Execution on n0157.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:54.627 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test22
#
# Photoionization of NO2
#
LMax 15
LMaxI 40 # maximum l value used to determine numerical angular grids
EMax 50.0
FegeEng 16.3 # Energy correction used in the fege potential
InitSym 'A1' # Initial state symmetry
InitSpinDeg 2 # Initial state spin degeneracy
OrbOccInit 2 2 2 2 2 2 2 2 2 2 2 1 # Orbital occupation of initial state
OrbOcc 2 2 2 2 2 2 2 2 2 2 1 1 # occupation of the orbital groups of target
SpinDeg 2 # Spin degeneracy of the total scattering state (=1 singlet)
TargSym 'A2' # Symmetry of the target state
TargSpinDeg 3 # Target spin degeneracy
ScatSym 'B2' # Scattering symmetry of total final state
ScatContSym 'B1' # Scattering symmetry of continuum electron
IPot 13.592 # ionization potentail
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test22.g03' 'gaussian'
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
PhIon 5.0 10.0
GetCro
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record EMax - 50.0
+ Data Record FegeEng - 16.3
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 2
+ Data Record OrbOccInit - 2 2 2 2 2 2 2 2 2 2 2 1
+ Data Record OrbOcc - 2 2 2 2 2 2 2 2 2 2 1 1
+ Data Record SpinDeg - 2
+ Data Record TargSym - 'A2'
+ Data Record TargSpinDeg - 3
+ Data Record ScatSym - 'B2'
+ Data Record ScatContSym - 'B1'
+ Data Record IPot - 13.592
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test22.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # ROHF/CC-PVTZ SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 12 number already selected 0
Number of orbitals selected is 12
Highest orbital read in is = 12
Time Now = 0.0058 Delta time = 0.0058 End GaussianCnv
Atoms found 3 Coordinates in Angstroms
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 0.3256890000
Z = 8 ZS = 8 r = 0.0000000000 1.0989810000 -0.1424890000
Z = 8 ZS = 8 r = 0.0000000000 -1.0989810000 -0.1424890000
Maximum distance from expansion center is 1.1081797478
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group C2v
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup C2v
Time Now = 0.0156 Delta time = 0.0098 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 7 0.32569
2 0.00000 0.99170 -0.12858 8 1.10818
3 0.00000 -0.99170 -0.12858 8 1.10818
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000
3 1.00000 0.00000 0.00000
Computed default value of LMaxA = 13
Determining angular grid in GetAxMax LMax = 15 LMaxA = 13 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 3 3
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 15
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 -1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
3 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
4 0.000000 0.000000 -1.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 -1 1 -1
irep = 4 sym =B2 1 eigs = 1 1 -1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 68 1 1 1
A2 1 2 50 -1 -1 1
B1 1 3 59 -1 1 -1
B2 1 4 61 1 -1 -1
Time Now = 0.1152 Delta time = 0.0995 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 2) 2( 4) 3( 6) 4( 9) 5( 12) 6( 16) 7( 20) 8( 25) 9( 30)
10( 36) 11( 42) 12( 49) 13( 56)
A2 1 0( 0) 1( 0) 2( 1) 3( 2) 4( 4) 5( 6) 6( 9) 7( 12) 8( 16) 9( 20)
10( 25) 11( 30) 12( 36) 13( 42)
B1 1 0( 0) 1( 1) 2( 2) 3( 4) 4( 6) 5( 9) 6( 12) 7( 16) 8( 20) 9( 25)
10( 30) 11( 36) 12( 42) 13( 49)
