Execution on n0149.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:41.639 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test25
#
# electron scattering from H2O in A1 symmetry
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0 # charge, formula type
VCorr 'PZ'
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatContSym 'A1' # Scattering symmetry
LMaxK 3 # Maximum l in the K matirx
ScatEng 20.0 # list of scattering energies (in eV)
PCutRd 1.0e-8
GrnType 1
# do the scattering with the center of mass at the origin
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test25.g03' 'gaussian'
GetBlms
ExpOrb
GetPot
Scat
# do the scattering with the O at the origin
NECenter 2
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test25.g03' 'gaussian'
GetBlms
ExpOrb
GetPot
Scat
Exit
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 3
+ Data Record ScatEng - 20.0
+ Data Record PCutRd - 1.0e-8
+ Data Record GrnType - 1
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test25.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # RHF/AUG-CC-PVTZ 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 5 number already selected 0
Number of orbitals selected is 5
Highest orbital read in is = 5
Time Now = 0.0122 Delta time = 0.0122 End GaussianCnv
Atoms found 3 Coordinates in Angstroms
Z = 1 ZS = 1 r = 0.0000000000 0.7594600000 -0.4645210000
Z = 8 ZS = 8 r = 0.0000000000 0.0000000000 0.1161300000
Z = 1 ZS = 1 r = 0.0000000000 -0.7594600000 -0.4645210000
Maximum distance from expansion center is 0.8902579688
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group C2v
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup C2v
Time Now = 0.0755 Delta time = 0.0632 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 8 0.11613
2 0.00000 0.85308 -0.52178 1 0.89026
3 0.00000 -0.85308 -0.52178 1 0.89026
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000
3 1.00000 0.00000 0.00000
Computed default value of LMaxA = 12
Determining angular grid in GetAxMax LMax = 15 LMaxA = 12 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 3 3 3
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 2
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 2
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 15
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
3 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
4 0.000000 0.000000 -1.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 -1 1 -1
irep = 4 sym =B2 1 eigs = 1 1 -1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 66 1 1 1
A2 1 2 47 -1 -1 1
B1 1 3 56 -1 1 -1
B2 1 4 59 1 -1 -1
Time Now = 0.1078 Delta time = 0.0323 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 2) 2( 4) 3( 6) 4( 9) 5( 12) 6( 16) 7( 20) 8( 25) 9( 30)
10( 36) 11( 42) 12( 49)
A2 1 0( 0) 1( 0) 2( 1) 3( 2) 4( 4) 5( 6) 6( 9) 7( 12) 8( 16) 9( 20)
10( 25) 11( 30) 12( 36)
B1 1 0( 0) 1( 1) 2( 2) 3( 4) 4( 6) 5( 9) 6( 12) 7( 16) 8( 20) 9( 25)
10( 30) 11( 36) 12( 42)
B2 1 0( 0) 1( 1) 2( 2) 3( 4) 4( 6) 5( 9) 6( 12) 7( 16) 8( 20) 9( 25)
10( 30) 11( 36) 12( 42)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 30
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
3 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
4 0.000000 0.000000 -1.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 -1 1 -1
irep = 4 sym =B2 1 eigs = 1 1 -1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 256 1 1 1
A2 1 2 225 -1 -1 1
B1 1 3 240 -1 1 -1
B2 1 4 240 1 -1 -1
