Execution on n0150.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:41.865 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# inpute file for test20
#
# Photoinization of SiF4 in a D2d geometry
#
LMax 25 # maximum l
EMax 50.0 # maximum E
OrbOccInit
2 4 2 2 2 4 2 2 2 4 2 2 4 2 2 2 4 2 4
OrbOcc
2 4 2 2 2 4 2 2 2 4 2 2 4 2 2 2 4 2 3
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test20.g03' 'gaussian'
ScatSym 'E' # Scattering symmetry of total final state
ScatContSym 'A1' # Scattering symmetry of continuum electron
SpinDeg 1 # Spin degeneracy of the total scattering state (=1 singlet)
TargSym 'E' # Symmetry of the target state
TargSpinDeg 2 # Target spin degeneracy
InitSym 'A1' # Initial state symmetry
InitSpinDeg 1 # Initial state spin degeneracy
ScatEng 0.8 4.8 # list of scattering energies
FegeEng 15.2 # Energy correction used in the fege potential
IPot 15.2 # IPot, ionization potential
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
FileName 'MatrixElements' 'test20.idy' 'REWIND'
PhIon
GetCro
GenFormScat
GrnType 1
FileName 'MatrixElements' 'test20.tmt' 'REWIND'
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 50.0
+ Data Record OrbOccInit - 2 4 2 2 2 4 2 2 2 4 2 2 4 2 2 2 4 2 4
+ Data Record OrbOcc - 2 4 2 2 2 4 2 2 2 4 2 2 4 2 2 2 4 2 3
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test20.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # HF AUG-CC-PVTZ 6D 10F SCF(CONVER=10) SYMMETRY(PG=D2) POP=FULL GFINPU
CardFlag = F
Normal Mode flag = F
Selecting orbitals
from 1 to 25 number already selected 0
Number of orbitals selected is 25
Highest orbital read in is = 25
Time Now = 0.0307 Delta time = 0.0307 End GaussianCnv
Atoms found 5 Coordinates in Angstroms
Z = 14 ZS = 14 r = 0.0000000000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 0.8410300000 0.8410300000 1.0096200000
Z = 9 ZS = 9 r = -0.8410300000 -0.8410300000 1.0096200000
Z = 9 ZS = 9 r = 0.8410300000 -0.8410300000 -1.0096200000
Z = 9 ZS = 9 r = -0.8410300000 0.8410300000 -1.0096200000
Maximum distance from expansion center is 1.5601267468
+ Data Record ScatSym - 'E'
+ Data Record ScatContSym - 'A1'
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'E'
+ Data Record TargSpinDeg - 2
+ Data Record InitSym - 'A1'
+ Data Record InitSpinDeg - 1
+ Data Record ScatEng - 0.8 4.8
+ Data Record FegeEng - 15.2
+ Data Record IPot - 15.2
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group D2d
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup D2
Time Now = 0.0604 Delta time = 0.0298 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.53908 0.53908 0.64714 9 1.56013
3 -0.53908 -0.53908 0.64714 9 1.56013
4 0.53908 -0.53908 -0.64714 9 1.56013
5 -0.53908 0.53908 -0.64714 9 1.56013
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 0.84226 -0.34503 -0.41420
3 0.84226 -0.34503 0.41420
4 0.84226 0.34503 0.41420
5 0.84226 0.34503 -0.41420
Computed default value of LMaxA = 14
Determining angular grid in GetAxMax LMax = 25 LMaxA = 14 LMaxAb = 50
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3
3 3 3 3 3 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3
3 3 3 3 3 3
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3
3 3 3 3 3 3
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3
3 3 3 3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2d
LMax 25
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1) E ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
4 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 76 1 1 1
A2 1 2 57 1 -1 -1
B1 1 3 58 1 1 1
B2 1 4 76 1 -1 -1
E 1 5 133 -1 -1 1
E 2 6 133 -1 1 -1
Time Now = 0.6362 Delta time = 0.5758 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 1) 2( 2) 3( 3) 4( 5) 5( 6) 6( 8) 7( 10) 8( 13) 9( 15)
10( 18) 11( 21) 12( 25) 13( 28) 14( 32)
A2 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21) 14( 24)
B1 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 5) 7( 6) 8( 8) 9( 10)
10( 13) 11( 15) 12( 18) 13( 21) 14( 25)
B2 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28) 14( 32)
E 1 0( 0) 1( 1) 2( 2) 3( 4) 4( 6) 5( 9) 6( 12) 7( 16) 8( 20) 9( 25)
10( 30) 11( 36) 12( 42) 13( 49) 14( 56)
E 2 0( 0) 1( 1) 2( 2) 3( 4) 4( 6) 5( 9) 6( 12) 7( 16) 8( 20) 9( 25)
10( 30) 11( 36) 12( 42) 13( 49) 14( 56)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2
LMax 50
The dimension of each irreducable representation is
A ( 1) B1 ( 1) B2 ( 1) B3 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
irep = 1 sym =A 1 eigs = 1 1 1 1
irep = 2 sym =B1 1 eigs = 1 1 -1 -1
irep = 3 sym =B2 1 eigs = 1 -1 -1 1
irep = 4 sym =B3 1 eigs = 1 -1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A 1 1 651 1 1 1
B1 1 2 650 1 -1 -1
B2 1 3 650 -1 -1 1
B3 1 4 650 -1 1 -1
Time Now = 0.6532 Delta time = 0.0170 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 12.3238849482 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 12.32388 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 12.32388 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.25490E+06
2 Center at = 1.56013 Angs Alpha Max = 0.24300E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.10481E-03 0.00084
2 8 16 0.11174E-03 0.00173
3 8 24 0.13774E-03 0.00283
4 8 32 0.20899E-03 0.00451
5 8 40 0.33226E-03 0.00716
6 8 48 0.52825E-03 0.01139
7 8 56 0.83984E-03 0.01811
8 8 64 0.13352E-02 0.02879
9 8 72 0.21228E-02 0.04577
10 8 80 0.33750E-02 0.07277
11 8 88 0.53658E-02 0.11570
12 8 96 0.85310E-02 0.18395
13 8 104 0.13563E-01 0.29245
14 8 112 0.18869E-01 0.44340
15 8 120 0.20080E-01 0.60404
16 8 128 0.18660E-01 0.75332
17 8 136 0.16678E-01 0.88674
18 8 144 0.14514E-01 1.00285
19 8 152 0.13038E-01 1.10716
20 8 160 0.13352E-01 1.21397
21 8 168 0.14640E-01 1.33110
22 8 176 0.10431E-01 1.41455
23 8 184 0.66305E-02 1.46759
24 8 192 0.42146E-02 1.50131
25 8 200 0.26790E-02 1.52274
26 8 208 0.17029E-02 1.53636
27 8 216 0.10824E-02 1.54502
28 8 224 0.68802E-03 1.55052
29 8 232 0.45571E-03 1.55417
30 8 240 0.36652E-03 1.55710
31 8 248 0.33973E-03 1.55982
32 8 256 0.38304E-04 1.56013
33 8 264 0.33947E-03 1.56284
34 8 272 0.36190E-03 1.56574
35 8 280 0.44612E-03 1.56931
36 8 288 0.67686E-03 1.57472
37 8 296 0.10761E-02 1.58333
38 8 304 0.17109E-02 1.59702
39 8 312 0.27201E-02 1.61878
40 8 320 0.43245E-02 1.65337
41 8 328 0.68754E-02 1.70838
42 8 336 0.10931E-01 1.79583
43 8 344 0.17379E-01 1.93486
44 8 352 0.21137E-01 2.10395
45 8 360 0.21430E-01 2.27539
46 8 368 0.24258E-01 2.46946
47 8 376 0.26976E-01 2.68527
48 8 384 0.29579E-01 2.92190
49 8 392 0.32062E-01 3.17840
50 8 400 0.34427E-01 3.45381
51 8 408 0.36673E-01 3.74720
52 8 416 0.38805E-01 4.05764
53 8 424 0.40824E-01 4.38422
54 8 432 0.42734E-01 4.72610
55 8 440 0.44541E-01 5.08243
56 8 448 0.46249E-01 5.45242
57 8 456 0.47862E-01 5.83532
58 8 464 0.49385E-01 6.23040
59 8 472 0.50824E-01 6.63699
60 8 480 0.52182E-01 7.05445
61 8 488 0.53465E-01 7.48216
62 8 496 0.54677E-01 7.91958
63 8 504 0.55822E-01 8.36616
64 8 512 0.56905E-01 8.82139
65 8 520 0.57929E-01 9.28483
66 8 528 0.58898E-01 9.75601
67 8 536 0.59816E-01 10.23453
68 8 544 0.60685E-01 10.72001
69 8 552 0.61509E-01 11.21209
70 8 560 0.62291E-01 11.71042
71 8 568 0.63034E-01 12.21469
72 8 576 0.13650E-01 12.32388
Time Now = 0.7497 Delta time = 0.0965 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 25
Maximum scattering m (mmaxs) = 25
Maximum numerical integration l (lmaxi) = 50
Maximum numerical integration m (mmaxi) = 50
Maximum l to include in the asymptotic region (lmasym) = 14
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 14
Actual value of lmasym found = 14
Number of regions of the same l expansion (NAngReg) = 14
Angular regions
1 L = 2 from ( 1) 0.00010 to ( 7) 0.00073
2 L = 4 from ( 8) 0.00084 to ( 15) 0.00162
3 L = 5 from ( 16) 0.00173 to ( 31) 0.00430
4 L = 6 from ( 32) 0.00451 to ( 47) 0.01086
5 L = 7 from ( 48) 0.01139 to ( 55) 0.01727
6 L = 8 from ( 56) 0.01811 to ( 63) 0.02746
7 L = 9 from ( 64) 0.02879 to ( 71) 0.04365
8 L = 11 from ( 72) 0.04577 to ( 79) 0.06940
9 L = 12 from ( 80) 0.07277 to ( 87) 0.11033
10 L = 14 from ( 88) 0.11570 to ( 135) 0.87007
11 L = 22 from ( 136) 0.88674 to ( 143) 0.98834
12 L = 25 from ( 144) 1.00285 to ( 360) 2.27539
13 L = 22 from ( 361) 2.29965 to ( 376) 2.68527
14 L = 14 from ( 377) 2.71485 to ( 576) 12.32388
There are 2 angular regions for computing spherical harmonics
1 lval = 14
2 lval = 25
Maximum number of processors is 71
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 104
Proc id = 1 Last grid point = 144
Proc id = 2 Last grid point = 160
Proc id = 3 Last grid point = 176
Proc id = 4 Last grid point = 200
Proc id = 5 Last grid point = 216
Proc id = 6 Last grid point = 232
Proc id = 7 Last grid point = 248
Proc id = 8 Last grid point = 264
Proc id = 9 Last grid point = 288
Proc id = 10 Last grid point = 304
Proc id = 11 Last grid point = 320
Proc id = 12 Last grid point = 336
Proc id = 13 Last grid point = 352
Proc id = 14 Last grid point = 376
Proc id = 15 Last grid point = 408
Proc id = 16 Last grid point = 456
Proc id = 17 Last grid point = 496
Proc id = 18 Last grid point = 536
Proc id = 19 Last grid point = 576
Time Now = 0.8227 Delta time = 0.0730 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -68.937750 A1 1 at max irg = 72 r = 0.04577
2 Orig 2 Eng = -26.335970 E 1 at max irg = 256 r = 1.56013
3 Orig 3 Eng = -26.335970 E 2 at max irg = 256 r = 1.56013
4 Orig 4 Eng = -26.335970 B2 1 at max irg = 256 r = 1.56013
5 Orig 5 Eng = -26.335950 A1 1 at max irg = 256 r = 1.56013
6 Orig 6 Eng = -6.269690 A1 1 at max irg = 104 r = 0.29245
7 Orig 7 Eng = -4.379200 E 1 at max irg = 96 r = 0.18395
8 Orig 8 Eng = -4.379200 E 2 at max irg = 96 r = 0.18395
9 Orig 9 Eng = -4.378460 B2 1 at max irg = 96 r = 0.18395
10 Orig 10 Eng = -1.675110 A1 1 at max irg = 256 r = 1.56013
11 Orig 11 Eng = -1.643450 B2 1 at max irg = 256 r = 1.56013
12 Orig 12 Eng = -1.632100 E 1 at max irg = 256 r = 1.56013
13 Orig 13 Eng = -1.632100 E 2 at max irg = 256 r = 1.56013
14 Orig 14 Eng = -0.860110 A1 1 at max irg = 336 r = 1.79583
15 Orig 15 Eng = -0.792520 B2 1 at max irg = 336 r = 1.79583
16 Orig 16 Eng = -0.776500 E 1 at max irg = 336 r = 1.79583
17 Orig 17 Eng = -0.776500 E 2 at max irg = 336 r = 1.79583
18 Orig 18 Eng = -0.739070 A1 1 at max irg = 296 r = 1.58333
19 Orig 19 Eng = -0.718920 B1 1 at max irg = 296 r = 1.58333
20 Orig 20 Eng = -0.713430 B2 1 at max irg = 320 r = 1.65337
21 Orig 21 Eng = -0.712100 E 1 at max irg = 320 r = 1.65337
22 Orig 22 Eng = -0.712100 E 2 at max irg = 320 r = 1.65337
23 Orig 23 Eng = -0.679660 A2 1 at max irg = 296 r = 1.58333
24 Orig 24 Eng = -0.674030 E 1 at max irg = 296 r = 1.58333
25 Orig 25 Eng = -0.674030 E 2 at max irg = 296 r = 1.58333
Rotation coefficients for orbital 1 grp = 1 A1 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 E 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 3 grp = 2 E 2
1 0.0000000000 2 1.0000000000
Rotation coefficients for orbital 4 grp = 3 B2 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 4 A1 1
1 1.0000000000
Rotation coefficients for orbital 6 grp = 5 A1 1
1 1.0000000000
Rotation coefficients for orbital 7 grp = 6 E 1
1 0.0000000000 2 1.0000000000
