Execution on n0155.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:41.599 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test24
#
# Electron scattering from SF6 with orthogonality constraints
#
LMax 15 # maximum l to be used for wave functions
LMaxI 40 # maximum l value used to determine numerical angular grids
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 2
16
2.0 -1.0 1 # orbital occupation and coefficient for the K operators
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
VCorr 'PZ'
AsyPol
0.15 # SwitchD, distance where switching function is down to 0.1
7 # nterm, number of terms needed to define asymptotic potential
1 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
16.198 # value of the spherical polarizability
2 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
4.656 # value of the spherical polarizability
3 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
4.656 # value of the spherical polarizability
4 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
4.656 # value of the spherical polarizability
5 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
4.656 # value of the spherical polarizability
6 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
4.656 # value of the spherical polarizability
7 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
4.656 # value of the spherical polarizability
3 # icrtyp, flag to determine where r match is, 3 for second crossing
# or at nearest approach
0 # ilntyp, flag to determine what matching line is used, 0 - use
# l = 0 radial function as matching function
ScatEng 1.0 # list of scattering energies
FegeEng 13.29 # Energy correction used in the fege potential
LMaxK 10 # Maximum l in the K matirx
#
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test24.g03' 'gaussian'
GetBlms
ExpOrb
GetPot
ScatContSym 'A1G' # Scattering symmetry
Scat
ScatContSym 'T1G' # Scattering symmetry
Scat
GrnType 1 # type of Green function (0 -> K matrix, 1 -> T matrix)
ScatContSym 'A1G' # Scattering symmetry
Scat
ScatContSym 'T1G' # Scattering symmetry
Scat
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 2 / 16 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 7 / 1 / 1 / 16.198 / 2 / 1 / 4.656 / 3 / 1 / 4.656 / 4 / 1 / 4.656 / 5 / 1 / 4.656 / 6 / 1 / 4.656 / 7 / 1
+ 4.656 / 3 / 0
+ Data Record ScatEng - 1.0
+ Data Record FegeEng - 13.29
+ Data Record LMaxK - 10
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test24.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # RHF/6-311G(2D,2P) 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 35 number already selected 0
Number of orbitals selected is 35
Highest orbital read in is = 35
Time Now = 0.0182 Delta time = 0.0182 End GaussianCnv
Atoms found 7 Coordinates in Angstroms
Z = 16 ZS = 16 r = 0.0000000000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 0.0000000000 0.0000000000 1.5602260000
Z = 9 ZS = 9 r = 0.0000000000 1.5602260000 0.0000000000
Z = 9 ZS = 9 r = -1.5602260000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 1.5602260000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 0.0000000000 -1.5602260000 0.0000000000
Z = 9 ZS = 9 r = 0.0000000000 0.0000000000 -1.5602260000
Maximum distance from expansion center is 1.5602260000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Oh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.0454 Delta time = 0.0273 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 9 1.56023 9 1.56023
2 0.00000 1.00000 0.00000 9 1.56023 9 1.56023
3 -1.00000 0.00000 0.00000 9 1.56023 9 1.56023
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000
3 0.00000 1.00000 0.00000
Computed default value of LMaxA = 14
