Execution on n0155.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:27.458 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# inpuut file for test23
#
# Determine SiF4 normal modes
#
LMax 25
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test23.g03' 'gaussian'
GetBlms
SymNormMode
GeomNormMode 7 0.
GeomNormMode 7 -1. 1.
GeomNormMode 8 -1. 1.
GeomNormMode 9 -1. 1.
+ End of input reached
+ Data Record LMax - 25
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test23.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # HF/AUG-CC-PVTZ SCF=TIGHT 6D 10F GFINPUT PUNCH=MO FREQ=HPMODES
CardFlag = T
Normal Mode flag = T
Selecting orbitals
from 1 to 25 number already selected 0
Number of orbitals selected is 25
Highest orbital read in is = 25
Normal modes read in
Normal mode 1
Freq = 276.6532 Reduced Mass = 18.9984 Force constant = 0.8567
1 0.00000 0.00000 0.00000
2 -0.32998 -0.04318 0.37316
3 0.32998 0.04318 0.37316
4 0.32998 -0.04318 -0.37316
5 -0.32998 0.04318 -0.37316
Normal mode 2
Freq = 276.6532 Reduced Mass = 18.9984 Force constant = 0.8567
1 0.00000 0.00000 0.00000
2 -0.24038 0.40596 -0.16558
3 0.24038 -0.40596 -0.16558
4 0.24038 0.40596 0.16558
5 -0.24038 -0.40596 0.16558
Normal mode 3
Freq = 409.3729 Reduced Mass = 20.4576 Force constant = 2.0200
1 0.23326 0.23202 0.23297
2 0.26714 0.26855 0.26747
3 -0.08660 -0.08519 -0.43901
4 -0.08515 -0.43938 -0.08482
5 -0.43889 -0.08564 -0.08671
Normal mode 4
Freq = 409.3729 Reduced Mass = 20.4576 Force constant = 2.0200
1 -0.29982 0.26734 0.03396
2 0.33912 -0.30027 -0.03716
3 0.28756 -0.35183 0.01216
4 -0.06680 0.10343 -0.44309
5 -0.11836 0.15499 0.41809
Normal mode 5
Freq = 409.3729 Reduced Mass = 20.4576 Force constant = 2.0200
1 -0.13495 -0.19291 0.32724
2 0.15167 0.21701 -0.36939
3 -0.34522 -0.27988 0.12844
4 0.44459 -0.07497 -0.07647
5 -0.05230 0.42192 -0.16448
Normal mode 6
Freq = 850.0192 Reduced Mass = 18.9984 Force constant = 8.0877
1 0.00000 0.00000 0.00000
2 -0.28868 -0.28868 -0.28868
3 0.28868 0.28868 -0.28868
4 0.28868 -0.28868 0.28868
5 -0.28868 0.28868 0.28868
Normal mode 7
Freq = 1093.0994 Reduced Mass = 22.7048 Force constant = 15.9841
1 -0.44692 -0.01446 0.46137
2 0.01628 0.00053 -0.01681
3 0.32238 0.30662 -0.32290
4 0.00669 0.01012 -0.02640
5 0.31278 -0.29597 -0.31331
Normal mode 8
Freq = 1093.0994 Reduced Mass = 22.7048 Force constant = 15.9841
1 -0.27648 0.52264 -0.25143
2 0.01182 -0.01729 0.01091
3 -0.15499 -0.18410 0.17422
4 0.35856 -0.36753 0.35765
5 0.19175 -0.20072 -0.17252
Normal mode 9
Freq = 1093.0994 Reduced Mass = 22.7048 Force constant = 15.9841
1 0.36964 0.37343 0.36976
2 -0.38261 -0.38275 -0.38262
3 -0.13730 -0.13744 0.11036
4 -0.13487 0.10779 -0.13487
5 0.11045 -0.13752 -0.13739
Time Now = 0.0070 Delta time = 0.0070 End GaussianCnv
Atoms found 5 Coordinates in Angstroms
Z = 14 ZS = 14 r = 0.0000000000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 0.8924150000 0.8924150000 0.8924150000