Time Now = 0.1118 Delta time = 0.0040 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 12.0049934697 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 12.00499 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 12.00499 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.11613 Angs Alpha Max = 0.19200E+05
3 Center at = 0.89026 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.41063E-03 0.00329
2 8 16 0.58001E-03 0.00793
3 8 24 0.93206E-03 0.01538
4 8 32 0.12452E-02 0.02534
5 8 40 0.14460E-02 0.03691
6 8 48 0.14579E-02 0.04857
7 8 56 0.13371E-02 0.05927
8 8 64 0.13008E-02 0.06968
9 8 72 0.14451E-02 0.08124
10 8 80 0.15789E-02 0.09387
11 8 88 0.10139E-02 0.10198
12 8 96 0.64446E-03 0.10714
13 8 104 0.46007E-03 0.11082
14 8 112 0.39392E-03 0.11397
15 8 120 0.27029E-03 0.11613
16 8 128 0.38190E-03 0.11919
17 8 136 0.40714E-03 0.12244
18 8 144 0.50188E-03 0.12646
19 8 152 0.76147E-03 0.13255
20 8 160 0.12106E-02 0.14223
21 8 168 0.19247E-02 0.15763
22 8 176 0.30601E-02 0.18211
23 8 184 0.37769E-02 0.21233
24 8 192 0.44035E-02 0.24756
25 8 200 0.63618E-02 0.29845
26 8 208 0.97955E-02 0.37681
27 8 216 0.92953E-02 0.45118
28 8 224 0.93571E-02 0.52603
29 8 232 0.10910E-01 0.61331
30 8 240 0.12720E-01 0.71507
31 8 248 0.79791E-02 0.77890
32 8 256 0.50718E-02 0.81947
33 8 264 0.36511E-02 0.84868
34 8 272 0.31419E-02 0.87382
35 8 280 0.20549E-02 0.89026
36 8 288 0.30552E-02 0.91470
37 8 296 0.32571E-02 0.94076
38 8 304 0.40150E-02 0.97288
39 8 312 0.60918E-02 1.02161
40 8 320 0.96851E-02 1.09909
41 8 328 0.15398E-01 1.22227
42 8 336 0.24481E-01 1.41812
43 8 344 0.29411E-01 1.65341
44 8 352 0.34290E-01 1.92773
45 8 360 0.45134E-01 2.28880
46 8 368 0.58373E-01 2.75579
47 8 376 0.61891E-01 3.25091
48 8 384 0.64724E-01 3.76871
49 8 392 0.67043E-01 4.30505
50 8 400 0.68966E-01 4.85678
51 8 408 0.70580E-01 5.42142
52 8 416 0.71948E-01 5.99700
53 8 424 0.73120E-01 6.58197
54 8 432 0.74133E-01 7.17503
55 8 440 0.75016E-01 7.77516
56 8 448 0.75790E-01 8.38148
57 8 456 0.76474E-01 8.99327
58 8 464 0.77082E-01 9.60993
59 8 472 0.77626E-01 10.23094
60 8 480 0.78115E-01 10.85586
61 8 488 0.78556E-01 11.48430
62 8 496 0.65086E-01 12.00499
Time Now = 0.1259 Delta time = 0.0141 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 12
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 12
Actual value of lmasym found = 12
Number of regions of the same l expansion (NAngReg) = 11
Angular regions
1 L = 2 from ( 1) 0.00041 to ( 7) 0.00287
2 L = 3 from ( 8) 0.00329 to ( 23) 0.01445
3 L = 4 from ( 24) 0.01538 to ( 31) 0.02410
4 L = 6 from ( 32) 0.02534 to ( 39) 0.03546
5 L = 7 from ( 40) 0.03691 to ( 47) 0.04712
6 L = 9 from ( 48) 0.04857 to ( 55) 0.05793
7 L = 12 from ( 56) 0.05927 to ( 63) 0.06838
8 L = 15 from ( 64) 0.06968 to ( 192) 0.24756
9 L = 12 from ( 193) 0.25392 to ( 223) 0.51668
10 L = 15 from ( 224) 0.52603 to ( 344) 1.65341
11 L = 12 from ( 345) 1.68770 to ( 496) 12.00499
There are 2 angular regions for computing spherical harmonics
1 lval = 12
2 lval = 15
Maximum number of processors is 61
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 72
Proc id = 1 Last grid point = 88
Proc id = 2 Last grid point = 112
Proc id = 3 Last grid point = 128
Proc id = 4 Last grid point = 152
Proc id = 5 Last grid point = 168
Proc id = 6 Last grid point = 192
Proc id = 7 Last grid point = 216
Proc id = 8 Last grid point = 240
Proc id = 9 Last grid point = 256
Proc id = 10 Last grid point = 280