Determining angular grid in GetAxMax LMax = 15 LMaxA = 14 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Oh
LMax 15
The dimension of each irreducable representation is
A1G ( 1) A2G ( 1) EG ( 2) T1G ( 3) T2G ( 3)
A1U ( 1) A2U ( 1) EU ( 2) T1U ( 3) T2U ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
16 19 24 2 4 3 5
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1G 1 1 8 1 1 1 1 1 1 1
A2G 1 2 4 1 1 1 1 1 1 1
EG 1 3 12 1 1 1 1 1 1 1
EG 2 4 12 1 1 1 1 1 1 1
T1G 1 5 12 -1 -1 1 1 -1 -1 1
T1G 2 6 12 -1 1 -1 1 -1 1 -1
T1G 3 7 12 1 -1 -1 1 1 -1 -1
T2G 1 8 16 -1 -1 1 1 -1 -1 1
T2G 2 9 16 -1 1 -1 1 -1 1 -1
T2G 3 10 16 1 -1 -1 1 1 -1 -1
A1U 1 11 2 1 1 1 -1 -1 -1 -1
A2U 1 12 6 1 1 1 -1 -1 -1 -1
EU 1 13 8 1 1 1 -1 -1 -1 -1
EU 2 14 8 1 1 1 -1 -1 -1 -1
T1U 1 15 19 -1 -1 1 -1 1 1 -1
T1U 2 16 19 -1 1 -1 -1 1 -1 1
T1U 3 17 19 1 -1 -1 -1 -1 1 1
T2U 1 18 15 -1 -1 1 -1 1 1 -1
T2U 2 19 15 -1 1 -1 -1 1 -1 1
T2U 3 20 15 1 -1 -1 -1 -1 1 1
Time Now = 0.3377 Delta time = 0.2923 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G 1 0( 1) 1( 1) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 5) 11( 5) 12( 7) 13( 7) 14( 8)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 1)
10( 2) 11( 2) 12( 3) 13( 3) 14( 4)
EG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9) 13( 9) 14( 12)
EG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9) 13( 9) 14( 12)
T1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12)
T1G 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12)
T1G 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12)
T2G 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 6) 9( 6)
10( 9) 11( 9) 12( 12) 13( 12) 14( 16)
T2G 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 6) 9( 6)
10( 9) 11( 9) 12( 12) 13( 12) 14( 16)
T2G 3 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 6) 9( 6)
10( 9) 11( 9) 12( 12) 13( 12) 14( 16)
A1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 1)
10( 1) 11( 1) 12( 1) 13( 2) 14( 2)
A2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4) 12( 4) 13( 5) 14( 5)
EU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 5) 12( 5) 13( 7) 14( 7)
EU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 5) 12( 5) 13( 7) 14( 7)
T1U 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 6) 8( 6) 9( 9)
10( 9) 11( 12) 12( 12) 13( 16) 14( 16)
T1U 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 6) 8( 6) 9( 9)
10( 9) 11( 12) 12( 12) 13( 16) 14( 16)
T1U 3 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 6) 8( 6) 9( 9)
10( 9) 11( 12) 12( 12) 13( 16) 14( 16)
T2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12)
T2U 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12)
T2U 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 30
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 3 sym =B2G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 7 sym =B2U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 136 1 1 1 1 1 1 1
B1G 1 2 120 -1 -1 1 1 -1 -1 1
B2G 1 3 120 1 -1 -1 1 1 -1 -1
B3G 1 4 120 -1 1 -1 1 -1 1 -1
AU 1 5 105 1 1 1 -1 -1 -1 -1
B1U 1 6 120 -1 -1 1 -1 1 1 -1
B2U 1 7 120 1 -1 -1 -1 -1 1 1
B3U 1 8 120 -1 1 -1 -1 1 -1 1
Time Now = 0.3422 Delta time = 0.0045 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 7.6821016117 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 7.68210 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 0.01058 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.93413E+05
2 Center at = 1.56023 Angs Alpha Max = 0.24300E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.17314E-03 0.00139
2 8 16 0.18458E-03 0.00286
3 8 24 0.22753E-03 0.00468
4 8 32 0.34522E-03 0.00744
5 8 40 0.54886E-03 0.01183
6 8 48 0.87261E-03 0.01882