B2 1 0( 0) 1( 1) 2( 2) 3( 4) 4( 6) 5( 9) 6( 12) 7( 16) 8( 20) 9( 25)
10( 30) 11( 36) 12( 42) 13( 49)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 30
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 -1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
3 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
4 0.000000 0.000000 -1.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 -1 1 -1
irep = 4 sym =B2 1 eigs = 1 1 -1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 256 1 1 1
A2 1 2 225 -1 -1 1
B1 1 3 240 -1 1 -1
B2 1 4 240 1 -1 -1
Time Now = 0.1204 Delta time = 0.0052 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 5.8674883871 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 5.86749 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 5.86749 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.32569 Angs Alpha Max = 0.14700E+05
3 Center at = 1.10818 Angs Alpha Max = 0.19200E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.11312E-02 0.00905
2 8 16 0.15927E-02 0.02179
3 8 24 0.25635E-02 0.04230
4 8 32 0.34353E-02 0.06978
5 8 40 0.40047E-02 0.10182
6 8 48 0.40713E-02 0.13439
7 8 56 0.37467E-02 0.16436
8 8 64 0.36350E-02 0.19344
9 8 72 0.40119E-02 0.22554
10 8 80 0.46254E-02 0.26254
11 8 88 0.28761E-02 0.28555
12 8 96 0.18282E-02 0.30017
13 8 104 0.11621E-02 0.30947
14 8 112 0.73865E-03 0.31538
15 8 120 0.52655E-03 0.31959
16 8 128 0.45044E-03 0.32320
17 8 136 0.31160E-03 0.32569
18 8 144 0.43646E-03 0.32918
19 8 152 0.46530E-03 0.33290
20 8 160 0.57358E-03 0.33749
21 8 168 0.87025E-03 0.34445
22 8 176 0.13836E-02 0.35552
23 8 184 0.21997E-02 0.37312
24 8 192 0.34972E-02 0.40110
25 8 200 0.55601E-02 0.44558
26 8 208 0.88398E-02 0.51630
27 8 216 0.10708E-01 0.60196
28 8 224 0.12484E-01 0.70183
29 8 232 0.14556E-01 0.81828
30 8 240 0.13208E-01 0.92394
31 8 248 0.83911E-02 0.99107
32 8 256 0.53337E-02 1.03374
33 8 264 0.33903E-02 1.06086
34 8 272 0.21550E-02 1.07810
35 8 280 0.13698E-02 1.08906
36 8 288 0.87070E-03 1.09603
37 8 296 0.56043E-03 1.10051
38 8 304 0.42987E-03 1.10395
39 8 312 0.38524E-03 1.10703
40 8 320 0.14343E-03 1.10818
41 8 328 0.38190E-03 1.11123
42 8 336 0.40714E-03 1.11449
43 8 344 0.50188E-03 1.11851
44 8 352 0.76147E-03 1.12460
45 8 360 0.12106E-02 1.13428
46 8 368 0.19247E-02 1.14968
47 8 376 0.30601E-02 1.17416
48 8 384 0.48651E-02 1.21308
49 8 392 0.77349E-02 1.27496
50 8 400 0.12297E-01 1.37334
51 8 408 0.19551E-01 1.52975
52 8 416 0.29356E-01 1.76460
53 8 424 0.32173E-01 2.02199
54 8 432 0.36546E-01 2.31436
55 8 440 0.40481E-01 2.63821
56 8 448 0.44018E-01 2.99035
57 8 456 0.47195E-01 3.36791
58 8 464 0.50046E-01 3.76828
59 8 472 0.52607E-01 4.18914
60 8 480 0.54909E-01 4.62841
61 8 488 0.56980E-01 5.08424
62 8 496 0.58846E-01 5.55501
63 8 504 0.39059E-01 5.86749
Time Now = 0.1357 Delta time = 0.0153 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 40
Maximum numerical integration m (mmaxi) = 40
Maximum l to include in the asymptotic region (lmasym) = 13
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 13
Actual value of lmasym found = 13
Number of regions of the same l expansion (NAngReg) = 9
Angular regions
1 L = 2 from ( 1) 0.00113 to ( 7) 0.00792
2 L = 3 from ( 8) 0.00905 to ( 15) 0.02020
3 L = 5 from ( 16) 0.02179 to ( 23) 0.03974
4 L = 6 from ( 24) 0.04230 to ( 31) 0.06635
5 L = 8 from ( 32) 0.06978 to ( 39) 0.09781
6 L = 9 from ( 40) 0.10182 to ( 47) 0.13032
7 L = 11 from ( 48) 0.13439 to ( 55) 0.16062