Rotation coefficients for orbital 8 grp = 6 E 2
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 9 grp = 7 B2 1
1 1.0000000000
Rotation coefficients for orbital 10 grp = 8 A1 1
1 1.0000000000
Rotation coefficients for orbital 11 grp = 9 B2 1
1 1.0000000000
Rotation coefficients for orbital 12 grp = 10 E 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 13 grp = 10 E 2
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 14 grp = 11 A1 1
1 1.0000000000
Rotation coefficients for orbital 15 grp = 12 B2 1
1 1.0000000000
Rotation coefficients for orbital 16 grp = 13 E 1
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 17 grp = 13 E 2
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 18 grp = 14 A1 1
1 1.0000000000
Rotation coefficients for orbital 19 grp = 15 B1 1
1 1.0000000000
Rotation coefficients for orbital 20 grp = 16 B2 1
1 1.0000000000
Rotation coefficients for orbital 21 grp = 17 E 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 22 grp = 17 E 2
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 23 grp = 18 A2 1
1 1.0000000000
Rotation coefficients for orbital 24 grp = 19 E 1
1 0.0000000000 2 1.0000000000
Rotation coefficients for orbital 25 grp = 19 E 2
1 1.0000000000 2 -0.0000000000
Number of orbital groups and degeneracis are 19
1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 2
Number of orbital groups and number of electrons when fully occupied
19
2 4 2 2 2 4 2 2 2 4 2 2 4 2 2 2 4 2 4
Time Now = 1.5492 Delta time = 0.7265 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 19
Orbital 1 of A1 1 symmetry normalization integral = 1.00000542
Orbital 2 of E 1 symmetry normalization integral = 0.83436752
Orbital 3 of B2 1 symmetry normalization integral = 0.83263215
Orbital 4 of A1 1 symmetry normalization integral = 0.83782100
Orbital 5 of A1 1 symmetry normalization integral = 1.00000098
Orbital 6 of E 1 symmetry normalization integral = 1.00001364
Orbital 7 of B2 1 symmetry normalization integral = 0.99999964
Orbital 8 of A1 1 symmetry normalization integral = 0.98781169
Orbital 9 of B2 1 symmetry normalization integral = 0.98650342
Orbital 10 of E 1 symmetry normalization integral = 0.98642303
Orbital 11 of A1 1 symmetry normalization integral = 0.99877720
Orbital 12 of B2 1 symmetry normalization integral = 0.99888606
Orbital 13 of E 1 symmetry normalization integral = 0.99890443
Orbital 14 of A1 1 symmetry normalization integral = 0.99826805
Orbital 15 of B1 1 symmetry normalization integral = 0.99813396
Orbital 16 of B2 1 symmetry normalization integral = 0.99862996
Orbital 17 of E 1 symmetry normalization integral = 0.99862585
Orbital 18 of A2 1 symmetry normalization integral = 0.99809952
Orbital 19 of E 1 symmetry normalization integral = 0.99812727
Time Now = 4.8051 Delta time = 3.2559 End ExpOrb
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 19
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - A1 1
Set 2 has degeneracy 2
Orbital 1 is num 2 type = 5 name - E 1
Orbital 2 is num 3 type = 6 name - E 2
Set 3 has degeneracy 1
Orbital 1 is num 4 type = 4 name - B2 1
Set 4 has degeneracy 1
Orbital 1 is num 5 type = 1 name - A1 1
Set 5 has degeneracy 1
Orbital 1 is num 6 type = 1 name - A1 1
Set 6 has degeneracy 2
Orbital 1 is num 7 type = 5 name - E 1
Orbital 2 is num 8 type = 6 name - E 2
Set 7 has degeneracy 1
Orbital 1 is num 9 type = 4 name - B2 1
Set 8 has degeneracy 1
Orbital 1 is num 10 type = 1 name - A1 1
Set 9 has degeneracy 1
Orbital 1 is num 11 type = 4 name - B2 1
Set 10 has degeneracy 2
Orbital 1 is num 12 type = 5 name - E 1
Orbital 2 is num 13 type = 6 name - E 2
Set 11 has degeneracy 1
Orbital 1 is num 14 type = 1 name - A1 1
Set 12 has degeneracy 1
Orbital 1 is num 15 type = 4 name - B2 1
Set 13 has degeneracy 2
Orbital 1 is num 16 type = 5 name - E 1
Orbital 2 is num 17 type = 6 name - E 2
Set 14 has degeneracy 1
Orbital 1 is num 18 type = 1 name - A1 1
Set 15 has degeneracy 1
Orbital 1 is num 19 type = 3 name - B1 1
Set 16 has degeneracy 1
Orbital 1 is num 20 type = 4 name - B2 1
Set 17 has degeneracy 2
Orbital 1 is num 21 type = 5 name - E 1
Orbital 2 is num 22 type = 6 name - E 2
Set 18 has degeneracy 1
Orbital 1 is num 23 type = 2 name - A2 1
Set 19 has degeneracy 2
Orbital 1 is num 24 type = 5 name - E 1
Orbital 2 is num 25 type = 6 name - E 2
Orbital occupations by degenerate group
1 A1 occ = 2
2 E occ = 4
3 B2 occ = 2
4 A1 occ = 2
5 A1 occ = 2
6 E occ = 4
7 B2 occ = 2
8 A1 occ = 2
9 B2 occ = 2
10 E occ = 4
11 A1 occ = 2
12 B2 occ = 2
13 E occ = 4
14 A1 occ = 2
15 B1 occ = 2
16 B2 occ = 2
17 E occ = 4
18 A2 occ = 2
19 E occ = 3
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1) E ( 2)
Symmetry of the continuum orbital is A1
Symmetry of the total state is E
Spin degeneracy of the total state is = 1
Symmetry of the target state is E
Spin degeneracy of the target state is = 2
Symmetry of the initial state is A1
Spin degeneracy of the initial state is = 1
Orbital occupations of initial state by degenerate group
1 A1 occ = 2
2 E occ = 4
3 B2 occ = 2
4 A1 occ = 2
5 A1 occ = 2
6 E occ = 4
7 B2 occ = 2
8 A1 occ = 2
9 B2 occ = 2
10 E occ = 4
11 A1 occ = 2
12 B2 occ = 2
13 E occ = 4
14 A1 occ = 2
15 B1 occ = 2
16 B2 occ = 2
17 E occ = 4
18 A2 occ = 2
19 E occ = 4
Open shell symmetry types
1 E iele = 3
Use only configuration of type E
MS2 = 1 SDGN = 2
NumAlpha = 2
List of determinants found
1: 1.00000 0.00000 1 2 3
2: 1.00000 0.00000 1 2 4
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3
Configuration 2
1: 1.00000 0.00000 1 2 4
Each irreducable representation is present the number of times indicated
E ( 1)
representation E component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 4
representation E component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3
Open shell symmetry types
1 E iele = 3
2 A1 iele = 1
Use only configuration of type E
Each irreducable representation is present the number of times indicated
E ( 1)
representation E component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 2 4 6
2: -0.70711 0.00000 2 3 4 5
representation E component 2 fun 1
Symmeterized Function from AddNewShell
1: 0.70711 0.00000 1 2 3 6
2: 0.70711 0.00000 1 3 4 5
Open shell symmetry types
1 E iele = 3
Use only configuration of type E
MS2 = 1 SDGN = 2
NumAlpha = 2
List of determinants found
1: 1.00000 0.00000 1 2 3
2: 1.00000 0.00000 1 2 4
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3
Configuration 2
1: 1.00000 0.00000 1 2 4
Each irreducable representation is present the number of times indicated
E ( 1)
representation E component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 4
representation E component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 50 52
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 48 49 50 51
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 52
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 49 50 51
Closed shell target
Time Now = 4.8080 Delta time = 0.0029 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 50 52
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 48 49 50 51
Configuration 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 52
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 49 50 51
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 50 52
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 48 49 50 51
Direct product Configuration Cont sym = 1 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 52
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 49 50 51
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 1
Symmetry of target = 5
Symmetry of total states = 5
Total symmetry component = 1
Cont Target Component
Comp 1 2
1 0.10000000E+01 0.00000000E+00
Total symmetry component = 2
Cont Target Component
Comp 1 2
1 0.00000000E+00 0.10000000E+01
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
One electron matrix elements between initial and final states
1: 1.414213562 0.000000000 < 47| 51>
Reduced formula list
1 19 1 0.1414213562E+01
Time Now = 4.8089 Delta time = 0.0009 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 1
Symmetry of the continuum orbital (iContSym) = 1 or A1
Symmetry of total final state (iTotalSym) = 5 or E
Symmetry of the initial state (iInitSym) = 1 or A1
Symmetry of the ionized target state (iTargSym) = 5 or E
List of unique symmetry types
In the product of the symmetry types B2 A1
Each irreducable representation is present the number of times indicated
B2 ( 1)
In the product of the symmetry types B2 A1
Each irreducable representation is present the number of times indicated
B2 ( 1)
In the product of the symmetry types B2 A2
Each irreducable representation is present the number of times indicated
B1 ( 1)
In the product of the symmetry types B2 B1
Each irreducable representation is present the number of times indicated
A2 ( 1)
In the product of the symmetry types B2 B2
Each irreducable representation is present the number of times indicated
A1 ( 1)
In the product of the symmetry types B2 E
Each irreducable representation is present the number of times indicated
E ( 1)
Unique dipole matrix type 1 Dipole symmetry type =B2
Final state symmetry type = B2 Target sym =E
Continuum type =E
In the product of the symmetry types E A1
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types E A1
Each irreducable representation is present the number of times indicated
E ( 1)
Unique dipole matrix type 2 Dipole symmetry type =E
Final state symmetry type = E Target sym =E
Continuum type =A1
In the product of the symmetry types E A2
Each irreducable representation is present the number of times indicated
E ( 1)
Unique dipole matrix type 3 Dipole symmetry type =E
Final state symmetry type = E Target sym =E
Continuum type =A2
In the product of the symmetry types E B1
Each irreducable representation is present the number of times indicated
E ( 1)
Unique dipole matrix type 4 Dipole symmetry type =E
Final state symmetry type = E Target sym =E
Continuum type =B1
In the product of the symmetry types E B2
Each irreducable representation is present the number of times indicated
E ( 1)
Unique dipole matrix type 5 Dipole symmetry type =E
Final state symmetry type = E Target sym =E
Continuum type =B2
In the product of the symmetry types E E
Each irreducable representation is present the number of times indicated
A1 ( 1)
A2 ( 1)
B1 ( 1)
B2 ( 1)
In the product of the symmetry types B2 A1
Each irreducable representation is present the number of times indicated
B2 ( 1)
In the product of the symmetry types E A1
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types E A1
Each irreducable representation is present the number of times indicated
E ( 1)
Irreducible representation containing the dipole operator is E
Number of different dipole operators in this representation is 1
In the product of the symmetry types E A1
Each irreducable representation is present the number of times indicated
E ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
2 ( 0.00000000E+00, 0.00000000E+00)
Vector of the total symmetry
ie = 2 ij = 1
1 ( 0.00000000E+00, 0.00000000E+00)
2 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Component Dipole Op Sym = 2 goes to Total Sym component 2 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 0.00000000 1.00000000 0.00000000