7 8 56 0.13873E-02 0.02991
8 8 64 0.22057E-02 0.04756
9 8 72 0.35067E-02 0.07561
10 8 80 0.55752E-02 0.12021
11 8 88 0.88638E-02 0.19112
12 64 152 0.10584E-01 0.86847
13 48 200 0.10584E-01 1.37648
14 8 208 0.83742E-02 1.44348
15 8 216 0.53174E-02 1.48601
16 8 224 0.33800E-02 1.51305
17 8 232 0.21484E-02 1.53024
18 8 240 0.13656E-02 1.54117
19 8 248 0.86805E-03 1.54811
20 8 256 0.55188E-03 1.55253
21 8 264 0.40163E-03 1.55574
22 8 272 0.34784E-03 1.55852
23 8 280 0.21299E-03 1.56023
24 8 288 0.33947E-03 1.56294
25 8 296 0.36190E-03 1.56584
26 8 304 0.44612E-03 1.56941
27 8 312 0.67686E-03 1.57482
28 8 320 0.10761E-02 1.58343
29 8 328 0.17109E-02 1.59712
30 8 336 0.27201E-02 1.61888
31 8 344 0.43245E-02 1.65347
32 8 352 0.68754E-02 1.70848
33 64 416 0.10584E-01 2.38582
34 64 480 0.10584E-01 3.06317
35 64 544 0.10584E-01 3.74052
36 64 608 0.10584E-01 4.41786
37 64 672 0.10584E-01 5.09521
38 64 736 0.10584E-01 5.77256
39 64 800 0.10584E-01 6.44990
40 64 864 0.10584E-01 7.12725
41 48 912 0.10584E-01 7.63526
42 8 920 0.58550E-02 7.68210
Time Now = 0.3776 Delta time = 0.0354 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 40
Maximum numerical integration m (mmaxi) = 40
Maximum l to include in the asymptotic region (lmasym) = 14
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 14
Actual value of lmasym found = 14
Number of regions of the same l expansion (NAngReg) = 11
Angular regions
1 L = 2 from ( 1) 0.00017 to ( 7) 0.00121
2 L = 5 from ( 8) 0.00139 to ( 23) 0.00445
3 L = 6 from ( 24) 0.00468 to ( 31) 0.00710
4 L = 7 from ( 32) 0.00744 to ( 47) 0.01794
5 L = 8 from ( 48) 0.01882 to ( 55) 0.02853
6 L = 10 from ( 56) 0.02991 to ( 63) 0.04535
7 L = 11 from ( 64) 0.04756 to ( 71) 0.07211
8 L = 13 from ( 72) 0.07561 to ( 79) 0.11464
9 L = 14 from ( 80) 0.12021 to ( 151) 0.85789
10 L = 15 from ( 152) 0.86847 to ( 448) 2.72450
11 L = 14 from ( 449) 2.73508 to ( 920) 7.68210
There are 2 angular regions for computing spherical harmonics
1 lval = 14
2 lval = 15
Maximum number of processors is 114
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 96
Proc id = 1 Last grid point = 144
Proc id = 2 Last grid point = 184
Proc id = 3 Last grid point = 224
Proc id = 4 Last grid point = 264
Proc id = 5 Last grid point = 304
Proc id = 6 Last grid point = 344
Proc id = 7 Last grid point = 384
Proc id = 8 Last grid point = 424
Proc id = 9 Last grid point = 472
Proc id = 10 Last grid point = 512
Proc id = 11 Last grid point = 560
Proc id = 12 Last grid point = 608
Proc id = 13 Last grid point = 648
Proc id = 14 Last grid point = 696
Proc id = 15 Last grid point = 744
Proc id = 16 Last grid point = 784
Proc id = 17 Last grid point = 832
Proc id = 18 Last grid point = 880
Proc id = 19 Last grid point = 920
Time Now = 0.4006 Delta time = 0.0230 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -92.447865 A1G 1 at max irg = 56 r = 0.02991
2 Orig 2 Eng = -26.385593 EG 1 at max irg = 280 r = 1.56023
3 Orig 3 Eng = -26.385593 EG 2 at max irg = 280 r = 1.56023
4 Orig 4 Eng = -26.385568 T1U 1 at max irg = 280 r = 1.56023
5 Orig 5 Eng = -26.385568 T1U 2 at max irg = 280 r = 1.56023
6 Orig 6 Eng = -26.385568 T1U 3 at max irg = 280 r = 1.56023
7 Orig 7 Eng = -26.385523 A1G 1 at max irg = 280 r = 1.56023
8 Orig 8 Eng = -9.388747 A1G 1 at max irg = 88 r = 0.19112
9 Orig 9 Eng = -7.077915 T1U 1 at max irg = 88 r = 0.19112
10 Orig 10 Eng = -7.077915 T1U 2 at max irg = 88 r = 0.19112
11 Orig 11 Eng = -7.077915 T1U 3 at max irg = 88 r = 0.19112
12 Orig 12 Eng = -1.843564 A1G 1 at max irg = 200 r = 1.37648
13 Orig 13 Eng = -1.710841 T1U 1 at max irg = 280 r = 1.56023
14 Orig 14 Eng = -1.710841 T1U 2 at max irg = 280 r = 1.56023