Z = 9 ZS = 9 r = -0.8924150000 -0.8924150000 0.8924150000
Z = 9 ZS = 9 r = -0.8924150000 0.8924150000 -0.8924150000
Z = 9 ZS = 9 r = 0.8924150000 -0.8924150000 -0.8924150000
Maximum distance from expansion center is 1.5457081214
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Td
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup D2
Time Now = 0.0161 Delta time = 0.0091 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.57735 0.57735 0.57735 9 1.54571
3 -0.57735 -0.57735 0.57735 9 1.54571
4 -0.57735 0.57735 -0.57735 9 1.54571
5 0.57735 -0.57735 -0.57735 9 1.54571
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 0.81650 -0.40825 -0.40825
3 0.81650 -0.40825 0.40825
4 0.81650 0.40825 -0.40825
5 0.81650 0.40825 0.40825
Computed default value of LMaxA = 11
Determining angular grid in GetAxMax LMax = 25 LMaxA = 11 LMaxAb = 50
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3 3
3 3 3 3 3 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3 3
3 3 3 3 3 3
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3 3
3 3 3 3 3 3
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3 3
3 3 3 3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Td
LMax 25
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) E ( 2) T1 ( 3) T2 ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
8 11 14
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 34 1 1 1
A2 1 2 17 1 1 1
E 1 3 40 1 1 1
E 2 4 40 1 1 1
T1 1 5 57 -1 -1 1
T1 2 6 57 -1 1 -1
T1 3 7 57 1 -1 -1
T2 1 8 76 -1 -1 1
T2 2 9 76 -1 1 -1
T2 3 10 76 1 -1 -1
Time Now = 0.8680 Delta time = 0.8519 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 1) 2( 1) 3( 2) 4( 3) 5( 3) 6( 4) 7( 5) 8( 6) 9( 7)
10( 8) 11( 9)
A2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 2)
10( 3) 11( 3)
E 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12)
E 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12)
T1 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15)
T1 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15)
T1 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15)
T2 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21)
T2 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21)
T2 3 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2
LMax 50
The dimension of each irreducable representation is
A ( 1) B1 ( 1) B2 ( 1) B3 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
4 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
irep = 1 sym =A 1 eigs = 1 1 1 1
irep = 2 sym =B1 1 eigs = 1 1 -1 -1
irep = 3 sym =B2 1 eigs = 1 -1 1 -1
irep = 4 sym =B3 1 eigs = 1 -1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A 1 1 651 1 1 1
B1 1 2 650 1 -1 -1
B2 1 3 650 -1 1 -1
B3 1 4 650 -1 -1 1
Time Now = 0.8789 Delta time = 0.0109 End SymGen
+ Command SymNormMode
+
----------------------------------------------------------------------
SymNormMode - generate symmetry normal coordinates
