Execution on n0156.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:41.980 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test19
#
# C2H6 staggered conformation, electron scattering
#
LMax 25 # maximum l to be used for wave functions
EMax 60.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0 # charge, formula type
VCorr 'PZ'
ScatEng 0.1 30. # list of scattering energies
FegeEng 9.5 # Energy correction used in the fege potential
ScatContSym 'EU' # Scattering symmetry
LMaxK 10 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test19.g03' 'gaussian'
GetBlms
ExpOrb
GetPot
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 60.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record ScatEng - 0.1 30.
+ Data Record FegeEng - 9.5
+ Data Record ScatContSym - 'EU'
+ Data Record LMaxK - 10
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test19.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = #HF/D95 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 9 number already selected 0
Number of orbitals selected is 9
Highest orbital read in is = 9
Time Now = 0.0120 Delta time = 0.0120 End GaussianCnv
Atoms found 8 Coordinates in Angstroms
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 0.7680000000
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 -0.7680000000
Z = 1 ZS = 1 r = 0.0000000000 1.0320820000 1.1683180000
Z = 1 ZS = 1 r = -0.8938100000 -0.5160410000 1.1683180000
Z = 1 ZS = 1 r = 0.8938100000 -0.5160410000 1.1683180000
Z = 1 ZS = 1 r = 0.0000000000 -1.0320820000 -1.1683180000
Z = 1 ZS = 1 r = -0.8938100000 0.5160410000 -1.1683180000
Z = 1 ZS = 1 r = 0.8938100000 0.5160410000 -1.1683180000
Maximum distance from expansion center is 1.5588975524
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group D3d
Reduce angular grid using nthd = 2 nphid = 1
Found point group for abelian subgroup C2h
Time Now = 0.0390 Delta time = 0.0270 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 6 0.76800 6 0.76800
2 0.00000 0.66206 0.74945 1 1.55890 1 1.55890
3 -0.57336 -0.33103 0.74945 1 1.55890 1 1.55890
4 0.57336 -0.33103 0.74945 1 1.55890 1 1.55890
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000
3 0.81930 -0.23166 0.52448
4 0.81930 0.23166 -0.52448
Computed default value of LMaxA = 16
Determining angular grid in GetAxMax LMax = 25 LMaxA = 16 LMaxAb = 50
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3 3 3
3 3 3 3 3 3
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3
3 3 3 2 2 2
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3
3 3 3 2 2 2
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3
3 3 3 2 2 2
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D3d
LMax 25
The dimension of each irreducable representation is
A1G ( 1) A2G ( 1) EG ( 2) A1U ( 1) A2U ( 1)
EU ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 6
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1G 1 1 53 1 1 1
A2G 1 2 36 1 -1 -1
EG 1 3 85 1 -1 -1
EG 2 4 85 1 1 1
A1U 1 5 37 -1 -1 1
A2U 1 6 55 -1 1 -1
EU 1 7 86 -1 -1 1
EU 2 8 86 -1 1 -1
Time Now = 0.4902 Delta time = 0.4512 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G 1 0( 1) 1( 1) 2( 2) 3( 2) 4( 4) 5( 4) 6( 7) 7( 7) 8( 10) 9( 10)
10( 14) 11( 14) 12( 19) 13( 19) 14( 24) 15( 24) 16( 30)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 8) 11( 8) 12( 12) 13( 12) 14( 16) 15( 16) 16( 21)
EG 1 0( 0) 1( 0) 2( 2) 3( 2) 4( 5) 5( 5) 6( 9) 7( 9) 8( 15) 9( 15)
10( 22) 11( 22) 12( 30) 13( 30) 14( 40) 15( 40) 16( 51)
EG 2 0( 0) 1( 0) 2( 2) 3( 2) 4( 5) 5( 5) 6( 9) 7( 9) 8( 15) 9( 15)