8 L = 15 from ( 56) 0.16436 to ( 424) 2.02199
9 L = 13 from ( 425) 2.05853 to ( 504) 5.86749
There are 2 angular regions for computing spherical harmonics
1 lval = 13
2 lval = 15
Maximum number of processors is 62
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 64
Proc id = 1 Last grid point = 88
Proc id = 2 Last grid point = 112
Proc id = 3 Last grid point = 136
Proc id = 4 Last grid point = 152
Proc id = 5 Last grid point = 176
Proc id = 6 Last grid point = 200
Proc id = 7 Last grid point = 224
Proc id = 8 Last grid point = 248
Proc id = 9 Last grid point = 272
Proc id = 10 Last grid point = 288
Proc id = 11 Last grid point = 312
Proc id = 12 Last grid point = 336
Proc id = 13 Last grid point = 360
Proc id = 14 Last grid point = 384
Proc id = 15 Last grid point = 400
Proc id = 16 Last grid point = 424
Proc id = 17 Last grid point = 456
Proc id = 18 Last grid point = 480
Proc id = 19 Last grid point = 504
Time Now = 0.1491 Delta time = 0.0134 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -20.676970 B2 1 at max irg = 320 r = 1.10818
2 Orig 2 Eng = -20.676904 A1 1 at max irg = 320 r = 1.10818
3 Orig 3 Eng = -15.868761 A1 1 at max irg = 144 r = 0.32918
4 Orig 4 Eng = -1.650362 A1 1 at max irg = 232 r = 0.81828
5 Orig 5 Eng = -1.470270 B2 1 at max irg = 240 r = 0.92394
6 Orig 6 Eng = -0.906357 A1 1 at max irg = 400 r = 1.37334
7 Orig 7 Eng = -0.768494 B2 1 at max irg = 400 r = 1.37334
8 Orig 8 Eng = -0.757872 A1 1 at max irg = 336 r = 1.11449
9 Orig 9 Eng = -0.753686 B1 1 at max irg = 328 r = 1.11123
10 Orig 10 Eng = -0.534307 B2 1 at max irg = 376 r = 1.17416
11 Orig 11 Eng = -0.523985 A2 1 at max irg = 368 r = 1.14968
12 Orig 12 Eng = -0.155855 A1 1 at max irg = 360 r = 1.13428
Rotation coefficients for orbital 1 grp = 1 B2 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A1 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 A1 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 A1 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 B2 1
1 1.0000000000
Rotation coefficients for orbital 6 grp = 6 A1 1
1 1.0000000000
Rotation coefficients for orbital 7 grp = 7 B2 1
1 1.0000000000
Rotation coefficients for orbital 8 grp = 8 A1 1
1 1.0000000000
Rotation coefficients for orbital 9 grp = 9 B1 1
1 1.0000000000
Rotation coefficients for orbital 10 grp = 10 B2 1
1 1.0000000000
Rotation coefficients for orbital 11 grp = 11 A2 1
1 1.0000000000
Rotation coefficients for orbital 12 grp = 12 A1 1
1 1.0000000000
Number of orbital groups and degeneracis are 12
1 1 1 1 1 1 1 1 1 1 1 1
Number of orbital groups and number of electrons when fully occupied
12
2 2 2 2 2 2 2 2 2 2 2 2
Time Now = 0.2290 Delta time = 0.0799 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 12
Orbital 1 of B2 1 symmetry normalization integral = 0.81931447
Orbital 2 of A1 1 symmetry normalization integral = 0.82973378
Orbital 3 of A1 1 symmetry normalization integral = 0.99890505
Orbital 4 of A1 1 symmetry normalization integral = 0.99280777
Orbital 5 of B2 1 symmetry normalization integral = 0.98811003
Orbital 6 of A1 1 symmetry normalization integral = 0.99392143
Orbital 7 of B2 1 symmetry normalization integral = 0.99718148
Orbital 8 of A1 1 symmetry normalization integral = 0.99896985
Orbital 9 of B1 1 symmetry normalization integral = 0.99908645
Orbital 10 of B2 1 symmetry normalization integral = 0.99839611
Orbital 11 of A2 1 symmetry normalization integral = 0.99816673