----------------------------------------------------------------------
Tolerence for frequencies (FreqToler) = 0.1000E-03
Point group is Td
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) E ( 2) T1 ( 3) T2 ( 3)
AMass =
27.976927 27.976927 27.976927 18.998403 18.998403
18.998403 18.998403 18.998403 18.998403 18.998403
18.998403 18.998403 18.998403 18.998403 18.998403
Groups of degenerate frequencies
1 276.6532 1 2
2 409.3729 3 4 5
3 850.0192 6
4 1093.0994 7 8 9
Normal modes after symmeterization
Normal mode 1 Sym =E 1
Freq (cm-1) = 276.6532 Reduced Mass (u) = 18.9984 Force constant (mDyne/angs)= 0.8567 XCT = 0.080092 angs
1 0.00000 0.00000 0.00000
2 -0.20412 -0.20412 0.40825
3 0.20412 0.20412 0.40825
4 0.20412 -0.20412 -0.40825
5 -0.20412 0.20412 -0.40825
Normal mode 2 Sym =E 2
Freq (cm-1) = 276.6532 Reduced Mass (u) = 18.9984 Force constant (mDyne/angs)= 0.8567 XCT = 0.080092 angs
1 0.00000 0.00000 0.00000
2 0.35355 -0.35355 -0.00000
3 -0.35355 0.35355 -0.00000
4 -0.35355 -0.35355 0.00000
5 0.35355 0.35355 0.00000
Normal mode 3 Sym =T2 1
Freq (cm-1) = 409.3729 Reduced Mass (u) = 20.4576 Force constant (mDyne/angs)= 2.0200 XCT = 0.063449 angs
1 -0.40313 0.00000 -0.00000
2 0.14841 -0.30606 -0.30606
3 0.14841 -0.30606 0.30606
4 0.14841 0.30606 -0.30606
5 0.14842 0.30606 0.30606
Normal mode 4 Sym =T2 2
Freq (cm-1) = 409.3729 Reduced Mass (u) = 20.4576 Force constant (mDyne/angs)= 2.0200 XCT = 0.063449 angs
1 -0.00000 -0.40314 -0.00000
2 -0.30605 0.14841 -0.30606
3 -0.30606 0.14841 0.30606
4 0.30606 0.14841 0.30606
5 0.30606 0.14841 -0.30606
Normal mode 5 Sym =T2 3
Freq (cm-1) = 409.3729 Reduced Mass (u) = 20.4575 Force constant (mDyne/angs)= 2.0200 XCT = 0.063449 angs
1 -0.00000 -0.00000 -0.40313
2 -0.30606 -0.30606 0.14841
3 0.30606 0.30606 0.14841
4 -0.30606 0.30606 0.14841
5 0.30606 -0.30606 0.14841
Normal mode 6 Sym =A1 1
Freq (cm-1) = 850.0192 Reduced Mass (u) = 18.9984 Force constant (mDyne/angs)= 8.0877 XCT = 0.045692 angs
1 -0.00000 -0.00000 -0.00000
2 -0.28868 -0.28868 -0.28868
3 0.28868 0.28868 -0.28867
4 0.28868 -0.28867 0.28868
5 -0.28867 0.28868 0.28868
Normal mode 7 Sym =T2 1
Freq (cm-1) = 1093.0994 Reduced Mass (u) = 22.7048 Force constant (mDyne/angs)= 15.9841 XCT = 0.036857 angs
1 -0.64250 0.00000 -0.00000
2 0.23654 0.21313 0.21313
3 0.23654 0.21313 -0.21313
4 0.23653 -0.21313 0.21313
5 0.23654 -0.21313 -0.21313
Normal mode 8 Sym =T2 2
Freq (cm-1) = 1093.0994 Reduced Mass (u) = 22.7048 Force constant (mDyne/angs)= 15.9841 XCT = 0.036857 angs
1 0.00000 -0.64250 0.00000
2 0.21313 0.23654 0.21313
3 0.21313 0.23654 -0.21313
4 -0.21313 0.23654 -0.21313
5 -0.21313 0.23654 0.21313
Normal mode 9 Sym =T2 3
Freq (cm-1) = 1093.0994 Reduced Mass (u) = 22.7048 Force constant (mDyne/angs)= 15.9841 XCT = 0.036857 angs
1 0.00000 0.00000 -0.64250
2 0.21313 0.21313 0.23654
3 -0.21313 -0.21313 0.23654
4 0.21313 -0.21313 0.23654