10( 22) 11( 22) 12( 30) 13( 30) 14( 40) 15( 40) 16( 51)
A1U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 7)
10( 7) 11( 10) 12( 10) 13( 14) 14( 14) 15( 19) 16( 19)
A2U 1 0( 0) 1( 1) 2( 1) 3( 3) 4( 3) 5( 5) 6( 5) 7( 8) 8( 8) 9( 12)
10( 12) 11( 16) 12( 16) 13( 21) 14( 21) 15( 27) 16( 27)
EU 1 0( 0) 1( 1) 2( 1) 3( 3) 4( 3) 5( 7) 6( 7) 7( 12) 8( 12) 9( 18)
10( 18) 11( 26) 12( 26) 13( 35) 14( 35) 15( 45) 16( 45)
EU 2 0( 0) 1( 1) 2( 1) 3( 3) 4( 3) 5( 7) 6( 7) 7( 12) 8( 12) 9( 18)
10( 18) 11( 26) 12( 26) 13( 35) 14( 35) 15( 45) 16( 45)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2h
LMax 50
The dimension of each irreducable representation is
AG ( 1) BG ( 1) AU ( 1) BU ( 1)
Abelian axes
1 0.000000 1.000000 0.000000
2 0.000000 0.000000 1.000000
3 1.000000 0.000000 0.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
3 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 3
4 -1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =AG 1 eigs = 1 1 1 1
irep = 2 sym =BG 1 eigs = 1 1 -1 -1
irep = 3 sym =AU 1 eigs = 1 -1 -1 1
irep = 4 sym =BU 1 eigs = 1 -1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 676 1 1 1
BG 1 2 650 1 -1 -1
AU 1 3 625 -1 -1 1
BU 1 4 650 -1 1 -1
Time Now = 1.0259 Delta time = 0.5357 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 7.2081171781 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 7.20812 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 60.00000 eV
Maximum step size (MaxStep) = 7.20812 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.76800 Angs Alpha Max = 0.10800E+05
3 Center at = 1.55890 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.26867E-02 0.02149
2 8 16 0.37255E-02 0.05130
3 8 24 0.59728E-02 0.09908
4 8 32 0.79967E-02 0.16305
5 8 40 0.93321E-02 0.23771
6 8 48 0.95358E-02 0.31400
7 8 56 0.87995E-02 0.38439
8 8 64 0.78436E-02 0.44714
9 8 72 0.68236E-02 0.50173
10 8 80 0.63576E-02 0.55259
11 8 88 0.66641E-02 0.60590
12 8 96 0.73071E-02 0.66436
13 8 104 0.47203E-02 0.70212
14 8 112 0.30004E-02 0.72613
15 8 120 0.19072E-02 0.74138
16 8 128 0.12123E-02 0.75108
17 8 136 0.77538E-03 0.75728
18 8 144 0.58340E-03 0.76195
19 8 152 0.51623E-03 0.76608
20 8 160 0.23984E-03 0.76800
21 8 168 0.50920E-03 0.77207
22 8 176 0.54286E-03 0.77642
23 8 184 0.66917E-03 0.78177
24 8 192 0.10153E-02 0.78989
25 8 200 0.16142E-02 0.80281
26 8 208 0.25663E-02 0.82334
27 8 216 0.40801E-02 0.85598
28 8 224 0.64868E-02 0.90787
29 8 232 0.10313E-01 0.99038
30 8 240 0.11944E-01 1.08593
31 8 248 0.13096E-01 1.19069
32 8 256 0.14360E-01 1.30557
33 8 264 0.11537E-01 1.39786
34 8 272 0.73343E-02 1.45654
35 8 280 0.46865E-02 1.49403
36 8 288 0.35128E-02 1.52213
37 8 296 0.31008E-02 1.54694
38 8 304 0.14948E-02 1.55890
39 8 312 0.30552E-02 1.58334
40 8 320 0.32571E-02 1.60940
41 8 328 0.40150E-02 1.64152
42 8 336 0.60918E-02 1.69025
43 8 344 0.96851E-02 1.76773
44 8 352 0.15398E-01 1.89091
45 8 360 0.22804E-01 2.07335
46 8 368 0.25004E-01 2.27338
47 8 376 0.27416E-01 2.49271
48 8 384 0.34257E-01 2.76677
49 8 392 0.44585E-01 3.12345
50 8 400 0.47865E-01 3.50637
51 8 408 0.50675E-01 3.91177
52 8 416 0.53100E-01 4.33657
53 8 424 0.55205E-01 4.77821
54 8 432 0.57043E-01 5.23455
55 8 440 0.58655E-01 5.70380
56 8 448 0.60078E-01 6.18442
57 8 456 0.61338E-01 6.67512
58 8 464 0.62460E-01 7.17480
59 8 472 0.41651E-02 7.20812
Time Now = 1.0396 Delta time = 0.0137 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 25
Maximum scattering m (mmaxs) = 25