15 Orig 15 Eng = -1.710841 T1U 3 at max irg = 280 r = 1.56023
16 Orig 16 Eng = -1.655936 EG 1 at max irg = 280 r = 1.56023
17 Orig 17 Eng = -1.655936 EG 2 at max irg = 280 r = 1.56023
18 Orig 18 Eng = -1.099954 A1G 1 at max irg = 360 r = 1.79315
19 Orig 19 Eng = -0.924335 T1U 1 at max irg = 360 r = 1.79315
20 Orig 20 Eng = -0.924335 T1U 2 at max irg = 360 r = 1.79315
21 Orig 21 Eng = -0.924335 T1U 3 at max irg = 360 r = 1.79315
22 Orig 22 Eng = -0.831327 T2G 1 at max irg = 320 r = 1.58343
23 Orig 23 Eng = -0.831327 T2G 2 at max irg = 320 r = 1.58343
24 Orig 24 Eng = -0.831327 T2G 3 at max irg = 320 r = 1.58343
25 Orig 25 Eng = -0.737660 EG 1 at max irg = 368 r = 1.87781
26 Orig 26 Eng = -0.737660 EG 2 at max irg = 368 r = 1.87781
27 Orig 27 Eng = -0.724814 T2U 1 at max irg = 320 r = 1.58343
28 Orig 28 Eng = -0.724814 T2U 2 at max irg = 320 r = 1.58343
29 Orig 29 Eng = -0.724814 T2U 3 at max irg = 320 r = 1.58343
30 Orig 30 Eng = -0.712046 T1U 1 at max irg = 336 r = 1.61888
31 Orig 31 Eng = -0.712046 T1U 2 at max irg = 336 r = 1.61888
32 Orig 32 Eng = -0.712046 T1U 3 at max irg = 336 r = 1.61888
33 Orig 33 Eng = -0.677520 T1G 1 at max irg = 320 r = 1.58343
34 Orig 34 Eng = -0.677520 T1G 2 at max irg = 320 r = 1.58343
35 Orig 35 Eng = -0.677520 T1G 3 at max irg = 320 r = 1.58343
Rotation coefficients for orbital 1 grp = 1 A1G 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 EG 1
1 -0.1769665647 2 0.9842168638
Rotation coefficients for orbital 3 grp = 2 EG 2
1 0.9842168638 2 0.1769665647
Rotation coefficients for orbital 4 grp = 3 T1U 1
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 5 grp = 3 T1U 2
1 -1.0000000000 2 -0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 6 grp = 3 T1U 3
1 -0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 7 grp = 4 A1G 1
1 1.0000000000
Rotation coefficients for orbital 8 grp = 5 A1G 1
1 1.0000000000
Rotation coefficients for orbital 9 grp = 6 T1U 1
1 -0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 10 grp = 6 T1U 2
1 0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 11 grp = 6 T1U 3
1 1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 12 grp = 7 A1G 1
1 1.0000000000
Rotation coefficients for orbital 13 grp = 8 T1U 1
1 -0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 14 grp = 8 T1U 2
1 -1.0000000000 2 -0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 15 grp = 8 T1U 3
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 16 grp = 9 EG 1
1 0.5002934503 2 0.8658559139
Rotation coefficients for orbital 17 grp = 9 EG 2
1 -0.8658559139 2 0.5002934503
Rotation coefficients for orbital 18 grp = 10 A1G 1
1 1.0000000000
Rotation coefficients for orbital 19 grp = 11 T1U 1
1 0.0000000000 2 0.0000000000 3 1.0000000000
Rotation coefficients for orbital 20 grp = 11 T1U 2
1 -0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 21 grp = 11 T1U 3
1 1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 22 grp = 12 T2G 1
1 -0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 23 grp = 12 T2G 2
1 0.0000000000 2 0.0000000000 3 1.0000000000
Rotation coefficients for orbital 24 grp = 12 T2G 3
1 1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 25 grp = 13 EG 1
1 -0.1633372268 2 0.9865702967
Rotation coefficients for orbital 26 grp = 13 EG 2
1 -0.9865702967 2 -0.1633372268
Rotation coefficients for orbital 27 grp = 14 T2U 1
1 0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 28 grp = 14 T2U 2
1 0.0000000000 2 -1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 29 grp = 14 T2U 3
1 -1.0000000000 2 -0.0000000000 3 0.0000000000
Rotation coefficients for orbital 30 grp = 15 T1U 1
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 31 grp = 15 T1U 2