5 -0.21313 0.21313 0.23654
Location of the Center of Mass 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode, COM momentum and Angular momentum
1 Lin 0.00000000E+00 0.00000000E+00 0.00000000E+00
1 Ang 0.00000000E+00 0.00000000E+00 0.00000000E+00
2 Lin 0.00000000E+00 0.00000000E+00 0.00000000E+00
2 Ang 0.00000000E+00 0.00000000E+00 0.00000000E+00
3 Lin 0.21567676E-03 -0.65404311E-04 0.75795183E-04
3 Ang 0.66195665E-03 -0.29118523E-03 0.00000000E+00
4 Lin 0.65451226E-04 -0.14400751E-03 -0.19534012E-03
4 Ang -0.24054271E-03 0.60933311E-03 0.35527137E-14
5 Lin -0.18835362E-03 -0.15804141E-03 0.11451737E-03
5 Ang 0.13118145E-03 0.23912433E-03 0.00000000E+00
6 Lin 0.14373391E-09 -0.56849192E-09 -0.64046546E-11
6 Ang 0.85892360E-09 0.85892182E-09 -0.17763568E-14
7 Lin -0.36379506E-04 0.15555282E-03 0.72655314E-04
7 Ang 0.27848532E-08 0.38530945E-04 0.38533840E-04
8 Lin 0.46279029E-04 0.16334088E-03 0.58719108E-04
8 Ang -0.28966101E-08 -0.17900461E-03 -0.17900291E-03
9 Lin 0.64668719E-05 -0.10797346E-04 0.32359257E-03
9 Ang 0.20981519E-08 -0.41446087E-03 -0.41445899E-03
Time Now = 0.8799 Delta time = 0.0010 End SymNormMode
+ Command GeomNormMode
+ 7 0.
Generated geometry (in angs) for mode 7 with factor times X_CT = 0.000000
14 0.000000 0.000000 0.000000
9 0.892415 0.892415 0.892415
9 -0.892415 -0.892415 0.892415
9 -0.892415 0.892415 -0.892415
9 0.892415 -0.892415 -0.892415
+ Command GeomNormMode
+ 7 -1. 1.
Generated geometry (in angs) for mode 7 with factor times X_CT = -1.000000
14 0.023681 -0.000000 0.000000
9 0.883697 0.884560 0.884560
9 -0.901133 -0.900270 0.900270
9 -0.901133 0.900270 -0.900270
9 0.883697 -0.884560 -0.884560
Generated geometry (in angs) for mode 7 with factor times X_CT = 1.000000
14 -0.023681 0.000000 -0.000000
9 0.901133 0.900270 0.900270
9 -0.883697 -0.884560 0.884560
9 -0.883697 0.884560 -0.884560
9 0.901133 -0.900270 -0.900270
+ Command GeomNormMode
+ 8 -1. 1.
Generated geometry (in angs) for mode 8 with factor times X_CT = -1.000000
14 -0.000000 0.023681 -0.000000
9 0.884560 0.883697 0.884560
9 -0.900270 -0.901133 0.900270
9 -0.884560 0.883697 -0.884560
9 0.900270 -0.901133 -0.900270
Generated geometry (in angs) for mode 8 with factor times X_CT = 1.000000
14 0.000000 -0.023681 0.000000
9 0.900270 0.901133 0.900270
9 -0.884560 -0.883697 0.884560
9 -0.900270 0.901133 -0.900270
9 0.884560 -0.883697 -0.884560
+ Command GeomNormMode
+ 9 -1. 1.
Generated geometry (in angs) for mode 9 with factor times X_CT = -1.000000
14 -0.000000 -0.000000 0.023681
9 0.884560 0.884560 0.883697
9 -0.884560 -0.884560 0.883697
9 -0.900270 0.900270 -0.901133
9 0.900270 -0.900270 -0.901133
Generated geometry (in angs) for mode 9 with factor times X_CT = 1.000000
14 0.000000 0.000000 -0.023681
9 0.900270 0.900270 0.901133
9 -0.900270 -0.900270 0.901133
9 -0.884560 0.884560 -0.883697
9 0.884560 -0.884560 -0.883697
Time Now = 0.8808 Delta time = 0.0009 Finalize