Maximum numerical integration l (lmaxi) = 50
Maximum numerical integration m (mmaxi) = 50
Maximum l to include in the asymptotic region (lmasym) = 16
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 60.00000
Print flag (iprnfg) = 0
lmasymtyts = 16
Actual value of lmasym found = 16
Number of regions of the same l expansion (NAngReg) = 11
Angular regions
1 L = 2 from ( 1) 0.00269 to ( 7) 0.01881
2 L = 4 from ( 8) 0.02149 to ( 15) 0.04757
3 L = 6 from ( 16) 0.05130 to ( 23) 0.09311
4 L = 8 from ( 24) 0.09908 to ( 31) 0.15506
5 L = 16 from ( 32) 0.16305 to ( 63) 0.43930
6 L = 24 from ( 64) 0.44714 to ( 79) 0.54623
7 L = 25 from ( 80) 0.55259 to ( 240) 1.08593
8 L = 24 from ( 241) 1.09902 to ( 247) 1.17760
9 L = 25 from ( 248) 1.19069 to ( 360) 2.07335
10 L = 24 from ( 361) 2.09835 to ( 376) 2.49271
11 L = 16 from ( 377) 2.52697 to ( 472) 7.20812
There are 2 angular regions for computing spherical harmonics
1 lval = 16
2 lval = 25
Maximum number of processors is 58
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 64
Proc id = 1 Last grid point = 88
Proc id = 2 Last grid point = 104
Proc id = 3 Last grid point = 128
Proc id = 4 Last grid point = 144
Proc id = 5 Last grid point = 160
Proc id = 6 Last grid point = 184
Proc id = 7 Last grid point = 200
Proc id = 8 Last grid point = 216
Proc id = 9 Last grid point = 240
Proc id = 10 Last grid point = 256
Proc id = 11 Last grid point = 280
Proc id = 12 Last grid point = 296
Proc id = 13 Last grid point = 312
Proc id = 14 Last grid point = 336
Proc id = 15 Last grid point = 352
Proc id = 16 Last grid point = 368
Proc id = 17 Last grid point = 400
Proc id = 18 Last grid point = 440
Proc id = 19 Last grid point = 472
Time Now = 1.1602 Delta time = 0.1206 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -11.221219 A1G 1 at max irg = 168 r = 0.77207
2 Orig 2 Eng = -11.220649 A2U 1 at max irg = 168 r = 0.77207
3 Orig 3 Eng = -1.014625 A1G 1 at max irg = 176 r = 0.77642
4 Orig 4 Eng = -0.837558 A2U 1 at max irg = 256 r = 1.30557
5 Orig 5 Eng = -0.591694 EU 1 at max irg = 264 r = 1.39786
6 Orig 6 Eng = -0.591694 EU 2 at max irg = 264 r = 1.39786
7 Orig 7 Eng = -0.505722 A1G 1 at max irg = 80 r = 0.55259
8 Orig 8 Eng = -0.479629 EG 1 at max irg = 288 r = 1.52213
9 Orig 9 Eng = -0.479629 EG 2 at max irg = 288 r = 1.52213
Rotation coefficients for orbital 1 grp = 1 A1G 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A2U 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 A1G 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 A2U 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 EU 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 6 grp = 5 EU 2
1 0.0000000000 2 1.0000000000
Rotation coefficients for orbital 7 grp = 6 A1G 1
1 1.0000000000
Rotation coefficients for orbital 8 grp = 7 EG 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 9 grp = 7 EG 2
1 0.0000000000 2 1.0000000000
Number of orbital groups and degeneracis are 7
1 1 1 1 2 1 2
Number of orbital groups and number of electrons when fully occupied
7
2 2 2 2 4 2 4
Time Now = 1.2881 Delta time = 0.1279 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 7
Orbital 1 of A1G 1 symmetry normalization integral = 0.99687018
Orbital 2 of A2U 1 symmetry normalization integral = 0.99734509
Orbital 3 of A1G 1 symmetry normalization integral = 0.99985465
Orbital 4 of A2U 1 symmetry normalization integral = 0.99990156
Orbital 5 of EU 1 symmetry normalization integral = 0.99998728
Orbital 6 of A1G 1 symmetry normalization integral = 0.99999127