1 1.0000000000 2 -0.0000000000 3 0.0000000000
Rotation coefficients for orbital 32 grp = 15 T1U 3
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 33 grp = 16 T1G 1
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 34 grp = 16 T1G 2
1 -1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 35 grp = 16 T1G 3
1 0.0000000000 2 0.0000000000 3 -1.0000000000
Number of orbital groups and degeneracis are 16
1 2 3 1 1 3 1 3 2 1 3 3 2 3 3 3
Number of orbital groups and number of electrons when fully occupied
16
2 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
Time Now = 0.6803 Delta time = 0.2797 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 16
Orbital 1 of A1G 1 symmetry normalization integral = 0.99999999
Orbital 2 of EG 1 symmetry normalization integral = 0.55843502
Orbital 3 of T1U 1 symmetry normalization integral = 0.58773011
Orbital 4 of A1G 1 symmetry normalization integral = 0.53527419
Orbital 5 of A1G 1 symmetry normalization integral = 0.99999990
Orbital 6 of T1U 1 symmetry normalization integral = 0.99999984
Orbital 7 of A1G 1 symmetry normalization integral = 0.96812200
Orbital 8 of T1U 1 symmetry normalization integral = 0.96361788
Orbital 9 of EG 1 symmetry normalization integral = 0.95603090
Orbital 10 of A1G 1 symmetry normalization integral = 0.98514732
Orbital 11 of T1U 1 symmetry normalization integral = 0.99135485
Orbital 12 of T2G 1 symmetry normalization integral = 0.98380448
Orbital 13 of EG 1 symmetry normalization integral = 0.99404941
Orbital 14 of T2U 1 symmetry normalization integral = 0.98304624
Orbital 15 of T1U 1 symmetry normalization integral = 0.98575827
Orbital 16 of T1G 1 symmetry normalization integral = 0.97340206
Time Now = 1.3208 Delta time = 0.6405 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 70.00000000
Time Now = 1.3336 Delta time = 0.0128 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.70000000E+02 facnorm = 0.10000000E+01
Time Now = 1.3516 Delta time = 0.0180 Electronic part
Time Now = 1.3532 Delta time = 0.0016 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 1.3621 Delta time = 0.0090 End VcpPol
----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------
Switching distance (SwitchD) = 0.15000
Number of terms in the asymptotic polarization potential (nterm) = 7
Term = 1 At center = 1
Explicit coordinates = 0.00000000E+00 0.00000000E+00 0.00000000E+00
Type = 1
Polarizability = 0.16198000E+02 au
Term = 2 At center = 2
Explicit coordinates = 0.00000000E+00 0.00000000E+00 0.15602260E+01
Type = 1
Polarizability = 0.46560000E+01 au
Term = 3 At center = 3
Explicit coordinates = 0.00000000E+00 0.15602260E+01 0.00000000E+00
Type = 1
Polarizability = 0.46560000E+01 au
Term = 4 At center = 4
Explicit coordinates = -0.15602260E+01 0.00000000E+00 0.00000000E+00
Type = 1
Polarizability = 0.46560000E+01 au
Term = 5 At center = 5
Explicit coordinates = 0.15602260E+01 0.00000000E+00 0.00000000E+00
Type = 1
Polarizability = 0.46560000E+01 au
Term = 6 At center = 6
Explicit coordinates = 0.00000000E+00 -0.15602260E+01 0.00000000E+00
Type = 1
Polarizability = 0.46560000E+01 au
Term = 7 At center = 7
Explicit coordinates = 0.00000000E+00 0.00000000E+00 -0.15602260E+01
Type = 1
Polarizability = 0.46560000E+01 au
Last center is at (RCenterX) = 1.56023 Angs
Radial matching parameter (icrtyp) = 3
Matching line type (ilntyp) = 0
Using closest approach for matching r
Matching point is at r = 3.2642829693 Angs
Matching uses closest approach (iMatchType = 2)
First nonzero weight at(RFirstWt) R = 2.80917 Angs
Last point of the switching region (RLastWt) R= 3.74052 Angs
Total asymptotic potential is 0.44134000E+02 a.u.
