+01
MaxIter = 9 c.s. = 6.54566570 rmsk= 0.00000003 Abs eps 0.10000000E-05 Rel eps 0.43925747E-05
Time Now = 14.8925 Delta time = 11.2866 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 14.9020 Delta time = 0.0095 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = S 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 20
Number of asymptotic solutions on the right (NAsymR) = 6
Number of asymptotic solutions on the left (NAsymL) = 6
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 6
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 18
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 18
Time Now = 14.9082 Delta time = 0.0062 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794538E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 36
Final point in integration = 0.35133697E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 17.5805 Delta time = 2.6723 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.40999326E+00-0.45494824E-01-0.11181097E+00 0.39124841E-02-0.25016054E-02
-0.21697118E-04
ROW 2
-0.45494825E-01-0.71074305E-01-0.60595668E-01-0.12500020E-01 0.32789529E-04
-0.31585463E-03
ROW 3
-0.11181097E+00-0.60595671E-01 0.23771256E-01-0.40448321E-01-0.46224919E-02
0.13601680E-03
ROW 4
0.39124793E-02-0.12500014E-01-0.40448321E-01-0.19398371E-02-0.28753320E-01
-0.34524071E-02
ROW 5
-0.25016057E-02 0.32789157E-04-0.46224919E-02-0.28753320E-01-0.62109591E-02
-0.22640763E-01
ROW 6
-0.21697864E-04-0.31585472E-03 0.13601678E-03-0.34524071E-02-0.22640763E-01
-0.49485703E-02
eigenphases
-0.4199756E+00 -0.8829548E-01 -0.4176929E-01 -0.3530356E-02 0.2678489E-01
0.8301468E-01
eigenphase sum-0.443771E+00 scattering length= 1.75354
eps+pi 0.269782E+01 eps+2*pi 0.583941E+01
MaxIter = 9 c.s. = 8.77957509 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.83352689E-05
Time Now = 29.4002 Delta time = 11.8197 End ScatStab
+ Data Record ScatContSym - 'A2'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 29.4097 Delta time = 0.0094 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 29.4202 Delta time = 0.0105 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 29.4307 Delta time = 0.0105 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 9
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 13
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 9
Time Now = 29.4367 Delta time = 0.0060 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103314E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 33
Final point in integration = 0.44265103E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 30.5994 Delta time = 1.1627 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.55235438E-02
eigenphases
0.5523488E-02
eigenphase sum 0.552349E-02 scattering length= -0.02881
eps+pi 0.314712E+01 eps+2*pi 0.628871E+01
MaxIter = 3 c.s. = 0.00292136 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.86523573E-19
Time Now = 31.1101 Delta time = 0.5106 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 31.1193 Delta time = 0.0093 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 9
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 13
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 9
Time Now = 31.1253 Delta time = 0.0060 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794538E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 36
Final point in integration = 0.35133697E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 32.2891 Delta time = 1.1638 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.78521985E-02
eigenphases
0.7852037E-02
eigenphase sum 0.785204E-02 scattering length= -0.02896
eps+pi 0.314944E+01 eps+2*pi 0.629104E+01
MaxIter = 3 c.s. = 0.00295181 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.23831416E-17
Time Now = 32.8033 Delta time = 0.5142 End ScatStab
+ Data Record ScatContSym - 'B2'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 32.8127 Delta time = 0.0094 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 9
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 13
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 9
Time Now = 32.8187 Delta time = 0.0060 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103314E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 33
Final point in integration = 0.44265103E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 33.9865 Delta time = 1.1678 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.55235438E-02
eigenphases
0.5523488E-02
eigenphase sum 0.552349E-02 scattering length= -0.02881
eps+pi 0.314712E+01 eps+2*pi 0.628871E+01
MaxIter = 3 c.s. = 0.00292136 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.86523573E-19
Time Now = 34.4955 Delta time = 0.5090 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 34.5048 Delta time = 0.0093 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 9
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 13
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 9
Time Now = 34.5109 Delta time = 0.0060 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794538E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 36
Final point in integration = 0.35133697E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 35.6818 Delta time = 1.1709 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.78521985E-02
eigenphases
0.7852037E-02
eigenphase sum 0.785204E-02 scattering length= -0.02896
eps+pi 0.314944E+01 eps+2*pi 0.629104E+01
MaxIter = 3 c.s. = 0.00295181 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.23831416E-17
Time Now = 36.1896 Delta time = 0.5078 End ScatStab
+ Data Record ScatContSym - 'P'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 36.1989 Delta time = 0.0093 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = P 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 23
Number of asymptotic solutions on the right (NAsymR) = 5
Number of asymptotic solutions on the left (NAsymL) = 5
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 5