sym comp = 2
coefficients = 1.00000000 0.00000000 0.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 1 Orb 24 Coef = 1.4142135620
Symmetry type to write out (SymTyp) =A1
Time Now = 31.9430 Delta time = 27.1341 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 49.00000000
Time Now = 31.9790 Delta time = 0.0360 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.49000000E+02 facnorm = 0.10000000E+01
Time Now = 32.1127 Delta time = 0.1338 Electronic part
Time Now = 32.1163 Delta time = 0.0036 End StPot
+ Command FileName
+ 'MatrixElements' 'test20.idy' 'REWIND'
Opening file test20.idy at position REWIND
+ Command PhIon
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.15200000E+02 eV
Do E = 0.80000000E+00 eV ( 0.29399461E-01 AU)
Time Now = 32.1598 Delta time = 0.0435 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 12
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 72
Number of partial waves (np) = 76
Number of asymptotic solutions on the right (NAsymR) = 25
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 32
Number of orthogonality constraints (NOrthUse) = 6
Number of different asymptotic potentials = 5
Maximum number of asymptotic partial waves = 211
Maximum l used in usual function (lmax) = 25
Maximum m used in usual function (LMax) = 25
Maxamum l used in expanding static potential (lpotct) = 50
Maximum l used in exapnding the exchange potential (lmaxab) = 50
Higest l included in the expansion of the wave function (lnp) = 25
Higest l included in the K matrix (lna) = 12
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 32
Time Now = 32.1861 Delta time = 0.0263 Energy independent setup
Compute solution for E = 0.8000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11379786E-14 Asymp Coef = -0.71429113E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.12078966E-17 Asymp Moment = -0.16999325E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.46846194E-04 Asymp Moment = -0.65928961E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.20438575E-04 Asymp Moment = -0.49628162E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.51335750E-16
i = 2 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.51590529E-16
i = 3 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.51837094E-16
i = 4 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.52064875E-16
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.76107671E-01 Asymp Coef = -0.47771579E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.15407618E-04 Asymp Moment = 0.21683901E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.60564730E-04 Asymp Moment = 0.85235734E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.38950150E-04 Asymp Moment = 0.94577259E+00 (e Angs^(n-1))
For potential 5
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.76107671E-01 Asymp Coef = 0.47771579E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.15407618E-04 Asymp Moment = 0.21683901E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.60564730E-04 Asymp Moment = -0.85235734E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.38950150E-04 Asymp Moment = -0.94577259E+00 (e Angs^(n-1))
Number of asymptotic regions = 118
Final point in integration = 0.65178154E+03 Angstroms
Time Now = 56.9038 Delta time = 24.7177 End SolveHomo
Final Dipole matrix
ROW 1
( 0.13493706E+00,-0.19302751E+00) (-0.47405609E-01,-0.54565800E-01)
( 0.13165672E+00, 0.31790697E-02) (-0.17341993E+00,-0.19471072E-02)
( 0.13322799E+00,-0.10147813E-01) (-0.33923984E-01, 0.14284111E-02)
(-0.94060786E-03,-0.28282523E-03) ( 0.21373199E-02, 0.17184104E-04)
(-0.25737201E-03,-0.10652831E-04) ( 0.10361410E-03,-0.18839809E-04)
( 0.60546883E-05, 0.77840580E-07) ( 0.19481434E-04,-0.58751949E-06)
(-0.15258854E-04, 0.86131190E-06) (-0.25133035E-06,-0.11316076E-06)
( 0.12471780E-05, 0.45975036E-08) ( 0.43812137E-07, 0.35039236E-08)
(-0.31681854E-08, 0.32427012E-08) (-0.19591134E-07,-0.15434105E-08)
( 0.92461899E-09,-0.75168295E-11) ( 0.19448719E-08, 0.15305751E-11)
(-0.14520664E-08, 0.90678191E-10) (-0.73420339E-11, 0.10919207E-11)
( 0.13727930E-10, 0.92246233E-11) (-0.90567080E-10,-0.23169625E-11)
( 0.71621729E-10,-0.37478776E-13)
ROW 2
( 0.10713353E+00,-0.14428651E+00) (-0.36066085E-01,-0.44298001E-01)
( 0.43966043E-01,-0.72499819E-02) (-0.87418412E-01,-0.12679460E-02)
( 0.69309640E-01,-0.73751905E-02) (-0.16772701E-01, 0.12461067E-02)
(-0.47656941E-03,-0.21968768E-03) ( 0.10498400E-02,-0.63841266E-05)
(-0.12104967E-03,-0.82854813E-05) ( 0.40524672E-04,-0.14225252E-04)
( 0.27573006E-05, 0.78564791E-07) ( 0.88914519E-05,-0.59845285E-06)
(-0.66210874E-05, 0.71421437E-06) (-0.13528934E-06,-0.81611934E-07)
( 0.56286486E-06,-0.10941293E-07) ( 0.20033350E-07, 0.23168084E-08)
( 0.18843378E-09, 0.23913945E-08) (-0.94873959E-08,-0.81241427E-09)
( 0.41059824E-09, 0.40934967E-11) ( 0.84456596E-09,-0.31024753E-10)
(-0.56578622E-09, 0.83726407E-10) (-0.32070742E-11, 0.44521398E-12)
( 0.80736501E-11, 0.60908915E-11) (-0.38849600E-10, 0.12551217E-12)
( 0.29873419E-10,-0.11565152E-11)
MaxIter = 11 c.s. = 0.17745629 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.23865298E-07
Time Now = 135.6104 Delta time = 78.7066 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.15200000E+02 eV
Do E = 0.48000000E+01 eV ( 0.17639676E+00 AU)
Time Now = 135.6668 Delta time = 0.0564 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 12
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 72
Number of partial waves (np) = 76
Number of asymptotic solutions on the right (NAsymR) = 25
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 32
Number of orthogonality constraints (NOrthUse) = 6
Number of different asymptotic potentials = 5
Maximum number of asymptotic partial waves = 211
Maximum l used in usual function (lmax) = 25
Maximum m used in usual function (LMax) = 25
Maxamum l used in expanding static potential (lpotct) = 50
Maximum l used in exapnding the exchange potential (lmaxab) = 50
Higest l included in the expansion of the wave function (lnp) = 25
Higest l included in the K matrix (lna) = 12
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 32
Time Now = 135.6887 Delta time = 0.0219 Energy independent setup
Compute solution for E = 4.8000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11379786E-14 Asymp Coef = -0.71429113E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.12078966E-17 Asymp Moment = -0.16999325E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.46846194E-04 Asymp Moment = -0.65928961E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.20438575E-04 Asymp Moment = -0.49628162E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.37964673E-16
i = 2 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.38297191E-16
i = 3 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.38618627E-16
i = 4 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.38915178E-16
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.76107671E-01 Asymp Coef = -0.47771579E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.15407618E-04 Asymp Moment = 0.21683901E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.60564730E-04 Asymp Moment = 0.85235734E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.38950150E-04 Asymp Moment = 0.94577259E+00 (e Angs^(n-1))
For potential 5
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.76107671E-01 Asymp Coef = 0.47771579E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.15407618E-04 Asymp Moment = 0.21683901E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.60564730E-04 Asymp Moment = -0.85235734E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.38950150E-04 Asymp Moment = -0.94577259E+00 (e Angs^(n-1))
Number of asymptotic regions = 181
Final point in integration = 0.41505009E+03 Angstroms
Time Now = 170.1810 Delta time = 34.4924 End SolveHomo
Final Dipole matrix
ROW 1
( 0.14448040E-01,-0.16472947E+00) ( 0.14182007E+00, 0.13296463E+00)
( 0.15403591E+00, 0.14556674E+00) (-0.51951255E+00, 0.21327351E-01)
( 0.32721579E+00,-0.57007713E-01) (-0.20181600E+00, 0.18761515E-01)
(-0.17137162E-01,-0.17896441E-02) ( 0.28908812E-01,-0.12113324E-02)
(-0.71632382E-02, 0.20064130E-03) ( 0.12079135E-02,-0.43033609E-03)
( 0.37812763E-03,-0.21034902E-04) ( 0.10965168E-02,-0.73736032E-04)
(-0.75232601E-03, 0.68203801E-04) (-0.50071969E-04,-0.61229787E-05)
( 0.16235327E-03,-0.77672999E-05) ( 0.13993910E-04,-0.34854749E-06)
( 0.16865324E-05, 0.51309075E-06) (-0.71835774E-05, 0.82379515E-07)
( 0.69559886E-06,-0.55612026E-07) ( 0.12856974E-05,-0.84252983E-07)
(-0.70687458E-06, 0.78893020E-07) (-0.13810338E-07, 0.20992176E-08)
( 0.35437502E-07, 0.54828275E-08) (-0.13917607E-06, 0.69695496E-08)
( 0.10209653E-06,-0.61736924E-08)
ROW 2
( 0.11798137E-02,-0.10767015E+00) ( 0.83148712E-01, 0.71400345E-01)
( 0.88711839E-01, 0.91440739E-01) (-0.35628558E+00, 0.13928742E-01)
( 0.22209340E+00,-0.36763782E-01) (-0.13331285E+00, 0.11776287E-01)
(-0.12289423E-01,-0.12238267E-02) ( 0.19230607E-01,-0.72856906E-03)
(-0.46792080E-02, 0.12052416E-03) ( 0.43244899E-03,-0.29450186E-03)
( 0.24104003E-03,-0.13704904E-04) ( 0.68050908E-03,-0.48294839E-04)
(-0.43986856E-03, 0.45904835E-04) (-0.37216281E-04,-0.43107355E-05)
( 0.10114937E-03,-0.51384384E-05) ( 0.90459522E-05,-0.22613005E-06)
( 0.17852738E-05, 0.37529995E-06) (-0.47950040E-05, 0.42380589E-07)
( 0.43927703E-06,-0.36481230E-07) ( 0.77392972E-06,-0.58516544E-07)
(-0.35830978E-06, 0.56347036E-07) (-0.86482972E-08, 0.13421699E-08)
( 0.27770530E-07, 0.37251558E-08) (-0.83745662E-07, 0.49119588E-08)
( 0.59348510E-07,-0.43385243E-08)
MaxIter = 10 c.s. = 0.76909714 rmsk= 0.00000004 Abs eps 0.10000000E-05 Rel eps 0.52902917E-05
Time Now = 240.7915 Delta time = 70.6105 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 240.8139 Delta time = 0.0224 End CnvIdy
Found 2 energies :
0.80000000 4.80000000
List of matrix element types found Number = 1
1 Cont Sym A1 Targ Sym E Total Sym E
Keeping 2 energies :
0.80000000 4.80000000
Time Now = 240.8140 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 15.2000 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
16.0000 0.25592800E+00
20.0000 0.13412719E+01
Sigma MIXED at all energies
Eng
16.0000 0.26447541E+00
20.0000 0.12124088E+01
Sigma VELOCITY at all energies
Eng
16.0000 0.29307695E+00
20.0000 0.10998690E+01
Beta LENGTH at all energies
Eng
16.0000 0.44969602E-01
20.0000 0.12042480E+00
Beta MIXED at all energies
Eng
16.0000 0.43321775E-01
20.0000 0.12928316E+00
Beta VELOCITY at all energies
Eng
16.0000 0.44383655E-01
20.0000 0.13633211E+00
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 16.0000 0.2559 0.2645 0.2931 0.0450 0.0433 0.0444
EPhi 20.0000 1.3413 1.2124 1.0999 0.1204 0.1293 0.1363
Time Now = 240.8421 Delta time = 0.0281 End CrossSection
+ Command GenFormScat
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 19
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - A1 1
Set 2 has degeneracy 2
Orbital 1 is num 2 type = 5 name - E 1
Orbital 2 is num 3 type = 6 name - E 2
Set 3 has degeneracy 1
Orbital 1 is num 4 type = 4 name - B2 1
Set 4 has degeneracy 1