Orbital 12 of A1 1 symmetry normalization integral = 0.99848904
Time Now = 0.8121 Delta time = 0.5831 End ExpOrb
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 12
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 4 name - B2 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 1 name - A1 1
Set 3 has degeneracy 1
Orbital 1 is num 3 type = 1 name - A1 1
Set 4 has degeneracy 1
Orbital 1 is num 4 type = 1 name - A1 1
Set 5 has degeneracy 1
Orbital 1 is num 5 type = 4 name - B2 1
Set 6 has degeneracy 1
Orbital 1 is num 6 type = 1 name - A1 1
Set 7 has degeneracy 1
Orbital 1 is num 7 type = 4 name - B2 1
Set 8 has degeneracy 1
Orbital 1 is num 8 type = 1 name - A1 1
Set 9 has degeneracy 1
Orbital 1 is num 9 type = 3 name - B1 1
Set 10 has degeneracy 1
Orbital 1 is num 10 type = 4 name - B2 1
Set 11 has degeneracy 1
Orbital 1 is num 11 type = 2 name - A2 1
Set 12 has degeneracy 1
Orbital 1 is num 12 type = 1 name - A1 1
Orbital occupations by degenerate group
1 B2 occ = 2
2 A1 occ = 2
3 A1 occ = 2
4 A1 occ = 2
5 B2 occ = 2
6 A1 occ = 2
7 B2 occ = 2
8 A1 occ = 2
9 B1 occ = 2
10 B2 occ = 2
11 A2 occ = 1
12 A1 occ = 1
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Symmetry of the continuum orbital is B1
Symmetry of the total state is B2
Spin degeneracy of the total state is = 2
Symmetry of the target state is A2
Spin degeneracy of the target state is = 3
Symmetry of the initial state is A1
Spin degeneracy of the initial state is = 2
Orbital occupations of initial state by degenerate group
1 B2 occ = 2
2 A1 occ = 2
3 A1 occ = 2
4 A1 occ = 2
5 B2 occ = 2
6 A1 occ = 2
7 B2 occ = 2
8 A1 occ = 2
9 B1 occ = 2
10 B2 occ = 2
11 A2 occ = 2
12 A1 occ = 1
Open shell symmetry types
1 A2 iele = 1
2 A1 iele = 1
Use only configuration of type A2
MS2 = 2 SDGN = 3
NumAlpha = 2
List of determinants found
1: 1.00000 0.00000 1 3
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 3
Each irreducable representation is present the number of times indicated
A2 ( 1)
representation A2 component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 3
Open shell symmetry types
1 A2 iele = 1
2 A1 iele = 1
3 B1 iele = 1
Use only configuration of type B2
Each irreducable representation is present the number of times indicated
B2 ( 1)
representation B2 component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.81650 0.00000 1 3 6
2: 0.40825 0.00000 1 4 5
3: 0.40825 0.00000 2 3 5
Open shell symmetry types
1 A2 iele = 1
2 A1 iele = 1
Use only configuration of type A2
MS2 = 2 SDGN = 3
NumAlpha = 2
List of determinants found
1: 1.00000 0.00000 1 3
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 3
Each irreducable representation is present the number of times indicated
A2 ( 1)
representation A2 component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 3
Direct product basis set
Direct product basis function
1: -0.81650 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 23 26
2: 0.40825 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 24 25
3: 0.40825 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
22 23 25
Open shell symmetry types
1 A1 iele = 1
Use only configuration of type A1
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
A1 ( 1)
representation A1 component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Time Now = 0.8134 Delta time = 0.0013 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.81650 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 23 26