Proc id = 11 Last grid point = 296
Proc id = 12 Last grid point = 320
Proc id = 13 Last grid point = 336
Proc id = 14 Last grid point = 360
Proc id = 15 Last grid point = 392
Proc id = 16 Last grid point = 416
Proc id = 17 Last grid point = 448
Proc id = 18 Last grid point = 472
Proc id = 19 Last grid point = 496
Time Now = 0.1350 Delta time = 0.0091 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -20.564625 A1 1 at max irg = 144 r = 0.12646
2 Orig 2 Eng = -1.353376 A1 1 at max irg = 224 r = 0.52603
3 Orig 3 Eng = -0.719656 B2 1 at max irg = 232 r = 0.61331
4 Orig 4 Eng = -0.583692 A1 1 at max irg = 224 r = 0.52603
5 Orig 5 Eng = -0.510201 B1 1 at max irg = 216 r = 0.45118
Rotation coefficients for orbital 1 grp = 1 A1 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A1 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 B2 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 A1 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 B1 1
1 1.0000000000
Number of orbital groups and degeneracis are 5
1 1 1 1 1
Number of orbital groups and number of electrons when fully occupied
5
2 2 2 2 2
Time Now = 0.1626 Delta time = 0.0276 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 5
Orbital 1 of A1 1 symmetry normalization integral = 0.99998473
Orbital 2 of A1 1 symmetry normalization integral = 0.99999607
Orbital 3 of B2 1 symmetry normalization integral = 0.99999105
Orbital 4 of A1 1 symmetry normalization integral = 0.99999675
Orbital 5 of B1 1 symmetry normalization integral = 1.00000007
Time Now = 0.3564 Delta time = 0.1938 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 10.00000000
Time Now = 0.3604 Delta time = 0.0041 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.10000000E+02 facnorm = 0.10000000E+01
Time Now = 0.3791 Delta time = 0.0187 Electronic part
Time Now = 0.3806 Delta time = 0.0014 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 0.3896 Delta time = 0.0090 End VcpPol
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+02 eV ( 0.73498652E+00 AU)
Time Now = 0.3963 Delta time = 0.0067 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 62
Number of partial waves (np) = 66
Number of asymptotic solutions on the right (NAsymR) = 6
Number of asymptotic solutions on the left (NAsymL) = 6
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 6
Maximum in the asymptotic region (lpasym) = 12
Number of partial waves in the asymptotic region (npasym) = 49
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 169
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 12
Higest l used in the asymptotic potential (lpzb) = 24
Maximum L used in the homogeneous solution (LMaxHomo) = 12
Number of partial waves in the homogeneous solution (npHomo) = 49
Time Now = 0.4026 Delta time = 0.0063 Energy independent setup
Compute solution for E = 20.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.83266727E-16 Asymp Coef = -0.47061940E-10 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.30715190E-02 Asymp Moment = -0.19970426E+00 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.29170170E-03 Asymp Moment = -0.37947551E+00 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.38044045E-04 Asymp Moment = -0.49491599E-01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.90744600E+02 -0.20000000E+01 stpote = -0.12536341E-16
i = 2 exps = -0.90744600E+02 -0.20000000E+01 stpote = -0.12554991E-16
i = 3 exps = -0.90744600E+02 -0.20000000E+01 stpote = -0.12591898E-16