Orbital 1 is num 5 type = 1 name - A1 1
Set 5 has degeneracy 1
Orbital 1 is num 6 type = 1 name - A1 1
Set 6 has degeneracy 2
Orbital 1 is num 7 type = 5 name - E 1
Orbital 2 is num 8 type = 6 name - E 2
Set 7 has degeneracy 1
Orbital 1 is num 9 type = 4 name - B2 1
Set 8 has degeneracy 1
Orbital 1 is num 10 type = 1 name - A1 1
Set 9 has degeneracy 1
Orbital 1 is num 11 type = 4 name - B2 1
Set 10 has degeneracy 2
Orbital 1 is num 12 type = 5 name - E 1
Orbital 2 is num 13 type = 6 name - E 2
Set 11 has degeneracy 1
Orbital 1 is num 14 type = 1 name - A1 1
Set 12 has degeneracy 1
Orbital 1 is num 15 type = 4 name - B2 1
Set 13 has degeneracy 2
Orbital 1 is num 16 type = 5 name - E 1
Orbital 2 is num 17 type = 6 name - E 2
Set 14 has degeneracy 1
Orbital 1 is num 18 type = 1 name - A1 1
Set 15 has degeneracy 1
Orbital 1 is num 19 type = 3 name - B1 1
Set 16 has degeneracy 1
Orbital 1 is num 20 type = 4 name - B2 1
Set 17 has degeneracy 2
Orbital 1 is num 21 type = 5 name - E 1
Orbital 2 is num 22 type = 6 name - E 2
Set 18 has degeneracy 1
Orbital 1 is num 23 type = 2 name - A2 1
Set 19 has degeneracy 2
Orbital 1 is num 24 type = 5 name - E 1
Orbital 2 is num 25 type = 6 name - E 2
Orbital occupations by degenerate group
1 A1 occ = 2
2 E occ = 4
3 B2 occ = 2
4 A1 occ = 2
5 A1 occ = 2
6 E occ = 4
7 B2 occ = 2
8 A1 occ = 2
9 B2 occ = 2
10 E occ = 4
11 A1 occ = 2
12 B2 occ = 2
13 E occ = 4
14 A1 occ = 2
15 B1 occ = 2
16 B2 occ = 2
17 E occ = 4
18 A2 occ = 2
19 E occ = 3
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1) E ( 2)
Symmetry of the continuum orbital is A1
Symmetry of the total state is E
Spin degeneracy of the total state is = 1
Symmetry of the target state is E
Spin degeneracy of the target state is = 2
Open shell symmetry types
1 E iele = 3
Use only configuration of type E
MS2 = 1 SDGN = 2
NumAlpha = 2
List of determinants found
1: 1.00000 0.00000 1 2 3
2: 1.00000 0.00000 1 2 4
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3
Configuration 2
1: 1.00000 0.00000 1 2 4
Each irreducable representation is present the number of times indicated
E ( 1)
representation E component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 4
representation E component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3
Open shell symmetry types
1 E iele = 3
2 A1 iele = 1
Use only configuration of type E
Each irreducable representation is present the number of times indicated
E ( 1)
representation E component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 2 4 6
2: -0.70711 0.00000 2 3 4 5
representation E component 2 fun 1
Symmeterized Function from AddNewShell
1: 0.70711 0.00000 1 2 3 6
2: 0.70711 0.00000 1 3 4 5
Open shell symmetry types
1 E iele = 3
Use only configuration of type E
MS2 = 1 SDGN = 2
NumAlpha = 2
List of determinants found
1: 1.00000 0.00000 1 2 3
2: 1.00000 0.00000 1 2 4
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1 2 3
Configuration 2
1: 1.00000 0.00000 1 2 4
Each irreducable representation is present the number of times indicated
E ( 1)
representation E component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1 2 4
representation E component 2 fun 1
Symmeterized Function
1: -1.00000 0.00000 1 2 3
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 50 52
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 48 49 50 51
Direct product basis function
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 52
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 49 50 51
Time Now = 240.8444 Delta time = 0.0023 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 50 52
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 48 49 50 51
Configuration 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 52
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 49 50 51
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 50 52
2: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 48 49 50 51
Direct product Configuration Cont sym = 1 Targ sym = 2
1: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 52
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 49 50 51
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 1
Symmetry of target = 5
Symmetry of total states = 5
Total symmetry component = 1
Cont Target Component
Comp 1 2
1 0.10000000E+01 0.00000000E+00
Total symmetry component = 2
Cont Target Component
Comp 1 2
1 0.00000000E+00 0.10000000E+01
Time Now = 240.8451 Delta time = 0.0007 End MatEle
In the product of the symmetry types A1 E
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types A2 E
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types B1 E
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types B2 E
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types E E
Each irreducable representation is present the number of times indicated
A1 ( 1)
A2 ( 1)
B1 ( 1)
B2 ( 1)
In the product of the symmetry types A1 E
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types A2 E
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types B1 E
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types B2 E
Each irreducable representation is present the number of times indicated
E ( 1)
In the product of the symmetry types E E
Each irreducable representation is present the number of times indicated
A1 ( 1)
A2 ( 1)
B1 ( 1)
B2 ( 1)
Found 8 T Matrix types
1 Cont A1 Targ E Total E
2 Cont A2 Targ E Total E
3 Cont B1 Targ E Total E
4 Cont B2 Targ E Total E
5 Cont E Targ E Total A1
6 Cont E Targ E Total A2
7 Cont E Targ E Total B1
8 Cont E Targ E Total B2
+ Data Record GrnType - 1
+ Command FileName
+ 'MatrixElements' 'test20.tmt' 'REWIND'
Opening file test20.tmt at position REWIND
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.15200000E+02 eV
Do E = 0.80000000E+00 eV ( 0.29399461E-01 AU)
Time Now = 240.8835 Delta time = 0.0384 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 12
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 72
Number of partial waves (np) = 76
Number of asymptotic solutions on the right (NAsymR) = 25
Number of asymptotic solutions on the left (NAsymL) = 25
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 25
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 32
Number of orthogonality constraints (NOrthUse) = 6
Number of different asymptotic potentials = 5
Maximum number of asymptotic partial waves = 211
Maximum l used in usual function (lmax) = 25
Maximum m used in usual function (LMax) = 25
Maxamum l used in expanding static potential (lpotct) = 50
Maximum l used in exapnding the exchange potential (lmaxab) = 50
Higest l included in the expansion of the wave function (lnp) = 25
Higest l included in the K matrix (lna) = 12
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 32
Time Now = 240.9053 Delta time = 0.0218 Energy independent setup
Compute solution for E = 0.8000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11379786E-14 Asymp Coef = -0.71429113E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.12078966E-17 Asymp Moment = -0.16999325E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.46846194E-04 Asymp Moment = -0.65928961E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.20438575E-04 Asymp Moment = -0.49628162E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.51335750E-16
i = 2 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.51590529E-16
i = 3 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.51837094E-16
i = 4 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.52064875E-16
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.76107671E-01 Asymp Coef = -0.47771579E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.15407618E-04 Asymp Moment = 0.21683901E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.60564730E-04 Asymp Moment = 0.85235734E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.38950150E-04 Asymp Moment = 0.94577259E+00 (e Angs^(n-1))
For potential 5
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.76107671E-01 Asymp Coef = 0.47771579E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.15407618E-04 Asymp Moment = 0.21683901E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.60564730E-04 Asymp Moment = -0.85235734E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.38950150E-04 Asymp Moment = -0.94577259E+00 (e Angs^(n-1))
Number of asymptotic regions = 118
Final point in integration = 0.65178154E+03 Angstroms
Time Now = 265.5236 Delta time = 24.6183 End SolveHomo
Final T matrix
ROW 1
( 0.46596777E+00, 0.63861287E+00) ( 0.83360317E-01, 0.23211154E-01)
( 0.50554838E-01, 0.43189396E-01) ( 0.35135150E-02, 0.46557152E-02)
( 0.23493132E-01, 0.32996690E-01) (-0.51127770E-02,-0.70338224E-02)
( 0.68900494E-03, 0.89945779E-03) ( 0.15572998E-03, 0.19181930E-03)
( 0.24853270E-04, 0.29385972E-04) ( 0.42024929E-04, 0.55070113E-04)
(-0.33215167E-06,-0.35538182E-06) ( 0.28571136E-05, 0.34092858E-05)
(-0.25334937E-05,-0.31829622E-05) ( 0.22592462E-06, 0.27011711E-06)
( 0.11020841E-06, 0.13100511E-06) (-0.53526119E-08,-0.65434053E-08)
(-0.64843648E-08,-0.80324731E-08) ( 0.62410277E-09, 0.97261473E-09)
(-0.57978620E-10,-0.78471657E-10) ( 0.24830386E-09, 0.26338459E-09)
(-0.31797767E-09,-0.37739233E-09) ( 0.29516043E-12, 0.47746468E-12)
(-0.13903724E-10,-0.16646945E-10) (-0.85641727E-11,-0.93697686E-11)
( 0.85206755E-11, 0.98653615E-11)
ROW 2
( 0.83360317E-01, 0.23211154E-01) (-0.46415613E+00, 0.34327621E+00)
(-0.30174715E-01, 0.38357299E-01) (-0.69908959E-02, 0.49506971E-02)
( 0.66693365E-02,-0.74447638E-03) (-0.28009418E-02, 0.97427387E-03)
( 0.21247899E-04, 0.12207715E-03) ( 0.13061034E-03,-0.64318938E-04)
(-0.54894118E-05, 0.89943105E-05) ( 0.12087588E-05, 0.83027757E-05)
( 0.10839401E-06,-0.14642165E-06) ( 0.74775530E-06,-0.10451080E-07)
(-0.36099341E-06,-0.25342156E-06) ( 0.42808207E-08, 0.44702948E-07)
( 0.34558310E-07,-0.43177673E-08) ( 0.68990473E-09,-0.16550479E-08)
( 0.96554742E-10,-0.15232176E-08) (-0.52251895E-09, 0.57076136E-09)
( 0.15491107E-10,-0.22243428E-10) ( 0.54318032E-10, 0.86799633E-11)
(-0.20012803E-10,-0.51371812E-10) (-0.12352024E-12, 0.12444276E-12)
(-0.30306212E-12,-0.28782358E-11) (-0.17234234E-11,-0.42491829E-12)
( 0.10693045E-11, 0.89705445E-12)
ROW 3
( 0.50554838E-01, 0.43189396E-01) (-0.30174715E-01, 0.38357299E-01)
(-0.15745486E+00, 0.32820175E-01) ( 0.10275151E-01,-0.78925104E-03)
( 0.60012283E-02, 0.14879820E-02) ( 0.17357247E-02,-0.74688957E-03)
(-0.19995876E-03, 0.11352107E-03) (-0.11037731E-03, 0.28213736E-04)
(-0.12204410E-04, 0.50640083E-05) (-0.17288456E-04, 0.74423396E-05)
( 0.28086092E-06,-0.95588294E-07) (-0.12416623E-05, 0.53035936E-06)
( 0.11235377E-05,-0.45758464E-06) (-0.10704449E-06, 0.46611445E-07)
(-0.49938194E-07, 0.21586128E-07) ( 0.28391410E-08,-0.12304183E-08)
( 0.34695682E-08,-0.13695845E-08) (-0.43556131E-09, 0.14053488E-09)
( 0.40130736E-10,-0.13361200E-10) (-0.10415706E-09, 0.53930420E-10)
( 0.15867124E-09,-0.66904397E-10) (-0.32208544E-12, 0.29605601E-13)
( 0.65531486E-11,-0.30987923E-11) ( 0.39225127E-11,-0.18411213E-11)
(-0.39828723E-11, 0.17693888E-11)
ROW 4
( 0.35135150E-02, 0.46557152E-02) (-0.69908959E-02, 0.49506971E-02)
( 0.10275151E-01,-0.78925104E-03) ( 0.77302596E-02, 0.27443618E-03)