2: 0.40825 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 24 25
3: 0.40825 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
22 23 25
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.81650 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 23 26
2: 0.40825 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 24 25
3: 0.40825 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
22 23 25
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 3
Symmetry of target = 2
Symmetry of total states = 4
Total symmetry component = 1
Cont Target Component
Comp 1
1 0.10000000E+01
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23
One electron matrix elements between initial and final states
1: 1.224744871 0.000000000 < 21| 25>
Reduced formula list
1 11 1 0.1224744871E+01
Time Now = 0.8138 Delta time = 0.0004 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 1
Symmetry of the continuum orbital (iContSym) = 3 or B1
Symmetry of total final state (iTotalSym) = 4 or B2
Symmetry of the initial state (iInitSym) = 1 or A1
Symmetry of the ionized target state (iTargSym) = 2 or A2
List of unique symmetry types
In the product of the symmetry types A1 A1
Each irreducable representation is present the number of times indicated
A1 ( 1)
In the product of the symmetry types A1 A1
Each irreducable representation is present the number of times indicated
A1 ( 1)
In the product of the symmetry types A1 A2
Each irreducable representation is present the number of times indicated
A2 ( 1)
Unique dipole matrix type 1 Dipole symmetry type =A1
Final state symmetry type = A1 Target sym =A2
Continuum type =A2
In the product of the symmetry types A1 B1
Each irreducable representation is present the number of times indicated
B1 ( 1)
In the product of the symmetry types A1 B2
Each irreducable representation is present the number of times indicated
B2 ( 1)
In the product of the symmetry types B1 A1
Each irreducable representation is present the number of times indicated
B1 ( 1)
In the product of the symmetry types B1 A1
Each irreducable representation is present the number of times indicated
B1 ( 1)
In the product of the symmetry types B1 A2
Each irreducable representation is present the number of times indicated
B2 ( 1)
In the product of the symmetry types B1 B1
Each irreducable representation is present the number of times indicated
A1 ( 1)
In the product of the symmetry types B1 B2
Each irreducable representation is present the number of times indicated
A2 ( 1)
Unique dipole matrix type 2 Dipole symmetry type =B1
Final state symmetry type = B1 Target sym =A2
Continuum type =B2
In the product of the symmetry types B2 A1
Each irreducable representation is present the number of times indicated
B2 ( 1)
In the product of the symmetry types B2 A1
Each irreducable representation is present the number of times indicated
B2 ( 1)
In the product of the symmetry types B2 A2
Each irreducable representation is present the number of times indicated
B1 ( 1)
In the product of the symmetry types B2 B1
Each irreducable representation is present the number of times indicated
A2 ( 1)
Unique dipole matrix type 3 Dipole symmetry type =B2
Final state symmetry type = B2 Target sym =A2
Continuum type =B1
In the product of the symmetry types B2 B2
Each irreducable representation is present the number of times indicated
A1 ( 1)
In the product of the symmetry types A1 A1
Each irreducable representation is present the number of times indicated