Time Now = 1.3806 Delta time = 0.0184 End AsyPol
+ Data Record ScatContSym - 'A1G'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13290000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 1.3888 Delta time = 0.0082 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1G 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.44134000E+02 au
Number of integration regions used = 67
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 5
Number of asymptotic solutions on the left (NAsymL) = 5
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 5
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 8
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 120
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 1.3995 Delta time = 0.0107 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.44134000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.35527137E-14 Asymp Coef = -0.33669062E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.27755576E-16 Asymp Moment = -0.94612690E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.62450045E-16 Asymp Moment = -0.21287855E-13 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10353365E-03 Asymp Moment = 0.37489814E+01 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.32526065E-18 Asymp Moment = 0.11777776E-13 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.12250267E-03 Asymp Moment = 0.44358547E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284644E-15
i = 2 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284680E-15
i = 3 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284749E-15
i = 4 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284838E-15
For potential 3
i = 1 lvals = 6 8 stpote = 0.38328982E-04 second term = 0.51185843E-04
i = 2 lvals = 6 6 stpote = -0.13055821E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = -0.61372177E-19 second term = 0.00000000E+00
i = 4 lvals = 8 10 stpote = -0.93530014E-05 second term = -0.84828196E-05
i = 5 lvals = 8 8 stpote = -0.22383189E-19 second term = 0.00000000E+00
i = 6 lvals = 8 10 stpote = -0.11066620E-04 second term = -0.10037007E-04
Number of asymptotic regions = 15
Final point in integration = 0.14769365E+03 Angstroms
Time Now = 2.5561 Delta time = 1.1567 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.96208371E+00-0.61571360E-03 0.18428859E-05-0.54829003E-07 0.74996846E-10
ROW 2
-0.61571360E-03 0.15384345E-01-0.20441446E-03 0.14689246E-04-0.20857967E-07
ROW 3
0.18425022E-05-0.20441447E-03 0.46020235E-02-0.27046776E-04 0.33050301E-05
ROW 4
-0.54826818E-07 0.14689246E-04-0.27046776E-04 0.21348733E-02-0.14857684E-04
ROW 5
0.74993075E-10-0.20857967E-07 0.33050301E-05-0.14857684E-04 0.11005187E-02
eigenphases
-0.7660763E+00 0.1100302E-02 0.2134774E-02 0.4598411E-02 0.1538741E-01
eigenphase sum-0.742855E+00 scattering length= 3.38738
eps+pi 0.239874E+01 eps+2*pi 0.554033E+01
MaxIter = 6 c.s. = 23.02658820 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.21011359E-09
Time Now = 9.9616 Delta time = 7.4055 End ScatStab
+ Data Record ScatContSym - 'T1G'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13290000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 9.9716 Delta time = 0.0099 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1G 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.44134000E+02 au
Number of integration regions used = 67
Number of partial waves (np) = 12
Number of asymptotic solutions on the right (NAsymR) = 6
Number of asymptotic solutions on the left (NAsymL) = 6
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 6
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 120
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 12
Time Now = 9.9797 Delta time = 0.0081 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.44134000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.35527137E-14 Asymp Coef = -0.33669062E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.27755576E-16 Asymp Moment = -0.94612690E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.62450045E-16 Asymp Moment = -0.21287855E-13 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10353365E-03 Asymp Moment = 0.37489814E+01 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.32526065E-18 Asymp Moment = 0.11777776E-13 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.12250267E-03 Asymp Moment = 0.44358547E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284644E-15
i = 2 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284680E-15