(-0.54095696E-03, 0.24209262E-03) (-0.79698352E-03,-0.13652730E-04)
(-0.11226381E-03, 0.37260880E-05) (-0.15454269E-04,-0.15297229E-05)
(-0.18015292E-04, 0.33396470E-07) ( 0.47496957E-05, 0.47047548E-06)
(-0.29109860E-06,-0.81516032E-08) ( 0.39565445E-07, 0.72307894E-08)
( 0.26603857E-06, 0.10045366E-08) ( 0.41657626E-07, 0.42607071E-08)
(-0.13611700E-07,-0.54741191E-09) (-0.19408533E-08,-0.15690232E-09)
(-0.82415917E-09,-0.93762066E-12) ( 0.55318981E-09,-0.53679074E-10)
( 0.14323384E-10, 0.59239507E-11) (-0.10800861E-10,-0.27972891E-11)
( 0.23155812E-11,-0.12160695E-11) (-0.96722625E-12, 0.15055303E-13)
(-0.29380737E-11, 0.28437505E-12) ( 0.65583451E-12,-0.72804734E-13)
(-0.70427919E-12, 0.57553496E-13)
ROW 5
( 0.23493132E-01, 0.32996690E-01) ( 0.66693365E-02,-0.74447641E-03)
( 0.60012284E-02, 0.14879820E-02) (-0.54095696E-03, 0.24209262E-03)
( 0.58338159E-03, 0.17279410E-02) ( 0.28312524E-03,-0.36270415E-03)
( 0.20152245E-03, 0.45272336E-04) (-0.19252841E-03, 0.10638305E-04)
( 0.24702464E-05, 0.14058084E-05) (-0.13031327E-04, 0.25701355E-05)
( 0.20278089E-07,-0.14936544E-07) ( 0.73695771E-06, 0.15527318E-06)
(-0.60593056E-07,-0.13697419E-06) ( 0.81529013E-07, 0.10860735E-07)
( 0.12412566E-07, 0.10842995E-07) (-0.11969686E-08,-0.35458640E-09)
(-0.23161120E-08,-0.53944577E-09) ( 0.79996162E-09, 0.96383745E-10)
(-0.31729886E-11,-0.44879443E-11) ( 0.92591776E-10, 0.51937564E-11)
(-0.84772764E-10,-0.20340387E-10) (-0.18504532E-13, 0.13282752E-13)
(-0.50634760E-11,-0.51857771E-12) (-0.11085321E-11,-0.22469178E-12)
( 0.14810029E-11, 0.37195536E-12)
ROW 6
(-0.51127770E-02,-0.70338223E-02) (-0.28009418E-02, 0.97427386E-03)
( 0.17357247E-02,-0.74688960E-03) (-0.79698353E-03,-0.13652723E-04)
( 0.28312523E-03,-0.36270415E-03) (-0.85376488E-03, 0.90238541E-04)
( 0.27348240E-03,-0.10305095E-04) ( 0.75034080E-03,-0.44752522E-05)
( 0.31222407E-04,-0.40514331E-06) (-0.18712758E-03,-0.27729984E-06)
(-0.31284266E-06, 0.12862122E-07) ( 0.13845566E-04,-0.75156670E-07)
(-0.84522254E-05,-0.10142174E-06) (-0.32265943E-06,-0.10857010E-07)
(-0.10518935E-07, 0.12006489E-07) (-0.51746780E-08, 0.31907756E-09)
( 0.33395829E-08,-0.25362568E-08) ( 0.70566061E-08, 0.19312717E-08)
(-0.17149012E-09,-0.51180717E-11) (-0.97711507E-09,-0.55783204E-10)
( 0.14984696E-09, 0.63136200E-10) ( 0.60599480E-12, 0.81467744E-13)
( 0.24328847E-10,-0.26341068E-11) ( 0.24615916E-10, 0.75928054E-12)
(-0.74788866E-11,-0.13929838E-11)
ROW 7
( 0.68900516E-03, 0.89945780E-03) ( 0.21248004E-04, 0.12207737E-03)
(-0.19995902E-03, 0.11352149E-03) (-0.11226379E-03, 0.37260583E-05)
( 0.20152249E-03, 0.45272253E-04) ( 0.27348240E-03,-0.10305084E-04)
( 0.15089244E-03, 0.16944492E-05) (-0.77486960E-04, 0.49664522E-06)
(-0.31623764E-03,-0.25051363E-06) (-0.26433051E-03, 0.14784242E-06)
( 0.82735649E-05,-0.52372569E-07) (-0.11581499E-03,-0.23464886E-07)
( 0.37347671E-05,-0.53701221E-07) (-0.12070258E-04, 0.24569999E-07)
( 0.21649263E-05, 0.44969200E-07) (-0.30524160E-06,-0.45409938E-08)
( 0.80597878E-07, 0.77176257E-08) ( 0.52756514E-07, 0.88096692E-09)
(-0.18034957E-08, 0.19601519E-10) ( 0.29193755E-08, 0.15183072E-08)
(-0.12684852E-08,-0.42037144E-09) (-0.32987543E-10,-0.21740513E-11)
(-0.61478043E-09,-0.42688013E-10) (-0.78222505E-11, 0.60721254E-11)
(-0.16149247E-10,-0.11679723E-10)
ROW 8
( 0.15572889E-03, 0.19182155E-03) ( 0.13061007E-03,-0.64319934E-04)
(-0.11037630E-03, 0.28207637E-04) (-0.15454272E-04,-0.15297702E-05)
(-0.19252900E-03, 0.10638803E-04) ( 0.75034094E-03,-0.44752991E-05)
(-0.77486964E-04, 0.49666002E-06) (-0.12565342E-02, 0.23467420E-05)
(-0.10505839E-05, 0.57462292E-07) ( 0.20881201E-03,-0.52834119E-06)
(-0.81961918E-08,-0.12346128E-08) ( 0.19703570E-04,-0.39324310E-09)
(-0.14858016E-03, 0.31624589E-06) (-0.26385577E-07, 0.11646945E-08)
(-0.10322896E-04,-0.23330045E-07) ( 0.19932202E-08, 0.78882636E-10)
( 0.13981082E-07,-0.89859079E-09) ( 0.14958730E-06, 0.13322270E-07)
( 0.38908322E-11, 0.31335429E-12) ( 0.45506765E-08,-0.17350926E-09)
( 0.27316910E-08, 0.17940062E-08) ( 0.19949838E-13, 0.53001878E-14)
(-0.29784972E-10,-0.19556588E-11) (-0.36068958E-09,-0.39070754E-10)
( 0.56418974E-10, 0.10188680E-10)
ROW 9
( 0.24850304E-04, 0.29386798E-04) (-0.54884707E-05, 0.89942784E-05)
(-0.12201789E-04, 0.50650289E-05) (-0.18015927E-04, 0.33377579E-07)
( 0.24702113E-05, 0.14056962E-05) ( 0.31222374E-04,-0.40517417E-06)
(-0.31623765E-03,-0.25051329E-06) (-0.10505779E-05, 0.57463203E-07)
( 0.80595388E-03, 0.80763291E-06) (-0.12131674E-04, 0.80194524E-07)
( 0.19721100E-03, 0.36679333E-06) ( 0.10648198E-03, 0.10429921E-06)
( 0.16258577E-06,-0.60635912E-08) (-0.67306831E-04,-0.70157461E-07)
( 0.46955698E-06,-0.95233058E-08) ( 0.88992510E-05,-0.96304106E-09)
(-0.70291474E-06,-0.13762951E-07) (-0.76114033E-08, 0.25447917E-09)
(-0.22519157E-06,-0.19710829E-08) ( 0.31411270E-07, 0.32090642E-08)
( 0.60384661E-08, 0.13676434E-09) ( 0.16320768E-08,-0.32668460E-10)
(-0.17466398E-08,-0.73447414E-09) ( 0.43127558E-09, 0.10294799E-09)
( 0.68751517E-10,-0.18073402E-12)
ROW 10
( 0.42020891E-04, 0.55068746E-04) ( 0.12131692E-05, 0.83032531E-05)
(-0.17287620E-04, 0.74426480E-05) ( 0.47497739E-05, 0.47060037E-06)
(-0.13032154E-04, 0.25703758E-05) (-0.18712753E-03,-0.27736011E-06)
(-0.26433053E-03, 0.14785402E-06) ( 0.20881202E-03,-0.52834259E-06)
(-0.12131674E-04, 0.80194524E-07) (-0.65211830E-03, 0.64382846E-06)
( 0.11083501E-06,-0.48281784E-08) ( 0.20603953E-04, 0.20543524E-07)
( 0.22116052E-03,-0.32284341E-06) ( 0.77642577E-05,-0.69855329E-09)
(-0.12261921E-03, 0.14230140E-06) (-0.13585413E-07, 0.60628314E-09)
( 0.72973201E-05,-0.56670483E-08) (-0.49105606E-05,-0.28953769E-07)
( 0.28825719E-09, 0.17644177E-10) (-0.68026309E-07,-0.99113280E-09)
( 0.76372740E-07, 0.87797843E-08) (-0.52314304E-12,-0.47463607E-13)
(-0.11473168E-08, 0.51829579E-10) (-0.81453462E-09,-0.10073974E-08)
( 0.17450910E-08, 0.76960118E-09)
ROW 11
(-0.26912317E-06,-0.22033714E-06) ( 0.96374290E-07,-0.67243930E-07)
( 0.23934670E-06,-0.22999321E-06) (-0.28672145E-06, 0.37387154E-08)
( 0.14492573E-07,-0.49401778E-08) (-0.31039053E-06, 0.64575512E-08)
( 0.82746775E-05,-0.52749478E-07) (-0.81820560E-08,-0.12345168E-08)
( 0.19721101E-03, 0.36678310E-06) ( 0.11089349E-06,-0.48517283E-08)
( 0.10585678E-02, 0.11616813E-05) (-0.24132144E-05, 0.20260963E-07)
( 0.99101626E-09, 0.13605995E-09) (-0.33720389E-04,-0.54223181E-07)
(-0.13071020E-07, 0.50663538E-09) (-0.31308388E-04,-0.42008463E-07)
( 0.76847571E-07,-0.17592622E-08) (-0.45152153E-10,-0.82916303E-11)
(-0.54454713E-05,-0.60938642E-08) ( 0.17414416E-06, 0.31921663E-08)
( 0.51011725E-09,-0.17613046E-10) (-0.16717421E-06,-0.46747642E-09)
( 0.95137142E-08, 0.10044633E-08) ( 0.75638847E-09, 0.20714811E-10)
( 0.37500596E-12, 0.18212793E-12)
ROW 12
( 0.28505336E-05, 0.34022785E-05) ( 0.74810296E-06, 0.19002723E-07)
(-0.12309425E-05, 0.53073410E-06) ( 0.39085169E-07, 0.73722122E-08)
( 0.73577170E-06, 0.15475216E-06) ( 0.13845447E-04,-0.75142047E-07)
(-0.11581500E-03,-0.23474498E-07) ( 0.19703568E-04,-0.39121820E-09)
( 0.10648198E-03, 0.10429929E-06) ( 0.20603952E-04, 0.20543466E-07)
(-0.24132154E-05, 0.20256439E-07) (-0.21435862E-03, 0.95280647E-07)
(-0.18638761E-04, 0.73130638E-08) (-0.70763158E-04,-0.59585007E-09)
(-0.10230749E-03, 0.59107616E-07) ( 0.39115013E-05,-0.35040639E-08)
(-0.87527272E-04, 0.33407137E-07) ( 0.17542898E-05,-0.76854588E-08)
( 0.77992864E-08,-0.35952146E-09) (-0.65618774E-05, 0.72509013E-08)
( 0.15748055E-05, 0.12461026E-07) ( 0.48811258E-10, 0.38421190E-11)
(-0.86942326E-07,-0.83786420E-09) ( 0.50909396E-07, 0.52411706E-08)
( 0.77594135E-08, 0.17461632E-09)
ROW 13
(-0.25338729E-05,-0.31823772E-05) (-0.36407132E-06,-0.25370067E-06)
( 0.11242878E-05,-0.45749756E-06) ( 0.26597176E-06, 0.10435855E-08)
(-0.60643566E-07,-0.13700678E-06) (-0.84522333E-05,-0.10142064E-06)
( 0.37347659E-05,-0.53701247E-07) (-0.14858016E-03, 0.31624523E-06)
( 0.16258572E-06,-0.60635665E-08) ( 0.22116052E-03,-0.32284345E-06)
( 0.99435593E-09, 0.14007676E-09) (-0.18638761E-04, 0.73130405E-08)
(-0.62208516E-03, 0.47661455E-06) (-0.52447718E-07, 0.28623955E-08)
( 0.85336709E-04,-0.11954749E-06) (-0.11492435E-08,-0.87121410E-10)
( 0.49766929E-05,-0.55045172E-09) (-0.10413969E-03, 0.10876829E-06)
(-0.22250474E-11,-0.18830003E-12) (-0.59316445E-08, 0.24758725E-09)
(-0.57234742E-05,-0.69656908E-08) (-0.66609988E-14,-0.19386240E-14)
( 0.15355315E-09, 0.87122987E-11) (-0.15398255E-07,-0.10964191E-09)
( 0.71931374E-07, 0.72907750E-08)
ROW 14
( 0.19552420E-06, 0.18020204E-06) ( 0.20985649E-06,-0.14323698E-07)
(-0.79668027E-07, 0.13037920E-06) ( 0.41083019E-07,-0.29895994E-08)
( 0.83832348E-07, 0.53923362E-08) (-0.32317003E-06,-0.10285261E-07)
(-0.12070244E-04, 0.24485421E-07) (-0.26325238E-07, 0.11271134E-08)
(-0.67306848E-04,-0.70166650E-07) ( 0.77642453E-05,-0.70581754E-09)
(-0.33720389E-04,-0.54223181E-07) (-0.70763158E-04,-0.59744126E-09)
(-0.52446865E-07, 0.28632929E-08) ( 0.89967198E-04, 0.31396662E-07)
(-0.50992364E-05, 0.72220101E-08) ( 0.72700230E-04, 0.27773421E-07)
( 0.57975296E-04, 0.55912648E-09) ( 0.20456090E-07,-0.95694339E-09)
( 0.18216954E-05,-0.30227464E-08) (-0.60955199E-04,-0.48313886E-08)
( 0.37397598E-06,-0.23537123E-08) (-0.25501397E-08, 0.12163939E-09)
( 0.54597379E-05,-0.35819250E-08) (-0.68732260E-06,-0.58037073E-08)
(-0.17927544E-08, 0.77971415E-10)
ROW 15
( 0.11758758E-06, 0.10435165E-06) ( 0.48587841E-07,-0.27331465E-07)
(-0.52641189E-07, 0.50480667E-07) (-0.16264008E-07,-0.38815949E-08)
( 0.14969202E-07, 0.61708799E-08) (-0.11401227E-07, 0.12888366E-07)
( 0.21649838E-05, 0.44749068E-07) (-0.10322835E-04,-0.23355297E-07)
( 0.46955893E-06,-0.95327352E-08) (-0.12261920E-03, 0.14228716E-06)
(-0.13071020E-07, 0.50663538E-09) (-0.10230749E-03, 0.59106715E-07)
( 0.85336709E-04,-0.11954660E-06) (-0.50992364E-05, 0.72220101E-08)
(-0.39819115E-03, 0.20700314E-06) ( 0.16064359E-07,-0.82721702E-09)
(-0.67968703E-05, 0.15561116E-07) ( 0.89037639E-04,-0.79600084E-07)
(-0.14192952E-09,-0.12630880E-10) ( 0.24518878E-05, 0.32170531E-09)
(-0.86710716E-04, 0.60328495E-07) ( 0.20272612E-12, 0.19758806E-13)
(-0.36333999E-09, 0.29940410E-10) ( 0.40870656E-05,-0.89200049E-09)
(-0.30610450E-05,-0.85678359E-08)
ROW 16
(-0.45068660E-08,-0.45862919E-08) ( 0.18868716E-09, 0.63924869E-09)
( 0.26870740E-08,-0.29456363E-08) (-0.19276129E-08, 0.20027239E-10)
(-0.12028547E-08,-0.25194856E-09) (-0.51345563E-08, 0.27086254E-09)
(-0.30523700E-06,-0.45389001E-08) ( 0.19910874E-08, 0.80818277E-10)
( 0.88992513E-05,-0.96300853E-09) (-0.13585074E-07, 0.60644579E-09)
(-0.31308388E-04,-0.42008463E-07) ( 0.39115013E-05,-0.35040163E-08)
(-0.11492514E-08,-0.87168536E-10) ( 0.72700230E-04, 0.27773421E-07)
( 0.16064359E-07,-0.82721702E-09) ( 0.27036992E-03, 0.85268122E-07)
(-0.18889008E-05, 0.42008070E-08) ( 0.25255071E-09, 0.21628069E-10)
(-0.57434382E-04,-0.36891890E-07) (-0.29939481E-04,-0.11924682E-07)
(-0.38234617E-08, 0.18637267E-09) ( 0.71000132E-06,-0.15687004E-08)
(-0.39883063E-04,-0.13994628E-07) ( 0.11108139E-06,-0.83051110E-09)
(-0.21505779E-10,-0.22307588E-11)
ROW 17
(-0.54486040E-08,-0.50899462E-08) (-0.19670855E-09,-0.96153110E-09)
( 0.19913907E-08,-0.41206167E-08) (-0.80222131E-09, 0.21093895E-09)