i = 4 exps = -0.90744600E+02 -0.20000000E+01 stpote = -0.12646251E-16
For potential 3
i = 1 exps = -0.73269919E+00 -0.17372104E-01 stpote = -0.15270390E-05
i = 2 exps = -0.73268405E+00 -0.17371795E-01 stpote = -0.15272993E-05
i = 3 exps = -0.73265439E+00 -0.17371192E-01 stpote = -0.15278097E-05
i = 4 exps = -0.73261139E+00 -0.17370319E-01 stpote = -0.15285505E-05
Number of asymptotic regions = 135
Final point in integration = 0.15884106E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 9.4254 Delta time = 9.0227 End SolveHomo
Final T matrix
ROW 1
(-0.14966812E+00, 0.66994627E+00) ( 0.37826913E-01, 0.27915544E+00)
(-0.31512303E+00, 0.14998513E-01) ( 0.55159195E-01, 0.19439019E-01)
( 0.98469563E-01, 0.15602416E-01) ( 0.77545391E-01,-0.49289085E-02)
ROW 2
( 0.37826922E-01, 0.27915549E+00) (-0.27467970E+00, 0.47692790E+00)
( 0.13104956E-01, 0.10835482E+00) (-0.27657499E+00, 0.44587868E-01)
(-0.46362402E-01,-0.21105252E-01) (-0.36662681E-01, 0.71748856E-02)
ROW 3
(-0.31512305E+00, 0.14998518E-01) ( 0.13104948E-01, 0.10835481E+00)
( 0.26693968E+00, 0.60256594E+00) ( 0.36676023E-01, 0.14577148E+00)
(-0.19289715E-01,-0.14816302E+00) ( 0.14193608E-01,-0.10267501E+00)
ROW 4
( 0.55159204E-01, 0.19439029E-01) (-0.27657498E+00, 0.44587867E-01)
( 0.36676027E-01, 0.14577148E+00) ( 0.33276891E+00, 0.32726103E+00)
( 0.11016891E-01,-0.48297029E-02) (-0.52814506E-01,-0.40318172E-01)
ROW 5
( 0.98469571E-01, 0.15602418E-01) (-0.46362400E-01,-0.21105247E-01)
(-0.19289715E-01,-0.14816302E+00) ( 0.11016892E-01,-0.48297011E-02)
( 0.16577317E+00, 0.83409674E-01) ( 0.56148308E-01, 0.51016137E-01)
ROW 6
( 0.77545397E-01,-0.49289080E-02) (-0.36662679E-01, 0.71748892E-02)
( 0.14193609E-01,-0.10267501E+00) (-0.52814505E-01,-0.40318171E-01)
( 0.56148308E-01, 0.51016137E-01) ( 0.15315468E+00, 0.63993345E-01)
eigenphases
-0.1261444E+01 -0.5374831E+00 0.9706655E-01 0.2369853E+00 0.5557760E+00
0.9885424E+00
eigenphase sum 0.794433E-01 scattering length= -0.06566
eps+pi 0.322104E+01 eps+2*pi 0.636263E+01
MaxIter = 7 c.s. = 5.27993818 rmsk= 0.00000001 Abs eps 0.10000000E-05 Rel eps 0.15697545E-08
Time Now = 27.5704 Delta time = 18.1451 End ScatStab
+ Data Record NECenter - 2
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test25.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is at nucleus 2
Command line = # RHF/AUG-CC-PVTZ 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 5 number already selected 0
Number of orbitals selected is 5
Highest orbital read in is = 5
Time Now = 27.5718 Delta time = 0.0014 End GaussianCnv
Atoms found 3 Coordinates in Angstroms
Z = 1 ZS = 1 r = 0.0000000000 0.7594600000 -0.5806510000
Z = 8 ZS = 8 r = 0.0000000000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = 0.0000000000 -0.7594600000 -0.5806510000
Maximum distance from expansion center is 0.9559995164
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
#############################################################################
Expansion center is not at the center of charge
For high symmetry systems, a better expansion point may be
0.0000000000 0.0000000000 -0.1161302000
#############################################################################
Found point group C2v
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup C2v
Time Now = 27.5721 Delta time = 0.0002 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.00000 0.79441 -0.60738 1 0.95600
3 0.00000 -0.79441 -0.60738 1 0.95600
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000