A1 ( 1)
In the product of the symmetry types B1 A1
Each irreducable representation is present the number of times indicated
B1 ( 1)
In the product of the symmetry types B2 A1
Each irreducable representation is present the number of times indicated
B2 ( 1)
Irreducible representation containing the dipole operator is B2
Number of different dipole operators in this representation is 1
In the product of the symmetry types B2 A1
Each irreducable representation is present the number of times indicated
B2 ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 0.00000000 1.00000000 0.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 1 Orb 11 Coef = 1.2247448710
Symmetry type to write out (SymTyp) =B1
Time Now = 7.0988 Delta time = 6.2850 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 22.00000000
Time Now = 7.1104 Delta time = 0.0115 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.22000000E+02 facnorm = 0.10000000E+01
Time Now = 7.1398 Delta time = 0.0294 Electronic part
Time Now = 7.1415 Delta time = 0.0017 End StPot
+ Command PhIon
+ 5.0 10.0
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.16300000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 7.1592 Delta time = 0.0177 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 11
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 63
Number of partial waves (np) = 59
Number of asymptotic solutions on the right (NAsymR) = 36
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 49
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 11
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 49
Time Now = 7.1672 Delta time = 0.0079 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.49960036E-15 Asymp Coef = -0.16113219E-10 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.73321578E-03 Asymp Moment = 0.11387976E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.12085597E-02 Asymp Moment = -0.18356245E+00 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.19932115E-02 Asymp Moment = -0.30273952E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44351785E+02 -0.20000000E+01 stpote = -0.94093259E-18
i = 2 exps = -0.44351785E+02 -0.20000000E+01 stpote = -0.97135905E-18
i = 3 exps = -0.44351785E+02 -0.20000000E+01 stpote = -0.10311830E-17
i = 4 exps = -0.44351785E+02 -0.20000000E+01 stpote = -0.11183646E-17
For potential 3
Number of asymptotic regions = 109
Final point in integration = 0.24146066E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 18.5316 Delta time = 11.3645 End SolveHomo
Final Dipole matrix
ROW 1
(-0.11849264E+00,-0.17586037E+00) ( 0.88659548E+00,-0.98915642E-01)
(-0.19749911E+00, 0.25173860E+00) (-0.22934998E-01, 0.30492078E-01)
( 0.48408337E-02, 0.88025731E-02) ( 0.12424126E-01, 0.15194710E-02)
( 0.50883076E-01,-0.15209722E-01) ( 0.20122248E-01,-0.61533879E-02)
( 0.59767357E-02,-0.18240524E-02) (-0.22989685E-02,-0.24855082E-04)
(-0.17020849E-02, 0.15837678E-03) (-0.57320625E-03, 0.98862944E-04)
(-0.13395391E-02, 0.37656712E-03) (-0.54578557E-03, 0.20607093E-03)
(-0.24340214E-03, 0.10914222E-03) (-0.69283768E-04, 0.34307759E-04)
( 0.47786966E-04,-0.84517759E-05) ( 0.36281165E-04,-0.10548844E-04)
( 0.21184784E-04,-0.80258999E-05) ( 0.69127943E-05,-0.28874976E-05)
( 0.14701046E-04,-0.41649182E-05) ( 0.57854459E-05,-0.24609006E-05)
( 0.26850770E-05,-0.14234418E-05) ( 0.12017955E-05,-0.70548972E-06)
( 0.34550348E-06,-0.20761041E-06) (-0.41675549E-06, 0.13711623E-06)