i = 3 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284749E-15
i = 4 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284838E-15
For potential 3
i = 1 lvals = 6 8 stpote = 0.38328982E-04 second term = 0.51185843E-04
i = 2 lvals = 6 6 stpote = -0.13055821E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = -0.61372177E-19 second term = 0.00000000E+00
i = 4 lvals = 8 10 stpote = -0.93530014E-05 second term = -0.84828196E-05
i = 5 lvals = 8 8 stpote = -0.22383189E-19 second term = 0.00000000E+00
i = 6 lvals = 8 10 stpote = -0.11066620E-04 second term = -0.10037007E-04
Number of asymptotic regions = 15
Final point in integration = 0.14769365E+03 Angstroms
Time Now = 11.2307 Delta time = 1.2510 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.14940525E-01-0.14938568E-03 0.13200490E-04 0.40525784E-05-0.20600411E-07
0.70881465E-09
ROW 2
-0.14938568E-03 0.46309537E-02-0.16827555E-04-0.22328101E-04 0.24667515E-05
0.24530920E-05
ROW 3
0.13200490E-04-0.16827555E-04 0.21318493E-02 0.46040199E-05-0.12124057E-04
-0.31430053E-06
ROW 4
0.40525784E-05-0.22328101E-04 0.46040199E-05 0.20771168E-02-0.86742697E-05
-0.24621335E-05
ROW 5
-0.20600411E-07 0.24667515E-05-0.12124057E-04-0.86742697E-05 0.10971893E-02
0.39632200E-05
ROW 6
0.70881465E-09 0.24530920E-05-0.31430053E-06-0.24621335E-05 0.39632200E-05
0.11040459E-02
eigenphases
0.1095214E-02 0.1105793E-02 0.2076624E-02 0.2132238E-02 0.4629066E-02
0.1494159E-01
eigenphase sum 0.259805E-01 scattering length= -0.09585
eps+pi 0.316757E+01 eps+2*pi 0.630917E+01
MaxIter = 4 c.s. = 0.01225398 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.15928008E-13
Time Now = 17.1258 Delta time = 5.8951 End ScatStab
+ Data Record GrnType - 1
+ Data Record ScatContSym - 'A1G'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13290000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 17.1356 Delta time = 0.0099 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.44134000E+02 au
Number of integration regions used = 67
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 5
Number of asymptotic solutions on the left (NAsymL) = 5
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 5
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 8
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 120
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 17.1437 Delta time = 0.0080 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.44134000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.35527137E-14 Asymp Coef = -0.33669062E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.27755576E-16 Asymp Moment = -0.94612690E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.62450045E-16 Asymp Moment = -0.21287855E-13 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10353365E-03 Asymp Moment = 0.37489814E+01 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.32526065E-18 Asymp Moment = 0.11777776E-13 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.12250267E-03 Asymp Moment = 0.44358547E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284644E-15
i = 2 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284680E-15
i = 3 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284749E-15
i = 4 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284838E-15
For potential 3
i = 1 lvals = 6 8 stpote = 0.38328982E-04 second term = 0.51185843E-04
i = 2 lvals = 6 6 stpote = -0.13055821E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = -0.61372177E-19 second term = 0.00000000E+00
i = 4 lvals = 8 10 stpote = -0.93530014E-05 second term = -0.84828196E-05
i = 5 lvals = 8 8 stpote = -0.22383189E-19 second term = 0.00000000E+00
i = 6 lvals = 8 10 stpote = -0.11066620E-04 second term = -0.10037007E-04
Number of asymptotic regions = 15
Final point in integration = 0.14769365E+03 Angstroms
Time Now = 18.3123 Delta time = 1.1686 End SolveHomo
Final T matrix
ROW 1
(-0.49962651E+00, 0.48068272E+00) (-0.32440674E-03, 0.30263584E-03)
( 0.10228167E-05,-0.84973327E-06) (-0.32990224E-07, 0.22530638E-07)
( 0.48432144E-10,-0.26780048E-10)
ROW 2
(-0.32440674E-03, 0.30263584E-03) ( 0.15380886E-01, 0.23686659E-03)
(-0.20434779E-03,-0.40854840E-05) ( 0.14685112E-04, 0.26282952E-06)
(-0.20834279E-07,-0.12373296E-08)
ROW 3
( 0.10225296E-05,-0.84956138E-06) (-0.20434780E-03,-0.40854848E-05)
( 0.46019250E-02, 0.21220683E-04) (-0.27045746E-04,-0.18525735E-06)
( 0.33049360E-05, 0.19252784E-07)
ROW 4