3 1.00000 0.00000 0.00000
Computed default value of LMaxA = 12
Determining angular grid in GetAxMax LMax = 15 LMaxA = 12 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 -1 -1 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 2
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 2
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 15
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 -1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
3 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
4 0.000000 0.000000 -1.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 -1 1 -1
irep = 4 sym =B2 1 eigs = 1 1 -1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 60 1 1 1
A2 1 2 44 -1 -1 1
B1 1 3 50 -1 1 -1
B2 1 4 53 1 -1 -1
Time Now = 27.5994 Delta time = 0.0273 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 2) 2( 4) 3( 6) 4( 9) 5( 12) 6( 16) 7( 20) 8( 25) 9( 30)
10( 36) 11( 42) 12( 49)
A2 1 0( 0) 1( 0) 2( 1) 3( 2) 4( 4) 5( 6) 6( 9) 7( 12) 8( 16) 9( 20)
10( 25) 11( 30) 12( 36)
B1 1 0( 0) 1( 1) 2( 2) 3( 4) 4( 6) 5( 9) 6( 12) 7( 16) 8( 20) 9( 25)
10( 30) 11( 36) 12( 42)
B2 1 0( 0) 1( 1) 2( 2) 3( 4) 4( 6) 5( 9) 6( 12) 7( 16) 8( 20) 9( 25)
10( 30) 11( 36) 12( 42)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 30
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 -1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
3 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
4 0.000000 0.000000 -1.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 -1 1 -1
irep = 4 sym =B2 1 eigs = 1 1 -1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 256 1 1 1
A2 1 2 225 -1 -1 1
B1 1 3 240 -1 1 -1
B2 1 4 240 1 -1 -1
Time Now = 27.6030 Delta time = 0.0036 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 12.0841518541 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 12.08415 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 12.08415 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.19200E+05
2 Center at = 0.95600 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.38190E-03 0.00306
2 8 16 0.40714E-03 0.00631
3 8 24 0.50188E-03 0.01033
4 8 32 0.76147E-03 0.01642
5 8 40 0.12106E-02 0.02610
6 8 48 0.19247E-02 0.04150
7 8 56 0.30601E-02 0.06598
8 8 64 0.48651E-02 0.10490
9 8 72 0.77349E-02 0.16678
10 8 80 0.98829E-02 0.24585
11 8 88 0.10826E-01 0.33245
12 8 96 0.10549E-01 0.41685
13 8 104 0.99588E-02 0.49652
14 8 112 0.10297E-01 0.57890
15 8 120 0.12006E-01 0.67494
16 8 128 0.12761E-01 0.77703
17 8 136 0.81511E-02 0.84224
18 8 144 0.51812E-02 0.88369
19 8 152 0.36896E-02 0.91321
20 8 160 0.31543E-02 0.93844
21 8 168 0.21947E-02 0.95600
22 8 176 0.30552E-02 0.98044
23 8 184 0.32571E-02 1.00650
24 8 192 0.40150E-02 1.03862
25 8 200 0.60918E-02 1.08735
26 8 208 0.96851E-02 1.16483
27 8 216 0.15398E-01 1.28802
28 8 224 0.24481E-01 1.48386
29 8 232 0.30774E-01 1.73006
30 8 240 0.35880E-01 2.01710
31 8 248 0.45506E-01 2.38115
32 8 256 0.59423E-01 2.85653
33 8 264 0.62783E-01 3.35879
34 8 272 0.65477E-01 3.88261
35 8 280 0.67680E-01 4.42405
36 8 288 0.69507E-01 4.98010
37 8 296 0.71042E-01 5.54844
38 8 304 0.72347E-01 6.12722
39 8 312 0.73466E-01 6.71495
40 8 320 0.74436E-01 7.31043
41 8 328 0.75282E-01 7.91269
42 8 336 0.76025E-01 8.52089
43 8 344 0.76684E-01 9.13436
44 8 352 0.77270E-01 9.75252
45 8 360 0.77795E-01 10.37488
46 8 368 0.78267E-01 11.00101
47 8 376 0.78694E-01 11.63057
48 8 384 0.56698E-01 12.08415