(-0.30340305E-06, 0.16008767E-06) (-0.18808347E-06, 0.13618757E-06)
(-0.99218177E-07, 0.88156363E-07) (-0.30679215E-07, 0.30292530E-07)
(-0.91168340E-07, 0.24533362E-07) (-0.34719461E-07, 0.14504474E-07)
(-0.16214952E-07, 0.79240076E-08) (-0.81032923E-08, 0.36888671E-08)
(-0.39371834E-08, 0.14027229E-08) (-0.11975839E-08, 0.33420052E-09)
ROW 2
(-0.91585035E-01,-0.75729896E-01) ( 0.54554452E+00,-0.90826682E-01)
(-0.23311066E+00, 0.13088991E+00) (-0.34831777E-01, 0.11823975E-01)
( 0.82224949E-02, 0.76469545E-02) ( 0.10594085E-01, 0.12862294E-02)
( 0.37230133E-01,-0.91490935E-02) ( 0.14478872E-01,-0.40548332E-02)
( 0.43690114E-02,-0.12619520E-02) (-0.16239241E-02,-0.13860596E-04)
(-0.11917644E-02, 0.12858904E-03) (-0.39446343E-03, 0.77030789E-04)
(-0.92564444E-03, 0.23963388E-03) (-0.37694385E-03, 0.13834287E-03)
(-0.16900270E-03, 0.74560138E-04) (-0.47910039E-04, 0.23692533E-04)
( 0.31769143E-04,-0.60383558E-05) ( 0.23971350E-04,-0.77055079E-05)
( 0.13902601E-04,-0.59029055E-05) ( 0.45367201E-05,-0.21250490E-05)
( 0.98990722E-05,-0.26996787E-05) ( 0.39225706E-05,-0.16478966E-05)
( 0.18405582E-05,-0.96283258E-06) ( 0.83341617E-06,-0.48004406E-06)
( 0.24217451E-06,-0.14122798E-06) (-0.27106928E-06, 0.94881449E-07)
(-0.19645670E-06, 0.11189064E-06) (-0.12091037E-06, 0.95542875E-07)
(-0.63309023E-07, 0.61936401E-07) (-0.19456441E-07, 0.21314276E-07)
(-0.60482277E-07, 0.16062530E-07) (-0.23321824E-07, 0.97222670E-08)
(-0.11080040E-07, 0.53748634E-08) (-0.56473159E-08, 0.25382631E-08)
(-0.27897219E-08, 0.98544030E-09) (-0.85554073E-09, 0.24081696E-09)
MaxIter = 7 c.s. = 1.34298678 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.55965689E-08
Time Now = 30.3845 Delta time = 11.8529 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.16300000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 30.4099 Delta time = 0.0254 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 11
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 63
Number of partial waves (np) = 59
Number of asymptotic solutions on the right (NAsymR) = 36
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 49
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 11
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 49
Time Now = 30.4170 Delta time = 0.0071 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.49960036E-15 Asymp Coef = -0.16113219E-10 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = -0.73321578E-03 Asymp Moment = 0.11387976E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.12085597E-02 Asymp Moment = -0.18356245E+00 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.19932115E-02 Asymp Moment = -0.30273952E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.44351785E+02 -0.20000000E+01 stpote = -0.78768138E-19
i = 2 exps = -0.44351785E+02 -0.20000000E+01 stpote = -0.62166118E-19
i = 3 exps = -0.44351785E+02 -0.20000000E+01 stpote = -0.29425610E-19
i = 4 exps = -0.44351785E+02 -0.20000000E+01 stpote = 0.18515819E-19
For potential 3
Number of asymptotic regions = 121
Final point in integration = 0.19165860E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 41.8754 Delta time = 11.4585 End SolveHomo
Final Dipole matrix
ROW 1
(-0.19710192E+00,-0.12184731E+00) ( 0.61329973E+00,-0.24355933E+00)
(-0.28679372E+00, 0.16831436E+00) (-0.51245108E-01,-0.32007683E-02)
( 0.36858250E-01, 0.21500873E-01) ( 0.23177122E-01, 0.86179414E-03)
( 0.12315502E+00,-0.28412521E-01) ( 0.48164669E-01,-0.12448178E-01)