(-0.32987178E-07, 0.22530804E-07) ( 0.14685112E-04, 0.26282955E-06)
(-0.27045746E-04,-0.18525735E-06) ( 0.21348636E-02, 0.45588349E-05)
(-0.14857563E-04,-0.48167234E-07)
ROW 5
( 0.48426413E-10,-0.26780879E-10) (-0.20834279E-07,-0.12373296E-08)
( 0.33049360E-05, 0.19252784E-07) (-0.14857563E-04,-0.48167234E-07)
( 0.11005174E-02, 0.12114353E-05)
eigenphases
-0.7660763E+00 0.1100302E-02 0.2134774E-02 0.4598411E-02 0.1538741E-01
eigenphase sum-0.742855E+00 scattering length= 3.38738
eps+pi 0.239874E+01 eps+2*pi 0.554033E+01
MaxIter = 5 c.s. = 23.02658820 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.10940657E-09
Time Now = 31.8905 Delta time = 13.5782 End ScatStab
+ Data Record ScatContSym - 'T1G'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13290000E+02 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 31.9003 Delta time = 0.0098 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.44134000E+02 au
Number of integration regions used = 67
Number of partial waves (np) = 12
Number of asymptotic solutions on the right (NAsymR) = 6
Number of asymptotic solutions on the left (NAsymL) = 6
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 6
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 120
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 12
Time Now = 31.9083 Delta time = 0.0081 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.44134000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.35527137E-14 Asymp Coef = -0.33669062E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.27755576E-16 Asymp Moment = -0.94612690E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.62450045E-16 Asymp Moment = -0.21287855E-13 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10353365E-03 Asymp Moment = 0.37489814E+01 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.32526065E-18 Asymp Moment = 0.11777776E-13 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.12250267E-03 Asymp Moment = 0.44358547E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284644E-15
i = 2 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284680E-15
i = 3 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284749E-15
i = 4 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.27284838E-15
For potential 3
i = 1 lvals = 6 8 stpote = 0.38328982E-04 second term = 0.51185843E-04
i = 2 lvals = 6 6 stpote = -0.13055821E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = -0.61372177E-19 second term = 0.00000000E+00
i = 4 lvals = 8 10 stpote = -0.93530014E-05 second term = -0.84828196E-05
i = 5 lvals = 8 8 stpote = -0.22383189E-19 second term = 0.00000000E+00
i = 6 lvals = 8 10 stpote = -0.11066620E-04 second term = -0.10037007E-04
Number of asymptotic regions = 15
Final point in integration = 0.14769365E+03 Angstroms
Time Now = 33.1662 Delta time = 1.2579 End SolveHomo
Final T matrix
ROW 1
( 0.14937190E-01, 0.22319197E-03) (-0.14933880E-03,-0.29232959E-05)
( 0.13197008E-04, 0.22784417E-06) ( 0.40514573E-05, 0.72344873E-07)
(-0.20584230E-07,-0.89382091E-09) ( 0.71648845E-09,-0.36916777E-09)
ROW 2
(-0.14933880E-03,-0.29232959E-05) ( 0.46308538E-02, 0.21468372E-04)
(-0.16826907E-04,-0.11590320E-06) (-0.22327296E-04,-0.15048469E-06)
( 0.24666797E-05, 0.14540092E-07) ( 0.24530232E-05, 0.14138113E-07)
ROW 3
( 0.13197008E-04, 0.22784417E-06) (-0.16826907E-04,-0.11590320E-06)
( 0.21318396E-02, 0.45453898E-05) ( 0.46039538E-05, 0.19913305E-07)
(-0.12123958E-04,-0.39237098E-07) (-0.31429738E-06,-0.11187054E-08)
ROW 4
( 0.40514573E-05, 0.72344873E-07) (-0.22327296E-04,-0.15048469E-06)
( 0.46039538E-05, 0.19913305E-07) ( 0.20771078E-02, 0.43150151E-05)
(-0.86742013E-05,-0.27660504E-07) (-0.24621136E-05,-0.79253614E-08)
ROW 5
(-0.20584230E-07,-0.89382091E-09) ( 0.24666797E-05, 0.14540092E-07)
(-0.12123958E-04,-0.39237098E-07) (-0.86742013E-05,-0.27660504E-07)
( 0.10971880E-02, 0.12041101E-05) ( 0.39632054E-05, 0.87807675E-08)
ROW 6
( 0.71648845E-09,-0.36916777E-09) ( 0.24530232E-05, 0.14138113E-07)
(-0.31429738E-06,-0.11187054E-08) (-0.24621136E-05,-0.79253614E-08)
( 0.39632054E-05, 0.87807675E-08) ( 0.11040446E-02, 0.12189620E-05)
eigenphases
0.1095214E-02 0.1105793E-02 0.2076624E-02 0.2132238E-02 0.4629066E-02
0.1494159E-01
eigenphase sum 0.259805E-01 scattering length= -0.09585
eps+pi 0.316757E+01 eps+2*pi 0.630917E+01
MaxIter = 4 c.s. = 0.01225398 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.15924453E-13
Time Now = 44.6878 Delta time = 11.5216 End ScatStab
Time Now = 44.6881 Delta time = 0.0002 Finalize