Time Now = 27.6137 Delta time = 0.0107 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 12
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 12
Actual value of lmasym found = 12
Number of regions of the same l expansion (NAngReg) = 10
Angular regions
1 L = 2 from ( 1) 0.00038 to ( 7) 0.00267
2 L = 5 from ( 8) 0.00306 to ( 23) 0.00983
3 L = 6 from ( 24) 0.01033 to ( 31) 0.01566
4 L = 7 from ( 32) 0.01642 to ( 47) 0.03958
5 L = 8 from ( 48) 0.04150 to ( 55) 0.06292
6 L = 10 from ( 56) 0.06598 to ( 63) 0.10004
7 L = 11 from ( 64) 0.10490 to ( 71) 0.15905
8 L = 12 from ( 72) 0.16678 to ( 111) 0.56860
9 L = 15 from ( 112) 0.57890 to ( 232) 1.73006
10 L = 12 from ( 233) 1.76594 to ( 384) 12.08415
There are 2 angular regions for computing spherical harmonics
1 lval = 12
2 lval = 15
Maximum number of processors is 47
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 64
Proc id = 1 Last grid point = 80
Proc id = 2 Last grid point = 104
Proc id = 3 Last grid point = 120
Proc id = 4 Last grid point = 136
Proc id = 5 Last grid point = 152
Proc id = 6 Last grid point = 160
Proc id = 7 Last grid point = 176
Proc id = 8 Last grid point = 192
Proc id = 9 Last grid point = 208
Proc id = 10 Last grid point = 216
Proc id = 11 Last grid point = 232
Proc id = 12 Last grid point = 248
Proc id = 13 Last grid point = 272
Proc id = 14 Last grid point = 288
Proc id = 15 Last grid point = 312
Proc id = 16 Last grid point = 328
Proc id = 17 Last grid point = 352
Proc id = 18 Last grid point = 368
Proc id = 19 Last grid point = 384
Time Now = 27.6181 Delta time = 0.0044 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -20.564625 A1 1 at max irg = 56 r = 0.06598
2 Orig 2 Eng = -1.353376 A1 1 at max irg = 104 r = 0.49652
3 Orig 3 Eng = -0.719656 B2 1 at max irg = 112 r = 0.57890
4 Orig 4 Eng = -0.583692 A1 1 at max irg = 104 r = 0.49652
5 Orig 5 Eng = -0.510201 B1 1 at max irg = 104 r = 0.49652
Rotation coefficients for orbital 1 grp = 1 A1 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A1 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 B2 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 A1 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 B1 1
1 1.0000000000
Number of orbital groups and degeneracis are 5
1 1 1 1 1
Number of orbital groups and number of electrons when fully occupied
5
2 2 2 2 2
Time Now = 27.6399 Delta time = 0.0218 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 5
Orbital 1 of A1 1 symmetry normalization integral = 1.00000000
Orbital 2 of A1 1 symmetry normalization integral = 0.99999533
Orbital 3 of B2 1 symmetry normalization integral = 0.99998793
Orbital 4 of A1 1 symmetry normalization integral = 0.99999558
Orbital 5 of B1 1 symmetry normalization integral = 1.00000007
Time Now = 27.8028 Delta time = 0.1629 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 10.00000000
Time Now = 27.8061 Delta time = 0.0033 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.10000000E+02 facnorm = 0.10000000E+01
Time Now = 27.8202 Delta time = 0.0142 Electronic part
Time Now = 27.8207 Delta time = 0.0005 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 27.8271 Delta time = 0.0064 End VcpPol
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+02 eV ( 0.73498652E+00 AU)
Time Now = 27.8325 Delta time = 0.0054 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 3
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 60
Number of asymptotic solutions on the right (NAsymR) = 6