(-0.24558209E-08,-0.29779348E-09) ( 0.33547644E-08,-0.25498494E-08)
( 0.80607042E-07, 0.77362249E-08) ( 0.13978430E-07,-0.89082690E-09)
(-0.70291436E-06,-0.13762894E-07) ( 0.72973206E-05,-0.56667729E-08)
( 0.76847571E-07,-0.17592622E-08) (-0.87527272E-04, 0.33407195E-07)
( 0.49766929E-05,-0.55048732E-09) ( 0.57975296E-04, 0.55912648E-09)
(-0.67968703E-05, 0.15561116E-07) (-0.18889008E-05, 0.42008070E-08)
(-0.20632681E-03, 0.60822683E-07) (-0.61290859E-05,-0.18527497E-11)
(-0.47992248E-08, 0.24535645E-09) (-0.17675524E-04,-0.12311786E-09)
(-0.47607979E-04, 0.22951779E-07) (-0.20254729E-10,-0.19886397E-11)
( 0.15780053E-05,-0.15415522E-09) (-0.66828548E-04, 0.24445086E-07)
( 0.79953065E-06,-0.17508290E-08)
ROW 18
( 0.83052195E-10, 0.43750953E-09) (-0.54496027E-09, 0.37725773E-09)
( 0.13399491E-09, 0.30426021E-09) ( 0.52703250E-09,-0.82094137E-10)
( 0.85317029E-09, 0.41086583E-10) ( 0.70854749E-08, 0.19202542E-08)
( 0.52757352E-07, 0.88080694E-09) ( 0.14958769E-06, 0.13321215E-07)
(-0.76113579E-08, 0.25442822E-09) (-0.49105605E-05,-0.28953804E-07)
(-0.45152153E-10,-0.82916303E-11) ( 0.17542898E-05,-0.76854294E-08)
(-0.10413969E-03, 0.10876829E-06) ( 0.20456090E-07,-0.95694339E-09)
( 0.89037639E-04,-0.79600084E-07) ( 0.25255071E-09, 0.21628069E-10)
(-0.61290859E-05,-0.18527497E-11) (-0.36300495E-03, 0.15808111E-06)
( 0.55612280E-12, 0.57623046E-13) (-0.49771739E-08, 0.28096144E-09)
( 0.41964583E-04,-0.36072640E-07) ( 0.11965371E-14, 0.39834448E-15)
(-0.15168641E-09,-0.11581265E-10) ( 0.17612470E-05,-0.21880251E-09)
(-0.75464523E-04, 0.46629178E-07)
ROW 19
(-0.53219645E-10,-0.58904812E-10) ( 0.73631973E-11,-0.83066337E-11)
( 0.39452284E-10,-0.15266551E-10) ( 0.14862705E-10, 0.83038866E-11)
(-0.38446718E-11,-0.34657880E-11) (-0.17118325E-09,-0.61843337E-11)
(-0.18034052E-08, 0.19643794E-10) ( 0.38626575E-11, 0.33461915E-12)
(-0.22519156E-06,-0.19710822E-08) ( 0.28826446E-09, 0.17651553E-10)
(-0.54454713E-05,-0.60938642E-08) ( 0.77992865E-08,-0.35952085E-09)
(-0.22252291E-11,-0.18884563E-12) ( 0.18216954E-05,-0.30227464E-08)
(-0.14192952E-09,-0.12630880E-10) (-0.57434382E-04,-0.36891890E-07)
(-0.47992248E-08, 0.24535645E-09) ( 0.55612295E-12, 0.57623046E-13)
( 0.37015563E-03, 0.14244180E-06) (-0.64357351E-06, 0.17399411E-08)
( 0.27208159E-10, 0.26144490E-11) ( 0.36449297E-04, 0.28840928E-07)
( 0.13814809E-04, 0.87645262E-08) ( 0.84696915E-09,-0.42577518E-10)
(-0.71444528E-13,-0.81478182E-14)
ROW 20
( 0.22523377E-09, 0.20497547E-09) ( 0.12311312E-09,-0.13065831E-09)
(-0.93506783E-10, 0.14488914E-09) (-0.16256007E-10,-0.55840488E-11)
( 0.95101478E-10,-0.11315251E-10) (-0.97646193E-09,-0.55225540E-10)
( 0.29193281E-08, 0.15177812E-08) ( 0.45507853E-08,-0.17359000E-09)
( 0.31411258E-07, 0.32090550E-08) (-0.68026322E-07,-0.99116050E-09)
( 0.17414416E-06, 0.31921663E-08) (-0.65618774E-05, 0.72508994E-08)
(-0.59316441E-08, 0.24758892E-09) (-0.60955199E-04,-0.48313886E-08)
( 0.24518878E-05, 0.32170531E-09) (-0.29939481E-04,-0.11924682E-07)
(-0.17675524E-04,-0.12311786E-09) (-0.49771739E-08, 0.28096144E-09)
(-0.64357351E-06, 0.17399411E-08) (-0.54032590E-04, 0.12186673E-07)
(-0.21789338E-05, 0.95317038E-09) ( 0.10438668E-08,-0.53693186E-10)
( 0.26102751E-04, 0.16520982E-08) ( 0.32065232E-04,-0.55335353E-08)
( 0.36802660E-08,-0.19298215E-09)
ROW 21
(-0.27206561E-09,-0.25177374E-09) (-0.38609072E-10,-0.59307647E-10)
( 0.94851250E-10,-0.20346589E-09) ( 0.20334513E-11, 0.69048752E-11)
(-0.63011472E-10,-0.84873655E-11) ( 0.15215187E-09, 0.59969228E-10)
(-0.12680405E-08,-0.41973575E-09) ( 0.27315769E-08, 0.17941027E-08)
( 0.60384891E-08, 0.13677357E-09) ( 0.76372750E-07, 0.87797873E-08)
( 0.51011725E-09,-0.17613046E-10) ( 0.15748055E-05, 0.12461028E-07)
(-0.57234742E-05,-0.69656928E-08) ( 0.37397598E-06,-0.23537123E-08)
(-0.86710716E-04, 0.60328495E-07) (-0.38234617E-08, 0.18637267E-09)
(-0.47607979E-04, 0.22951779E-07) ( 0.41964583E-04,-0.36072640E-07)
( 0.27208159E-10, 0.26144490E-11) (-0.21789338E-05, 0.95317038E-09)
(-0.26037564E-03, 0.85476760E-07) (-0.40782083E-13,-0.44690589E-14)
( 0.26015573E-08,-0.14107496E-09) (-0.81983756E-05, 0.76909637E-08)
( 0.43584415E-04,-0.25921961E-07)
ROW 22
( 0.34865091E-12, 0.35954022E-12) (-0.60927813E-13, 0.57814712E-13)
(-0.23763777E-12, 0.17677941E-13) (-0.96844693E-12, 0.19056670E-14)
( 0.13862394E-13,-0.39347319E-13) ( 0.60312164E-12, 0.88046114E-13)
(-0.32988242E-10,-0.21749103E-11) ( 0.20096343E-13, 0.52367927E-14)
( 0.16320767E-08,-0.32668476E-10) (-0.52318450E-12,-0.47519112E-13)
(-0.16717421E-06,-0.46747642E-09) ( 0.48811258E-10, 0.38421150E-11)
(-0.66609596E-14,-0.19347481E-14) (-0.25501397E-08, 0.12163939E-09)
( 0.20272612E-12, 0.19758806E-13) ( 0.71000132E-06,-0.15687004E-08)
(-0.20254729E-10,-0.19886397E-11) ( 0.11965205E-14, 0.39834448E-15)
( 0.36449297E-04, 0.28840928E-07) ( 0.10438668E-08,-0.53693186E-10)
(-0.40782425E-13,-0.44690589E-14) ( 0.41993319E-03, 0.17783356E-06)
(-0.17667037E-06, 0.51919458E-09) ( 0.33559463E-11, 0.34615043E-12)
(-0.12734755E-15,-0.45642337E-16)
ROW 23
(-0.11583567E-10,-0.12684985E-10) ( 0.13501600E-10,-0.25372907E-10)
( 0.65600867E-11,-0.83316230E-11) (-0.29066943E-11, 0.76079513E-12)
(-0.50402921E-11,-0.31799389E-12) ( 0.24248211E-10,-0.28204105E-11)
(-0.61477604E-09,-0.42650578E-10) (-0.29791717E-10,-0.19469751E-11)
(-0.17466390E-08,-0.73447377E-09) (-0.11473157E-08, 0.51830556E-10)
( 0.95137142E-08, 0.10044633E-08) (-0.86942326E-07,-0.83786410E-09)
( 0.15355311E-09, 0.87122057E-11) ( 0.54597379E-05,-0.35819250E-08)
(-0.36333999E-09, 0.29940410E-10) (-0.39883063E-04,-0.13994628E-07)
( 0.15780053E-05,-0.15415522E-09) (-0.15168641E-09,-0.11581265E-10)
( 0.13814809E-04, 0.87645262E-08) ( 0.26102751E-04, 0.16520982E-08)
( 0.26015573E-08,-0.14107496E-09) (-0.17667037E-06, 0.51919458E-09)
( 0.53559724E-04, 0.78596355E-08) (-0.10598209E-05, 0.88860213E-09)
( 0.51447098E-10, 0.41888058E-11)
ROW 24
(-0.79462080E-11,-0.73016109E-11) (-0.16700523E-11, 0.21128074E-11)
( 0.35387948E-11,-0.51026434E-11) ( 0.79715268E-12, 0.26161085E-12)
(-0.10553329E-11, 0.34957264E-12) ( 0.24656237E-10, 0.64322561E-12)
(-0.78207204E-11, 0.60893402E-11) (-0.36069047E-09,-0.39048753E-10)
( 0.43127602E-09, 0.10294832E-09) (-0.81453408E-09,-0.10073966E-08)
( 0.75638847E-09, 0.20714811E-10) ( 0.50909396E-07, 0.52411707E-08)
(-0.15398255E-07,-0.10964197E-09) (-0.68732260E-06,-0.58037073E-08)
( 0.40870656E-05,-0.89200049E-09) ( 0.11108139E-06,-0.83051110E-09)
(-0.66828548E-04, 0.24445086E-07) ( 0.17612470E-05,-0.21880251E-09)
( 0.84696915E-09,-0.42577518E-10) ( 0.32065232E-04,-0.55335353E-08)
(-0.81983756E-05, 0.76909637E-08) ( 0.33559467E-11, 0.34615043E-12)
(-0.10598209E-05, 0.88860213E-09) (-0.16363111E-03, 0.35719805E-07)
(-0.25144333E-05,-0.20838998E-09)
ROW 25
( 0.75897531E-11, 0.71811579E-11) ( 0.16382304E-11,-0.34822368E-11)
(-0.31203684E-11, 0.52537211E-11) (-0.75492085E-12, 0.23587613E-13)
( 0.11179976E-11, 0.91612217E-13) (-0.75141934E-11,-0.12703643E-11)
(-0.16156357E-10,-0.11697661E-10) ( 0.56422831E-10, 0.10185621E-10)
( 0.68750964E-10,-0.18114171E-12) ( 0.17450904E-08, 0.76960044E-09)
( 0.37500600E-12, 0.18212793E-12) ( 0.77594135E-08, 0.17461625E-09)
( 0.71931374E-07, 0.72907751E-08) (-0.17927544E-08, 0.77971415E-10)
(-0.30610450E-05,-0.85678359E-08) (-0.21505779E-10,-0.22307588E-11)
( 0.79953065E-06,-0.17508290E-08) (-0.75464523E-04, 0.46629178E-07)
(-0.71444414E-13,-0.81478180E-14) ( 0.36802660E-08,-0.19298215E-09)
( 0.43584415E-04,-0.25921961E-07) (-0.12735327E-15,-0.45642321E-16)
( 0.51447098E-10, 0.41888058E-11) (-0.25144333E-05,-0.20838998E-09)
(-0.23558698E-03, 0.66881550E-07)
eigenphases
-0.6281912E+00 -0.1608484E+00 -0.2090334E-02 -0.9479420E-03 -0.6287033E-03
-0.5307513E-03 -0.4599722E-03 -0.3405109E-03 -0.2965535E-03 -0.2706311E-03
-0.2196354E-03 -0.1849891E-03 -0.1472321E-03 -0.8947011E-04 -0.6539212E-04
0.4988705E-04 0.1033388E-03 0.2748626E-03 0.3077080E-03 0.3801559E-03
0.4450818E-03 0.8430442E-03 0.1201520E-02 0.8555657E-02 0.9332509E+00
eigenphase sum 0.150100E+00 scattering length= -0.62370
eps+pi 0.329169E+01 eps+2*pi 0.643329E+01
MaxIter = 11 c.s. = 60.85309000 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.88752149E-07
Time Now = 713.9513 Delta time = 448.4277 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.15200000E+02 eV
Do E = 0.48000000E+01 eV ( 0.17639676E+00 AU)
Time Now = 713.9889 Delta time = 0.0376 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 12
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 72
Number of partial waves (np) = 76
Number of asymptotic solutions on the right (NAsymR) = 25
Number of asymptotic solutions on the left (NAsymL) = 25
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 25
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 32
Number of orthogonality constraints (NOrthUse) = 6
Number of different asymptotic potentials = 5
Maximum number of asymptotic partial waves = 211
Maximum l used in usual function (lmax) = 25
Maximum m used in usual function (LMax) = 25
Maxamum l used in expanding static potential (lpotct) = 50
Maximum l used in exapnding the exchange potential (lmaxab) = 50
Higest l included in the expansion of the wave function (lnp) = 25
Higest l included in the K matrix (lna) = 12
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 32
Time Now = 714.0106 Delta time = 0.0217 Energy independent setup
Compute solution for E = 4.8000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.11379786E-14 Asymp Coef = -0.71429113E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.12078966E-17 Asymp Moment = -0.16999325E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.46846194E-04 Asymp Moment = -0.65928961E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.20438575E-04 Asymp Moment = -0.49628162E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.37964673E-16
i = 2 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.38297191E-16
i = 3 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.38618627E-16
i = 4 exps = -0.93155070E+02 -0.20000000E+01 stpote = -0.38915178E-16
For potential 3
For potential 4
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.76107671E-01 Asymp Coef = -0.47771579E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.15407618E-04 Asymp Moment = 0.21683901E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.60564730E-04 Asymp Moment = 0.85235734E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.38950150E-04 Asymp Moment = 0.94577259E+00 (e Angs^(n-1))
For potential 5
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = 0.76107671E-01 Asymp Coef = 0.47771579E+05 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.15407618E-04 Asymp Moment = 0.21683901E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.60564730E-04 Asymp Moment = -0.85235734E-01 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.38950150E-04 Asymp Moment = -0.94577259E+00 (e Angs^(n-1))
Number of asymptotic regions = 181
Final point in integration = 0.41505009E+03 Angstroms
Time Now = 748.6461 Delta time = 34.6356 End SolveHomo
Final T matrix
ROW 1
(-0.23909287E+00, 0.65680154E+00) (-0.37343775E-01,-0.43654009E-01)
( 0.16062366E-01,-0.37435193E+00) (-0.17371271E-01, 0.64898363E-01)