( 0.14105570E-01,-0.41028140E-02) (-0.91242762E-02, 0.15634214E-03)
(-0.61544979E-02, 0.65443991E-03) (-0.20516296E-02, 0.30108745E-03)
(-0.63225402E-02, 0.14936931E-02) (-0.26007829E-02, 0.81346633E-03)
(-0.11889729E-02, 0.43053904E-03) (-0.34650044E-03, 0.13323370E-03)
( 0.34929148E-03,-0.62491218E-04) ( 0.25672211E-03,-0.70778611E-04)
( 0.14874521E-03,-0.51167492E-04) ( 0.48426081E-04,-0.18314877E-04)
( 0.13659113E-03,-0.33525505E-04) ( 0.54971504E-04,-0.19046760E-04)
( 0.26628558E-04,-0.10942362E-04) ( 0.12479760E-04,-0.54895875E-05)
( 0.36929281E-05,-0.16486373E-05) (-0.59667211E-05, 0.17858990E-05)
(-0.43738187E-05, 0.19689753E-05) (-0.27763547E-05, 0.16280373E-05)
(-0.15040631E-05, 0.10417665E-05) (-0.47305874E-06, 0.35594958E-06)
(-0.16699409E-05, 0.40456323E-06) (-0.65380375E-06, 0.22432039E-06)
(-0.32008095E-06, 0.12138629E-06) (-0.16766729E-06, 0.58380266E-07)
(-0.83937136E-07, 0.23914377E-07) (-0.25820548E-07, 0.61644910E-08)
ROW 2
(-0.16564257E+00,-0.83534343E-01) ( 0.46616990E+00,-0.20451912E+00)
(-0.27420317E+00, 0.10813996E+00) (-0.44176833E-01,-0.84865517E-02)
( 0.28463887E-01, 0.18776635E-01) ( 0.19536261E-01, 0.10263836E-02)
( 0.93579940E-01,-0.20855267E-01) ( 0.36589011E-01,-0.94588326E-02)
( 0.10990070E-01,-0.31758040E-02) (-0.66834769E-02, 0.58183572E-04)
(-0.45660307E-02, 0.48628896E-03) (-0.15039878E-02, 0.23176252E-03)
(-0.46218337E-02, 0.11222454E-02) (-0.19215448E-02, 0.61851282E-03)
(-0.88697441E-03, 0.32928134E-03) (-0.25780756E-03, 0.10273766E-03)
( 0.24998636E-03,-0.45803080E-04) ( 0.18610076E-03,-0.52817754E-04)
( 0.10866046E-03,-0.38549451E-04) ( 0.35644381E-04,-0.13806946E-04)
( 0.97652813E-04,-0.25288657E-04) ( 0.39839532E-04,-0.14395987E-04)
( 0.19516838E-04,-0.83108691E-05) ( 0.92155265E-05,-0.41942939E-05)
( 0.27437035E-05,-0.12604501E-05) (-0.42294096E-05, 0.13091539E-05)
(-0.31564324E-05, 0.14504895E-05) (-0.20345786E-05, 0.12059276E-05)
(-0.11153066E-05, 0.77476036E-06) (-0.35278909E-06, 0.26553872E-06)
(-0.11766576E-05, 0.30585121E-06) (-0.46694171E-06, 0.16933592E-06)
(-0.23045633E-06, 0.92542118E-07) (-0.12092976E-06, 0.45294281E-07)
(-0.60397916E-07, 0.18988444E-07) (-0.18522101E-07, 0.50075752E-08)
MaxIter = 7 c.s. = 1.01842730 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.44143803E-08
Time Now = 53.8429 Delta time = 11.9674 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 53.8436 Delta time = 0.0007 End CnvIdy
Found 2 energies :
5.00000000 10.00000000
List of matrix element types found Number = 1
1 Cont Sym B1 Targ Sym A2 Total Sym B2
Keeping 2 energies :
5.00000000 10.00000000
Time Now = 53.8436 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 13.5920 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
18.5920 0.11090861E+01
23.5920 0.92552178E+00
Sigma MIXED at all energies
Eng
18.5920 0.10264852E+01
23.5920 0.84548157E+00
Sigma VELOCITY at all energies
Eng
18.5920 0.98915546E+00
23.5920 0.77966941E+00
Beta LENGTH at all energies
Eng
18.5920 -0.39415316E+00
23.5920 -0.26675817E+00
Beta MIXED at all energies
Eng
18.5920 -0.35352981E+00
23.5920 -0.24787817E+00
Beta VELOCITY at all energies
Eng
18.5920 -0.30524632E+00
23.5920 -0.22618178E+00
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 18.5920 1.1091 1.0265 0.9892 -0.3942 -0.3535 -0.3052
EPhi 23.5920 0.9255 0.8455 0.7797 -0.2668 -0.2479 -0.2262
Time Now = 53.8518 Delta time = 0.0081 End CrossSection
Time Now = 53.8521 Delta time = 0.0003 Finalize