Number of asymptotic solutions on the left (NAsymL) = 6
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 6
Maximum in the asymptotic region (lpasym) = 12
Number of partial waves in the asymptotic region (npasym) = 49
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 169
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 12
Higest l used in the asymptotic potential (lpzb) = 24
Maximum L used in the homogeneous solution (LMaxHomo) = 12
Number of partial waves in the homogeneous solution (npHomo) = 49
Time Now = 27.8368 Delta time = 0.0043 Energy independent setup
Compute solution for E = 20.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.55511151E-16 Asymp Coef = -0.32210358E-10 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.30314729E-02 Asymp Moment = -0.19970839E+00 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.28600948E-03 Asymp Moment = -0.37947919E+00 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = -0.78309640E-05 Asymp Moment = 0.10390173E-01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.91342950E+02 -0.20000000E+01 stpote = -0.18445366E-16
i = 2 exps = -0.91342950E+02 -0.20000000E+01 stpote = -0.18460834E-16
i = 3 exps = -0.91342950E+02 -0.20000000E+01 stpote = -0.18491432E-16
i = 4 exps = -0.91342950E+02 -0.20000000E+01 stpote = -0.18536455E-16
For potential 3
i = 1 exps = -0.73029457E+00 -0.17370432E-01 stpote = -0.16063164E-05
i = 2 exps = -0.73027934E+00 -0.17370125E-01 stpote = -0.16065938E-05
i = 3 exps = -0.73024948E+00 -0.17369524E-01 stpote = -0.16071377E-05
i = 4 exps = -0.73020620E+00 -0.17368654E-01 stpote = -0.16079271E-05
Number of asymptotic regions = 131
Final point in integration = 0.15423578E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 36.0924 Delta time = 8.2556 End SolveHomo
Final T matrix
ROW 1
(-0.14277548E+00, 0.74874552E+00) ( 0.16322882E-01, 0.23801390E+00)
(-0.29885505E+00, 0.33341952E-01) ( 0.24345918E-01,-0.11803814E-01)
( 0.11925416E+00, 0.83022863E-02) ( 0.65985398E-01,-0.56882416E-02)
ROW 2
( 0.16322882E-01, 0.23801390E+00) (-0.34907496E+00, 0.40641705E+00)
( 0.59590307E-01, 0.11945501E+00) (-0.19390774E+00, 0.26977839E-01)
(-0.63394097E-01,-0.33929338E-01) (-0.23191284E-01,-0.35492064E-02)
ROW 3
(-0.29885506E+00, 0.33341952E-01) ( 0.59590307E-01, 0.11945501E+00)
( 0.26212240E+00, 0.56724954E+00) ( 0.35065109E-01, 0.11469672E+00)
(-0.31723657E-01,-0.19468418E+00) ( 0.12887738E-01,-0.11242804E+00)
ROW 4
( 0.24345918E-01,-0.11803813E-01) (-0.19390774E+00, 0.26977839E-01)
( 0.35065109E-01, 0.11469672E+00) ( 0.38049401E+00, 0.30213060E+00)
( 0.20371515E-01,-0.81382607E-02) (-0.78170548E-01,-0.73614579E-01)
ROW 5
( 0.11925416E+00, 0.83022862E-02) (-0.63394097E-01,-0.33929338E-01)
(-0.31723657E-01,-0.19468418E+00) ( 0.20371515E-01,-0.81382608E-02)
( 0.15134318E+00, 0.11012575E+00) ( 0.50914619E-01, 0.58477130E-01)
ROW 6
( 0.65985399E-01,-0.56882412E-02) (-0.23191284E-01,-0.35492066E-02)
( 0.12887738E-01,-0.11242804E+00) (-0.78170548E-01,-0.73614579E-01)
( 0.50914619E-01, 0.58477130E-01) ( 0.14703707E+00, 0.71812781E-01)
eigenphases
-0.1258705E+01 -0.5371819E+00 0.7779181E-01 0.2126800E+00 0.5543034E+00
0.9858890E+00
eigenphase sum 0.347776E-01 scattering length= -0.02870
eps+pi 0.317637E+01 eps+2*pi 0.631796E+01
MaxIter = 7 c.s. = 5.22313352 rmsk= 0.00000001 Abs eps 0.10000000E-05 Rel eps 0.15389896E-08
Time Now = 50.0500 Delta time = 13.9575 End ScatStab
+ Command Exit
Time Now = 50.0503 Delta time = 0.0003 Finalize