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 21
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 21
Time Now = 36.2049 Delta time = 0.0060 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103314E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 33
Final point in integration = 0.44265103E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 39.3456 Delta time = 3.1407 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.19637789E+00-0.59769087E-01-0.44308939E-03 0.10452454E-03-0.41375576E-04
ROW 2
-0.59769088E-01 0.10097118E-01-0.36902135E-01-0.36877316E-02 0.35782717E-04
ROW 3
-0.44308938E-03-0.36902135E-01-0.52964210E-02-0.27528567E-01-0.24714855E-02
ROW 4
0.10452504E-03-0.36877316E-02-0.27528567E-01-0.46590035E-02-0.22141123E-01
ROW 5
-0.41399781E-04 0.35787751E-04-0.24714907E-02-0.22141123E-01-0.33026652E-02
eigenphases
-0.5552447E-01 -0.1895737E-01 0.1438892E-01 0.3897894E-01 0.2111735E+00
eigenphase sum 0.190060E+00 scattering length= -1.00355
eps+pi 0.333165E+01 eps+2*pi 0.647324E+01
MaxIter = 9 c.s. = 4.70158837 rmsk= 0.00000001 Abs eps 0.10000000E-05 Rel eps 0.11015942E-05
Time Now = 48.3377 Delta time = 8.9921 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 48.3470 Delta time = 0.0093 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = P 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 23
Number of asymptotic solutions on the right (NAsymR) = 5
Number of asymptotic solutions on the left (NAsymL) = 5
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 5
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 21
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 21
Time Now = 48.3531 Delta time = 0.0061 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794538E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 36
Final point in integration = 0.35133697E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 51.4919 Delta time = 3.1388 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.31509666E+00-0.82121207E-01 0.16107580E-01-0.23080868E-03-0.10486682E-03
ROW 2
-0.82121216E-01 0.52823309E-01-0.41581672E-01-0.36197287E-02 0.50076796E-04
ROW 3
0.16107580E-01-0.41581672E-01 0.38889328E-02-0.28087705E-01-0.31856257E-02
ROW 4
-0.23080873E-03-0.36197287E-02-0.28087705E-01-0.49742558E-02-0.22196995E-01
ROW 5
-0.10486681E-03 0.50076676E-04-0.31856257E-02-0.22196995E-01-0.44320297E-02
eigenphases
-0.4712284E-01 -0.9788498E-02 0.2170907E-01 0.5669804E-01 0.3285252E+00
eigenphase sum 0.350021E+00 scattering length= -1.34653
eps+pi 0.349161E+01 eps+2*pi 0.663321E+01
MaxIter = 9 c.s. = 5.27125755 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.10007270E-04
Time Now = 61.7069 Delta time = 10.2149 End ScatStab
+ Data Record ScatContSym - 'D'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 61.7162 Delta time = 0.0093 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = D 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 22
Number of asymptotic solutions on the right (NAsymR) = 4
Number of asymptotic solutions on the left (NAsymL) = 4
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 4
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 20
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 20
Time Now = 61.7222 Delta time = 0.0061 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103314E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 33
Final point in integration = 0.44265103E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 64.6665 Delta time = 2.9443 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.37462518E-01-0.29085343E-01-0.24250132E-02 0.31256820E-04
ROW 2
-0.29085343E-01 0.18249127E-02-0.24637979E-01-0.20586657E-02
ROW 3
-0.24250132E-02-0.24637979E-01-0.21276949E-02-0.20727099E-01
ROW 4
0.31256820E-04-0.20586657E-02-0.20727099E-01-0.22012009E-02
eigenphases
-0.3853335E-01 -0.5985971E-02 0.2362622E-01 0.5580837E-01
eigenphase sum 0.349153E-01 scattering length= -0.18221
eps+pi 0.317651E+01 eps+2*pi 0.631810E+01
MaxIter = 4 c.s. = 0.49690794 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.25163519E-11
Time Now = 67.5855 Delta time = 2.9189 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 67.5947 Delta time = 0.0092 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = D 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 22
Number of asymptotic solutions on the right (NAsymR) = 4
Number of asymptotic solutions on the left (NAsymL) = 4
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 4
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 20
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 20
Time Now = 67.6008 Delta time = 0.0061 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794538E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 36
Final point in integration = 0.35133697E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 70.5489 Delta time = 2.9481 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.83387206E-01-0.31429855E-01-0.15792120E-02 0.13620717E-03
ROW 2
-0.31429855E-01 0.11611321E-01-0.25117054E-01-0.26144398E-02
ROW 3
-0.15792120E-02-0.25117054E-01-0.14852093E-02-0.20831905E-01
ROW 4
0.13620717E-03-0.26144398E-02-0.20831905E-01-0.28942888E-02
eigenphases
-0.3472992E-01 0.6241331E-03 0.2892886E-01 0.9551037E-01
eigenphase sum 0.903334E-01 scattering length= -0.33411
eps+pi 0.323193E+01 eps+2*pi 0.637352E+01
MaxIter = 4 c.s. = 0.53322491 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.14057798E-10
Time Now = 73.4733 Delta time = 2.9245 End ScatStab
+ Data Record ScatContSym - 'F'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 73.4827 Delta time = 0.0093 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = F 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 21
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 19
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 19
Time Now = 73.4888 Delta time = 0.0061 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103314E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 33