(-0.33786567E-01, 0.13236492E+00) ( 0.11662262E-01,-0.31950848E-01)
(-0.61780337E-02, 0.13202685E-01) ( 0.12947923E-03, 0.28441045E-03)
(-0.57089510E-03, 0.10727957E-02) (-0.86078045E-03, 0.16937946E-02)
( 0.19086655E-04,-0.31674597E-04) (-0.70690210E-04, 0.15700538E-03)
( 0.89917948E-04,-0.18030378E-03) (-0.20679174E-04, 0.37108398E-04)
(-0.48647463E-05, 0.11664207E-04) ( 0.14059376E-05,-0.22261137E-05)
( 0.16293159E-05,-0.27051144E-05) (-0.48469471E-06, 0.64153052E-06)
( 0.44958314E-07,-0.61793383E-07) (-0.75693542E-07, 0.15361281E-06)
( 0.16358090E-06,-0.27533632E-06) (-0.69376150E-09, 0.81861661E-09)
( 0.17689511E-07,-0.27520636E-07) ( 0.62671678E-08,-0.12578212E-07)
(-0.84219493E-08, 0.14890742E-07)
ROW 2
(-0.37343838E-01,-0.43653990E-01) (-0.46814587E+00, 0.63877974E+00)
( 0.18145905E-01, 0.34091732E-01) (-0.47667290E-01, 0.47701801E-01)
( 0.66372651E-02,-0.26378229E-01) (-0.21426586E-01, 0.31819415E-01)
(-0.19969380E-02, 0.67020411E-03) ( 0.29563690E-02,-0.38853633E-02)
(-0.48480609E-03, 0.44143417E-03) (-0.25935179E-03, 0.14963865E-03)
( 0.21484978E-04,-0.19733157E-04) ( 0.60727296E-04,-0.97293465E-04)
(-0.11905192E-04, 0.35412885E-04) (-0.53488288E-05, 0.24224093E-05)
( 0.85342853E-05,-0.12045891E-04) ( 0.84485085E-06,-0.68791456E-06)
( 0.58253104E-06,-0.45727941E-06) (-0.59496043E-06, 0.67808402E-06)
( 0.36733886E-07,-0.28532388E-07) ( 0.59728071E-07,-0.82236427E-07)
( 0.20558941E-07, 0.83615361E-09) (-0.67699389E-09, 0.46105179E-09)
( 0.36791395E-08,-0.16370941E-08) (-0.53721895E-08, 0.73001667E-08)
( 0.21422889E-08,-0.39485014E-08)
ROW 3
( 0.16061626E-01,-0.37435138E+00) ( 0.18145892E-01, 0.34091541E-01)
(-0.21679315E+00, 0.27555451E+00) ( 0.25703821E-01,-0.41840353E-01)
( 0.30851093E-01,-0.83588818E-01) ( 0.59551586E-02, 0.17288702E-01)
(-0.15944174E-02,-0.68704279E-02) (-0.87516261E-03,-0.63408937E-04)
(-0.23380550E-03,-0.51181004E-03) (-0.25446677E-03,-0.86375511E-03)
( 0.86194736E-05, 0.13477708E-04) (-0.56998595E-04,-0.73524717E-04)
( 0.40338841E-04, 0.88809313E-04) (-0.11910362E-04,-0.16666871E-04)
(-0.37255685E-05,-0.56913405E-05) ( 0.66254894E-06, 0.98427965E-06)
( 0.79425337E-06, 0.12159061E-05) (-0.16183373E-06,-0.27416055E-06)
( 0.16572931E-07, 0.28710518E-07) (-0.66448760E-07,-0.65851312E-07)
( 0.83626325E-07, 0.12309142E-06) (-0.23322675E-09,-0.43347691E-09)
( 0.98067234E-08, 0.12012930E-07) ( 0.46348673E-08, 0.57199993E-08)
(-0.44796680E-08,-0.68302591E-08)
ROW 4
(-0.17371218E-01, 0.64898440E-01) (-0.47667296E-01, 0.47701789E-01)
( 0.25703817E-01,-0.41840382E-01) ( 0.42530352E-01, 0.13941797E-01)
(-0.16552399E-01, 0.11464728E-01) ( 0.74648060E-02,-0.69106702E-04)
( 0.79263929E-03, 0.14373069E-02) (-0.13881256E-02,-0.37445485E-03)
( 0.32058118E-03, 0.16235451E-03) ( 0.63393271E-04, 0.17653174E-03)
(-0.36932747E-04,-0.65262998E-05) (-0.48630631E-04, 0.38243042E-05)
( 0.27737184E-04,-0.12347598E-04) ( 0.75487201E-05, 0.38053222E-05)
(-0.71677915E-05,-0.25405296E-06) (-0.13522006E-05,-0.32245648E-06)
(-0.39085575E-06,-0.28526891E-06) ( 0.38361142E-06, 0.12442563E-06)
(-0.52597166E-07,-0.11512387E-07) (-0.62599070E-07, 0.23192109E-08)
( 0.88849943E-08,-0.23492086E-07) ( 0.40315245E-09, 0.28490024E-09)
(-0.64312510E-08,-0.25054118E-08) ( 0.57579835E-08,-0.21303012E-09)
(-0.32717970E-08, 0.84368181E-09)
ROW 5
(-0.33786343E-01, 0.13236545E+00) ( 0.66372538E-02,-0.26378226E-01)
( 0.30850971E-01,-0.83588919E-01) (-0.16552351E-01, 0.11464730E-01)
( 0.14482665E-01, 0.28854413E-01) ( 0.26900294E-02,-0.71656360E-02)
(-0.39876745E-03, 0.25293310E-02) (-0.70363006E-03, 0.15098120E-03)
(-0.18346585E-03, 0.18243261E-03) ( 0.87746199E-04, 0.32270313E-03)
( 0.97698277E-05,-0.46508427E-05) ( 0.51360760E-05, 0.32624057E-04)
(-0.35296002E-04,-0.36092944E-04) (-0.62824075E-07, 0.67234365E-05)
( 0.24906104E-05, 0.26613690E-05) ( 0.27566020E-06,-0.38140514E-06)
(-0.68276375E-06,-0.49463376E-06) ( 0.26455932E-06, 0.10642867E-06)
( 0.15096343E-07,-0.95420567E-08) ( 0.49450709E-08, 0.29819582E-07)
(-0.94980835E-07,-0.51799991E-07) (-0.28441845E-09, 0.95655045E-10)
( 0.54012436E-09,-0.49234659E-08) (-0.26372653E-08,-0.23813128E-08)
( 0.57164186E-08, 0.28534890E-08)
ROW 6
( 0.11662285E-01,-0.31950862E-01) (-0.21426582E-01, 0.31819408E-01)
( 0.59551379E-02, 0.17288695E-01) ( 0.74647904E-02,-0.69123305E-04)
( 0.26900298E-02,-0.71656082E-02) ( 0.65779532E-02, 0.31327871E-02)
( 0.12185357E-02,-0.56507110E-03) ( 0.63395068E-03,-0.21232477E-03)
( 0.32783218E-03,-0.24755259E-04) (-0.46567875E-03,-0.75417239E-04)
(-0.15433906E-04, 0.33548393E-06) ( 0.56540562E-04,-0.12378315E-04)
(-0.60331757E-04, 0.94307734E-05) (-0.76972646E-05,-0.18669943E-05)
(-0.93220221E-05,-0.11379774E-05) (-0.56221457E-06, 0.73050314E-07)
(-0.26766875E-06, 0.58955098E-07) ( 0.99672422E-06, 0.47682883E-07)
(-0.37882004E-07,-0.20873444E-09) (-0.22295922E-06,-0.13626015E-07)
( 0.25928652E-07, 0.18503470E-07) ( 0.59664516E-09, 0.63015029E-10)
( 0.85639459E-08, 0.80305767E-09) ( 0.15201300E-07, 0.94113273E-09)
(-0.69724883E-08,-0.10582027E-08)
ROW 7
(-0.61780364E-02, 0.13202692E-01) (-0.19969382E-02, 0.67020396E-03)
(-0.15944130E-02,-0.68704363E-02) ( 0.79264065E-03, 0.14373050E-02)
(-0.39876836E-03, 0.25293267E-02) ( 0.12185359E-02,-0.56507153E-03)
( 0.41954939E-03, 0.27965308E-03) (-0.43237569E-03,-0.38275053E-05)
(-0.88815918E-03, 0.22727574E-04) (-0.74808816E-03, 0.35296089E-04)
( 0.31524518E-04,-0.12598393E-05) (-0.36825734E-03, 0.26218872E-05)
( 0.12651689E-05,-0.40127035E-05) (-0.93075111E-04, 0.96011361E-06)
( 0.17624129E-04, 0.62862143E-06) (-0.75074481E-05,-0.15563178E-06)
( 0.13871157E-05,-0.22218877E-07) ( 0.17446433E-05, 0.45780491E-07)
(-0.14880992E-06, 0.14016404E-08) ( 0.17254175E-06, 0.37771339E-07)
(-0.11501311E-06,-0.15546003E-07) (-0.35056052E-08,-0.21992258E-09)
(-0.88777154E-07,-0.24979165E-08) (-0.41442434E-09, 0.23281011E-09)
(-0.67682498E-09,-0.67828850E-09)
ROW 8
( 0.12947743E-03, 0.28441492E-03) ( 0.29563707E-02,-0.38853640E-02)
(-0.87516000E-03,-0.63409279E-04) (-0.13881252E-02,-0.37445556E-03)
(-0.70363037E-03, 0.15097938E-03) ( 0.63395070E-03,-0.21232516E-03)
(-0.43237570E-03,-0.38274802E-05) (-0.13905537E-02, 0.30398193E-04)
(-0.48575538E-04,-0.23985924E-05) ( 0.57059703E-03,-0.23699286E-05)
( 0.74969615E-06, 0.11814369E-06) ( 0.15033346E-03, 0.74211892E-06)
(-0.42883469E-03, 0.10774561E-05) (-0.11557350E-05, 0.31939809E-07)
(-0.80283011E-04,-0.14576962E-06) ( 0.24849193E-06, 0.85500109E-08)
( 0.14042817E-05,-0.21590822E-07) ( 0.29034970E-05, 0.65599353E-07)
( 0.41260364E-08, 0.50280634E-09) ( 0.34488536E-06,-0.93812731E-08)
( 0.15068166E-06, 0.39614140E-07) (-0.18350415E-10,-0.74396324E-11)
(-0.46659207E-08,-0.28766726E-09) (-0.52317356E-07,-0.23288013E-08)
( 0.94085788E-08, 0.75830333E-09)
ROW 9
(-0.57089827E-03, 0.10727960E-02) (-0.48480617E-03, 0.44143383E-03)
(-0.23380435E-03,-0.51181244E-03) ( 0.32058099E-03, 0.16235461E-03)
(-0.18346724E-03, 0.18243161E-03) ( 0.32783251E-03,-0.24754805E-04)
(-0.88815925E-03, 0.22727494E-04) (-0.48575609E-04,-0.23985892E-05)
( 0.12915731E-02, 0.55704050E-05) (-0.38243857E-04, 0.35793844E-05)
( 0.64093223E-03, 0.18828123E-05) ( 0.34722816E-03, 0.88181664E-06)
( 0.52860321E-05,-0.33645019E-06) (-0.21321475E-03,-0.29773876E-06)
(-0.15494542E-05,-0.10657671E-06) ( 0.68001674E-04, 0.13877629E-07)
(-0.63457063E-05,-0.14624550E-06) (-0.25218234E-06, 0.30471863E-08)
(-0.46841491E-05,-0.52526055E-07) ( 0.59049422E-06, 0.14885421E-07)
( 0.21466376E-06, 0.47532058E-08) ( 0.11842197E-06,-0.18199132E-08)
(-0.10354952E-06,-0.16781572E-07) ( 0.30310912E-07, 0.26744252E-08)
( 0.38956650E-09, 0.27362261E-09)
ROW 10
(-0.86078079E-03, 0.16937955E-02) (-0.25935181E-03, 0.14963859E-03)
(-0.25446614E-03,-0.86375610E-03) ( 0.63393530E-04, 0.17653141E-03)
( 0.87746106E-04, 0.32270254E-03) (-0.46567872E-03,-0.75417295E-04)
(-0.74808816E-03, 0.35296085E-04) ( 0.57059703E-03,-0.23699320E-05)
(-0.38243848E-04, 0.35793937E-05) (-0.86504803E-03, 0.71494900E-05)
( 0.31825191E-05,-0.14122523E-06) ( 0.62756106E-04, 0.64702607E-06)
( 0.69919028E-03,-0.21032838E-05) ( 0.58143581E-04, 0.14683784E-06)
(-0.36425221E-03, 0.68254942E-06) (-0.73842689E-06, 0.12869403E-07)
( 0.54095735E-04,-0.40009033E-07) (-0.37998051E-04,-0.25687177E-06)
( 0.26949279E-07, 0.90049990E-09) (-0.13013310E-05,-0.22391333E-07)
( 0.10025947E-05, 0.42240569E-07) (-0.34654022E-09,-0.16521258E-10)
(-0.94634116E-07, 0.28863965E-08) (-0.16462996E-07,-0.21156583E-07)
( 0.10023374E-06, 0.16961352E-07)
ROW 11
( 0.19084184E-04,-0.31674180E-04) ( 0.21484945E-04,-0.19733150E-04)
( 0.86217368E-05, 0.13477327E-04) (-0.36933627E-04,-0.65243045E-05)
( 0.97695440E-05,-0.46509040E-05) (-0.15434058E-04, 0.33554776E-06)
( 0.31524500E-04,-0.12597905E-05) ( 0.74971301E-06, 0.11809974E-06)
( 0.64093222E-03, 0.18828208E-05) ( 0.31825211E-05,-0.14121960E-06)
( 0.18098276E-02, 0.37169825E-05) (-0.61188029E-05, 0.22424715E-06)
(-0.34578935E-07, 0.13979217E-07) (-0.11877567E-03,-0.39751062E-06)
(-0.41535697E-06, 0.37391447E-08) (-0.98163688E-04,-0.20264207E-06)
(-0.31764156E-06,-0.26333939E-07) ( 0.37183570E-08,-0.58840682E-09)
(-0.40752388E-04,-0.85073440E-07) ( 0.15513625E-05, 0.35138088E-07)
( 0.17776690E-07, 0.67379818E-10) (-0.27705413E-05,-0.13360986E-07)
( 0.17568984E-06, 0.47439349E-08) ( 0.29110210E-07, 0.87253888E-09)
(-0.29620587E-09, 0.18434458E-10)
ROW 12
(-0.70691808E-04, 0.15700740E-03) ( 0.60727692E-04,-0.97293538E-04)
(-0.56992372E-04,-0.73526575E-04) (-0.48630903E-04, 0.38241988E-05)
( 0.51357691E-05, 0.32623455E-04) ( 0.56540624E-04,-0.12378059E-04)
(-0.36825737E-03, 0.26217769E-05) ( 0.15033348E-03, 0.74211368E-06)
( 0.34722817E-03, 0.88180660E-06) ( 0.62756102E-04, 0.64701367E-06)
(-0.61188038E-05, 0.22424737E-06) (-0.37566310E-03, 0.73564969E-06)
(-0.11281661E-03,-0.28735283E-07) (-0.23741289E-03, 0.38269912E-08)
(-0.34488211E-03, 0.29092190E-06) ( 0.28284937E-04,-0.24339750E-07)
(-0.24933836E-03, 0.14063338E-06) ( 0.91335975E-05,-0.76227183E-07)
( 0.43076096E-06,-0.10168793E-07) (-0.47452863E-04, 0.69819503E-07)
( 0.11801442E-04, 0.12420585E-06) ( 0.38468282E-08, 0.29524073E-09)
(-0.18220603E-05,-0.19881148E-07) ( 0.93861070E-06, 0.29602527E-07)
( 0.42004077E-06, 0.58157523E-08)
ROW 13
( 0.89918746E-04,-0.18030513E-03) (-0.11905602E-04, 0.35413170E-04)
( 0.40334418E-04, 0.88810808E-04) ( 0.27737489E-04,-0.12347716E-04)
(-0.35295605E-04,-0.36092354E-04) (-0.60331843E-04, 0.94305661E-05)
( 0.12652920E-05,-0.40125964E-05) (-0.42883469E-03, 0.10774734E-05)
( 0.52860413E-05,-0.33644240E-06) ( 0.69919028E-03,-0.21032650E-05)
(-0.34578615E-07, 0.13979006E-07) (-0.11281661E-03,-0.28735265E-07)
(-0.10070876E-02, 0.19257369E-05) (-0.23095295E-05, 0.57948372E-07)
( 0.28777341E-03,-0.73828188E-06) (-0.96674631E-07,-0.35543580E-08)
( 0.39206402E-04, 0.24387466E-07) (-0.28487514E-03, 0.52052253E-06)
(-0.14815907E-08,-0.56117697E-10) (-0.33650185E-06, 0.91280462E-08)
(-0.41800746E-04,-0.60130221E-07) (-0.37890180E-13,-0.59910056E-12)
( 0.21980473E-07, 0.52475533E-09) ( 0.93298432E-07,-0.20773624E-08)
( 0.13658814E-05, 0.41941706E-07)
ROW 14
(-0.20676975E-04, 0.37107654E-04) (-0.53140106E-05, 0.24104034E-05)
(-0.11920443E-04,-0.16668300E-04) ( 0.75449933E-05, 0.37986469E-05)