Final point in integration = 0.44265103E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 76.2247 Delta time = 2.7359 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.13470818E-01-0.18853239E-01-0.13604647E-02
ROW 2
-0.18853239E-01 0.20886682E-02-0.18110383E-01
ROW 3
-0.13604647E-02-0.18110383E-01-0.36426466E-03
eigenphases
-0.2316160E-01 0.7262134E-02 0.3108868E-01
eigenphase sum 0.151892E-01 scattering length= -0.07924
eps+pi 0.315678E+01 eps+2*pi 0.629837E+01
MaxIter = 3 c.s. = 0.14892781 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.11621361E-14
Time Now = 77.7441 Delta time = 1.5194 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 77.7533 Delta time = 0.0092 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = F 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 21
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 19
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 19
Time Now = 77.7593 Delta time = 0.0061 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794538E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 36
Final point in integration = 0.35133697E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 80.5130 Delta time = 2.7536 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.24834729E-01-0.19535923E-01-0.16459989E-02
ROW 2
-0.19535923E-01 0.42645254E-02-0.18243989E-01
ROW 3
-0.16459989E-02-0.18243989E-01-0.33567762E-03
eigenphases
-0.2123235E-01 0.1142394E-01 0.3855557E-01
eigenphase sum 0.287472E-01 scattering length= -0.10607
eps+pi 0.317034E+01 eps+2*pi 0.631193E+01
MaxIter = 3 c.s. = 0.09896504 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.12009603E-13
Time Now = 82.0398 Delta time = 1.5268 End ScatStab
+ Data Record ScatContSym - 'G'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 82.0490 Delta time = 0.0092 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = G 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 18
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 18
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 13
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 18
Time Now = 82.0550 Delta time = 0.0060 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103313E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.16103314E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 33
Final point in integration = 0.44265103E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 84.5415 Delta time = 2.4865 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.79806836E-02-0.13599067E-01
ROW 2
-0.13599067E-01 0.22100196E-02
eigenphases
-0.8806211E-02 0.1899486E-01
eigenphase sum 0.101886E-01 scattering length= -0.05315
eps+pi 0.315178E+01 eps+2*pi 0.629337E+01
MaxIter = 3 c.s. = 0.04197036 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.21509937E-17
Time Now = 85.5735 Delta time = 1.0320 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.11000000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 85.5827 Delta time = 0.0092 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = G 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 5
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 50
Number of partial waves (np) = 18
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 18
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 13
Higest l included in the K matrix (lna) = 5
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 18
Time Now = 85.5887 Delta time = 0.0060 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11102230E-14 Asymp Coef = -0.32599331E-09 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.12405682E-02 Asymp Moment = -0.58137297E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.79956270E-18 Asymp Moment = 0.63649855E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.48056744E-03 Asymp Moment = -0.38255971E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 2 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 3 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794537E-15
i = 4 exps = -0.77040806E+02 -0.20000000E+01 stpote = -0.15794538E-15
For potential 3
i = 1 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 2 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 3 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
i = 4 exps = -0.10666938E+01 -0.36524419E-01 stpote = -0.25327210E-05
Number of asymptotic regions = 36
Final point in integration = 0.35133697E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 88.0715 Delta time = 2.4828 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.12077683E-01-0.13766358E-01
ROW 2
-0.13766358E-01 0.32481473E-02
eigenphases
-0.6793909E-02 0.2211624E-01
eigenphase sum 0.153223E-01 scattering length= -0.05652
eps+pi 0.315691E+01 eps+2*pi 0.629851E+01
MaxIter = 3 c.s. = 0.02562434 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.91495413E-16
Time Now = 89.1024 Delta time = 1.0309 End ScatStab
+ Command TotalCrossSection
+
Using LMaxK 5
Continuum Symmetry S -
E (eV) XS(angs^2) EPS(radians)
0.500000 6.545666 -0.241521
1.000000 8.779575 -0.443771
Continuum Symmetry A2 -
E (eV) XS(angs^2) EPS(radians)
0.500000 0.000000 0.000000
1.000000 0.000000 0.000000
Continuum Symmetry B1 -
E (eV) XS(angs^2) EPS(radians)
0.500000 0.002921 0.005523
1.000000 0.002952 0.007852
Continuum Symmetry B2 -
E (eV) XS(angs^2) EPS(radians)
0.500000 0.002921 0.005523
1.000000 0.002952 0.007852
Continuum Symmetry P -
E (eV) XS(angs^2) EPS(radians)
0.500000 4.701588 0.190060
1.000000 5.271258 0.350021
Continuum Symmetry D -
E (eV) XS(angs^2) EPS(radians)
0.500000 0.496908 0.034915
1.000000 0.533225 0.090333
Continuum Symmetry F -
E (eV) XS(angs^2) EPS(radians)
0.500000 0.148928 0.015189
1.000000 0.098965 0.028747
Continuum Symmetry G -
E (eV) XS(angs^2) EPS(radians)
0.500000 0.041970 0.010189
1.000000 0.025624 0.015322
Largest value of LMaxK found 5
Total Cross Sections
Energy Total Cross Section
0.50000 17.33030
1.00000 20.64362
Time Now = 89.1042 Delta time = 0.0018 Finalize