(-0.61173439E-07, 0.67258565E-05) (-0.76968170E-05,-0.18711223E-05)
(-0.93075216E-04, 0.95989506E-06) (-0.11556515E-05, 0.31353451E-07)
(-0.21321481E-03,-0.29780240E-06) ( 0.58143549E-04, 0.14679950E-06)
(-0.11877567E-03,-0.39750810E-06) (-0.23741288E-03, 0.38449829E-08)
(-0.23095321E-05, 0.57943377E-07) ( 0.13530673E-03, 0.29154629E-06)
(-0.29893756E-04, 0.65778524E-07) ( 0.25880362E-03, 0.15790319E-06)
( 0.20791606E-03, 0.25165217E-07) ( 0.97578268E-06,-0.22495348E-07)
( 0.12790025E-04,-0.36678066E-07) (-0.17331807E-03,-0.34633949E-07)
( 0.15803062E-05,-0.29716603E-07) (-0.14892924E-06, 0.32330821E-08)
( 0.38439688E-04,-0.33693978E-07) (-0.52254305E-05,-0.59389868E-07)
(-0.99819465E-07, 0.19072581E-08)
ROW 15
(-0.48648221E-05, 0.11664195E-04) ( 0.85343202E-05,-0.12045888E-04)
(-0.37255772E-05,-0.56913973E-05) (-0.71678044E-05,-0.25405026E-06)
( 0.24905973E-05, 0.26613216E-05) (-0.93220252E-05,-0.11379575E-05)
( 0.17624129E-04, 0.62861841E-06) (-0.80283010E-04,-0.14576945E-06)
(-0.15494542E-05,-0.10657670E-06) (-0.36425221E-03, 0.68254908E-06)
(-0.41535713E-06, 0.37391421E-08) (-0.34488211E-03, 0.29092190E-06)
( 0.28777341E-03,-0.73828188E-06) (-0.29893757E-04, 0.65775387E-07)
(-0.63510094E-03, 0.90646144E-06) ( 0.76759942E-06,-0.19576544E-07)
(-0.24521721E-04, 0.11817136E-06) ( 0.31587241E-03,-0.50369533E-06)
(-0.10565641E-07,-0.75396871E-09) ( 0.20463446E-04, 0.15526700E-07)
(-0.24154712E-03, 0.29423129E-06) ( 0.13895634E-09, 0.75808950E-11)
(-0.29793459E-07, 0.94116192E-09) ( 0.28573705E-04,-0.72429814E-08)
(-0.21941027E-04,-0.80609976E-07)
ROW 16
( 0.14077889E-05,-0.22234337E-05) ( 0.84611601E-06,-0.67731130E-06)
( 0.66537155E-06, 0.98335222E-06) (-0.13477487E-05,-0.31976735E-06)
( 0.27470335E-06,-0.38145358E-06) (-0.56236893E-06, 0.75448612E-07)
(-0.75073632E-05,-0.15552840E-06) ( 0.24778384E-06, 0.14150388E-07)
( 0.68001714E-04, 0.13889691E-07) (-0.73840877E-06, 0.12877416E-07)
(-0.98163690E-04,-0.20264178E-06) ( 0.28284943E-04,-0.24353469E-07)
(-0.96674132E-07,-0.35531899E-08) ( 0.25880362E-03, 0.15790336E-06)
( 0.76760674E-06,-0.19580874E-07) ( 0.47029009E-03, 0.37575964E-06)
(-0.10741784E-04, 0.50968497E-07) ( 0.17775762E-07, 0.12466519E-08)
(-0.21454698E-03,-0.24154821E-06) (-0.11260464E-03,-0.97760819E-07)
(-0.19600386E-06, 0.42072862E-08) ( 0.49052905E-05,-0.23222922E-07)
(-0.11292385E-03,-0.73920468E-07) ( 0.39993508E-06,-0.12416844E-07)
(-0.99027379E-09,-0.16075154E-09)
ROW 17
( 0.16317756E-05,-0.27027348E-05) ( 0.60067135E-06,-0.45420619E-06)
( 0.79626001E-06, 0.12146519E-05) (-0.38751932E-06,-0.28384461E-06)
(-0.68296447E-06,-0.49490987E-06) (-0.26689663E-06, 0.59369870E-07)
( 0.13872072E-05,-0.22149528E-07) ( 0.14037159E-05,-0.21633971E-07)
(-0.63456709E-05,-0.14624233E-06) ( 0.54095751E-04,-0.40004412E-07)
(-0.31764336E-06,-0.26333798E-07) (-0.24933837E-03, 0.14062469E-06)
( 0.39206403E-04, 0.24387726E-07) ( 0.20791606E-03, 0.25165326E-07)
(-0.24521721E-04, 0.11816858E-06) (-0.10741784E-04, 0.50968497E-07)
(-0.36859385E-03, 0.31718419E-06) (-0.43356989E-04,-0.11043276E-07)
(-0.24718755E-06, 0.57673004E-08) (-0.64964311E-04,-0.74974793E-08)
(-0.17641139E-03, 0.14567045E-06) (-0.13662536E-08,-0.13863543E-09)
( 0.13350981E-04, 0.29670077E-08) (-0.18030445E-03, 0.11530925E-06)
( 0.56574470E-05,-0.20631277E-07)
ROW 18
(-0.40199998E-06, 0.64629086E-06) (-0.46547671E-06, 0.49561874E-06)
(-0.18449494E-06,-0.36211099E-06) ( 0.26350277E-06, 0.12033883E-06)
( 0.25254576E-06, 0.15783653E-06) ( 0.96014477E-06, 0.63452015E-07)
( 0.17439487E-05, 0.45917216E-07) ( 0.29062376E-05, 0.65512766E-07)
(-0.25315317E-06, 0.36958612E-08) (-0.37996845E-04,-0.25790290E-06)
( 0.37712908E-08,-0.80147948E-09) ( 0.91338656E-05,-0.76378901E-07)
(-0.28487540E-03, 0.52068954E-06) ( 0.97584606E-06,-0.22538430E-07)
( 0.31587249E-03,-0.50371424E-06) ( 0.17774418E-07, 0.12484176E-08)
(-0.43356996E-04,-0.11039919E-07) (-0.63277559E-03, 0.64969642E-06)
( 0.38399528E-09, 0.21014118E-10) (-0.28513581E-06, 0.84018190E-08)
( 0.15538065E-03,-0.25494878E-06) (-0.14138713E-12, 0.10615397E-12)
(-0.18983050E-07,-0.67206851E-09) ( 0.15013328E-04, 0.41815190E-08)
(-0.20000901E-03, 0.22881308E-06)
ROW 19
( 0.40423371E-07,-0.62926736E-07) ( 0.29934817E-07,-0.19981183E-07)
( 0.17401336E-07, 0.34043341E-07) (-0.52200513E-07,-0.10447702E-07)
( 0.14830726E-07,-0.11217097E-07) (-0.38129726E-07, 0.12129551E-08)
(-0.14879829E-06, 0.14422729E-08) ( 0.40724726E-08, 0.40897130E-09)
(-0.46847376E-05,-0.52433269E-07) ( 0.27023252E-07, 0.82091893E-09)
(-0.40752366E-04,-0.85069780E-07) ( 0.43079320E-06,-0.10293518E-07)
(-0.14900487E-08,-0.43824666E-10) ( 0.12790003E-04,-0.36718506E-07)
(-0.10564664E-07,-0.75631122E-09) (-0.21454698E-03,-0.24154754E-06)
(-0.24718599E-06, 0.57697655E-08) ( 0.38399528E-09, 0.21014118E-10)
( 0.67397755E-03, 0.53005577E-06) (-0.36294468E-05, 0.24650653E-07)
( 0.16571408E-08, 0.17739902E-09) ( 0.14168294E-03, 0.20688739E-06)
( 0.54057517E-04, 0.72888228E-07) ( 0.46492366E-07,-0.95248958E-09)
(-0.54488992E-10,-0.33007098E-11)
ROW 20
(-0.67565406E-07, 0.15833785E-06) ( 0.35042621E-07,-0.71595437E-07)
(-0.63434755E-07,-0.82237871E-07) (-0.58598734E-07, 0.45921688E-08)
(-0.14289418E-09, 0.36652774E-07) (-0.21904674E-06,-0.15853047E-07)
( 0.17175341E-06, 0.39019083E-07) ( 0.34515440E-06,-0.10009220E-07)
( 0.59058070E-06, 0.14876359E-07) (-0.13016335E-05,-0.21964630E-07)
( 0.15513111E-05, 0.35151969E-07) (-0.47452444E-04, 0.69631641E-07)
(-0.33656914E-06, 0.91916873E-08) (-0.17331808E-03,-0.34622057E-07)
( 0.20463500E-04, 0.15514406E-07) (-0.11260464E-03,-0.97767241E-07)
(-0.64964318E-04,-0.75066412E-08) (-0.28513581E-06, 0.84018190E-08)
(-0.36294468E-05, 0.24650653E-07) (-0.10472552E-03, 0.10539430E-06)
(-0.15566846E-04, 0.89573632E-08) ( 0.58015754E-07,-0.12716204E-08)
( 0.10012423E-03, 0.10896878E-07) ( 0.12376707E-03,-0.35000848E-07)
( 0.22644462E-06,-0.58145377E-08)
ROW 21
( 0.14171248E-06,-0.28255656E-06) ( 0.22995389E-07, 0.86750111E-08)
( 0.85337922E-07, 0.15594506E-06) ( 0.10460610E-07,-0.29171674E-07)
(-0.84744169E-07,-0.69780499E-07) ( 0.24117760E-07, 0.21346227E-07)
(-0.11365841E-06,-0.17381407E-07) ( 0.15064548E-06, 0.39626141E-07)
( 0.21482705E-06, 0.45332815E-08) ( 0.10026178E-05, 0.42211231E-07)
( 0.17770434E-07, 0.76258462E-10) ( 0.11801288E-04, 0.12433114E-06)
(-0.41800346E-04,-0.60327907E-07) ( 0.15803135E-05,-0.29724843E-07)
(-0.24154715E-03, 0.29424922E-06) (-0.19600550E-06, 0.42114083E-08)
(-0.17641138E-03, 0.14567339E-06) ( 0.15538065E-03,-0.25494878E-06)
( 0.16571408E-08, 0.17739902E-09) (-0.15566846E-04, 0.89573632E-08)
(-0.45115160E-03, 0.37846171E-06) (-0.30333644E-10,-0.18033508E-11)
( 0.16083892E-06,-0.43470835E-08) (-0.31607314E-04, 0.60701707E-07)
( 0.16736069E-03,-0.18785390E-06)
ROW 22
(-0.64254479E-09, 0.84282216E-09) (-0.54707428E-09, 0.31769311E-09)
(-0.23946906E-09,-0.49816705E-09) ( 0.45008069E-09, 0.21957750E-09)
(-0.28650719E-09, 0.12264846E-09) ( 0.60731320E-09, 0.32291401E-10)
(-0.35220758E-08,-0.20030798E-09) (-0.16795359E-10,-0.64812123E-11)
( 0.11843291E-06,-0.18183824E-08) (-0.34896361E-09,-0.13315519E-10)
(-0.27705416E-05,-0.13361042E-07) ( 0.38464252E-08, 0.29675153E-09)
( 0.75410026E-13,-0.76045912E-12) (-0.14892867E-06, 0.32333800E-08)
( 0.13905596E-09, 0.75318277E-11) ( 0.49052905E-05,-0.23222932E-07)
(-0.13662865E-08,-0.13865998E-09) (-0.14138781E-12, 0.10615397E-12)
( 0.14168294E-03, 0.20688739E-06) ( 0.58015754E-07,-0.12716204E-08)
(-0.30333643E-10,-0.18033508E-11) ( 0.78837581E-03, 0.64311877E-06)
(-0.10066721E-05, 0.82191568E-08) ( 0.18553557E-09, 0.26463199E-10)
( 0.77928168E-13,-0.81460926E-14)
ROW 23
( 0.15708525E-07,-0.27887190E-07) ( 0.36171727E-08,-0.31862149E-09)
( 0.97037951E-08, 0.14833544E-07) (-0.55401661E-08,-0.36013731E-08)
( 0.74029722E-09,-0.57446429E-08) ( 0.85869326E-08, 0.90676795E-09)
(-0.88726897E-07,-0.25608401E-08) (-0.46832674E-08,-0.27858715E-09)
(-0.10348680E-06,-0.16890974E-07) (-0.94680611E-07, 0.29302584E-08)
( 0.17568872E-06, 0.47510055E-08) (-0.18220867E-05,-0.19862478E-07)
( 0.21991718E-07, 0.51504665E-09) ( 0.38439669E-04,-0.33694477E-07)
(-0.29794113E-07, 0.94174190E-09) (-0.11292385E-03,-0.73919620E-07)
( 0.13350982E-04, 0.29670408E-08) (-0.18983050E-07,-0.67206851E-09)
( 0.54057517E-04, 0.72888228E-07) ( 0.10012423E-03, 0.10896878E-07)
( 0.16083892E-06,-0.43470835E-08) (-0.10066721E-05, 0.82191568E-08)
( 0.93522525E-04, 0.63745204E-07) (-0.75975907E-05, 0.11858309E-07)
( 0.59971362E-08, 0.27545409E-09)
ROW 24
( 0.56195225E-08,-0.13037284E-07) (-0.29791756E-08, 0.63148018E-08)
( 0.43916044E-08, 0.70865311E-08) ( 0.52244677E-08,-0.25561064E-09)
(-0.20158765E-08,-0.31309246E-08) ( 0.14463304E-07, 0.15800604E-08)
(-0.34749729E-09, 0.12152796E-09) (-0.52323886E-07,-0.22840700E-08)
( 0.30285117E-07, 0.26907945E-08) (-0.16469358E-07,-0.21151055E-07)
( 0.29112144E-07, 0.87151697E-09) ( 0.93862387E-06, 0.29569504E-07)
( 0.93289432E-07,-0.20638680E-08) (-0.52254337E-05,-0.59401369E-07)
( 0.28573698E-04,-0.72460780E-08) ( 0.39993554E-06,-0.12416905E-07)
(-0.18030445E-03, 0.11530950E-06) ( 0.15013328E-04, 0.41815190E-08)
( 0.46492366E-07,-0.95248958E-09) ( 0.12376707E-03,-0.35000848E-07)
(-0.31607314E-04, 0.60701707E-07) ( 0.18553557E-09, 0.26463199E-10)
(-0.75975907E-05, 0.11858309E-07) (-0.30324663E-03, 0.17120494E-06)
(-0.19777538E-04,-0.61236240E-08)
ROW 25
(-0.74169816E-08, 0.15336197E-07) ( 0.83200510E-09,-0.35454604E-08)
(-0.44291592E-08,-0.85186074E-08) (-0.30100679E-08, 0.10031186E-08)
( 0.48232482E-08, 0.40731407E-08) (-0.64848151E-08,-0.15206561E-08)
(-0.75871072E-09,-0.55942529E-09) ( 0.92581223E-08, 0.99137351E-09)
( 0.38503920E-09, 0.28393224E-09) ( 0.10018865E-06, 0.17027566E-07)
(-0.29651200E-09, 0.18554591E-10) ( 0.42003969E-06, 0.58159589E-08)
( 0.13658599E-05, 0.41953484E-07) (-0.99820898E-07, 0.19096500E-08)
(-0.21941021E-04,-0.80608259E-07) (-0.99020010E-09,-0.16108460E-09)
( 0.56574464E-05,-0.20631882E-07) (-0.20000901E-03, 0.22881308E-06)
(-0.54488993E-10,-0.33007099E-11) ( 0.22644462E-06,-0.58145377E-08)
( 0.16736069E-03,-0.18785390E-06) ( 0.77927536E-13,-0.81460596E-14)
( 0.59971362E-08, 0.27545409E-09) (-0.19777538E-04,-0.61236240E-08)
(-0.43207511E-03, 0.28597836E-06)
eigenphases
-0.1309162E+01 -0.9214202E+00 -0.2169994E+00 -0.2445938E-02 -0.1449936E-02
-0.1042648E-02 -0.8612558E-03 -0.6006868E-03 -0.5535530E-03 -0.3770819E-03
-0.3257722E-03 -0.2074648E-03 -0.1431119E-03 -0.2641387E-04 0.8332000E-04
0.2083660E-03 0.4150865E-03 0.5374291E-03 0.7475750E-03 0.9407689E-03
0.1562608E-02 0.2475957E-02 0.5682519E-02 0.1967377E-01 0.5622600E-01
eigenphase sum-0.236706E+01 scattering length= -1.64740
eps+pi 0.774531E+00 eps+2*pi 0.391612E+01
MaxIter = 10 c.s. = 16.13275160 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.22484200E-04
Time Now = 1277.7197 Delta time = 529.0736 End ScatStab
+ Command TotalCrossSection
+
Continuum Symmetry A1 -
Target Symmetry E
Total Symmetry E
E (eV) XS(angs^2) EPS(radians)
0.800000 60.853090 0.150100
4.800000 16.132752 0.774530
Largest value of LMaxK found 12
Total Cross Sections
Energy Total Cross Section
0.80000 121.70618
4.80000 32.26550
Time Now = 1277.7262 Delta time = 0.0064 Finalize