Orbital 7 of EG 1 symmetry normalization integral = 0.99997926
Time Now = 1.5034 Delta time = 0.2153 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 18.00000000
Time Now = 1.5132 Delta time = 0.0098 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.18000000E+02 facnorm = 0.10000000E+01
Time Now = 1.5979 Delta time = 0.0847 Electronic part
Time Now = 1.6595 Delta time = 0.0616 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 1.6871 Delta time = 0.0276 End VcpPol
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.95000000E+01 eV
Do E = 0.10000000E+00 eV ( 0.36749326E-02 AU)
Time Now = 1.7056 Delta time = 0.0186 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = EU 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 59
Number of partial waves (np) = 86
Number of asymptotic solutions on the right (NAsymR) = 18
Number of asymptotic solutions on the left (NAsymL) = 18
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 18
Maximum in the asymptotic region (lpasym) = 16
Number of partial waves in the asymptotic region (npasym) = 45
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 289
Found polarization potential
Maximum l used in usual function (lmax) = 25
Maximum m used in usual function (LMax) = 25
Maxamum l used in expanding static potential (lpotct) = 50
Maximum l used in exapnding the exchange potential (lmaxab) = 50
Higest l included in the expansion of the wave function (lnp) = 25
Higest l included in the K matrix (lna) = 9
Highest l used at large r (lpasym) = 16
Higest l used in the asymptotic potential (lpzb) = 32
Maximum L used in the homogeneous solution (LMaxHomo) = 16
Number of partial waves in the homogeneous solution (npHomo) = 45
Time Now = 1.7183 Delta time = 0.0127 Energy independent setup
Compute solution for E = 0.1000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.21094237E-14 Asymp Coef = -0.15495365E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25095645E-03 Asymp Moment = 0.70668014E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.14490209E-03 Asymp Moment = 0.40803666E-01 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.52041704E-17 Asymp Moment = -0.14654670E-14 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.54485470E+02 -0.20000000E+01 stpote = -0.52919744E-15
i = 2 exps = -0.54485470E+02 -0.20000000E+01 stpote = -0.52915071E-15
i = 3 exps = -0.54485470E+02 -0.20000000E+01 stpote = -0.52910811E-15
i = 4 exps = -0.54485470E+02 -0.20000000E+01 stpote = -0.52907192E-15
For potential 3
i = 1 exps = -0.18007176E+01 -0.85801564E-01 stpote = -0.35472923E-05
i = 2 exps = -0.18007178E+01 -0.85799614E-01 stpote = -0.35472960E-05
i = 3 exps = -0.18007179E+01 -0.85797827E-01 stpote = -0.35472994E-05
i = 4 exps = -0.18007180E+01 -0.85796303E-01 stpote = -0.35473023E-05
Number of asymptotic regions = 30
Final point in integration = 0.45261673E+03 Angstroms
Time Now = 10.0171 Delta time = 8.2988 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.10152499E-01-0.84878688E-04-0.63380520E-03-0.15090324E-07-0.22126300E-05
0.57615682E-06-0.12793068E-05-0.16904424E-09 0.54139451E-11-0.75476732E-09
0.31719716E-09-0.22146061E-10 0.27922450E-15-0.13242751E-12 0.27665910E-13
0.98640794E-14-0.27261705E-14 0.89705373E-13
ROW 2
-0.84878699E-04 0.16112002E-04-0.86835797E-05 0.36544991E-05 0.10740109E-07
-0.19906095E-03 0.27761801E-05 0.25374858E-14 0.28438463E-06-0.91409461E-10
-0.15664128E-06-0.48024177E-07-0.90083923E-11 0.36362240E-15 0.57818053E-10
0.31203510E-12-0.17891394E-11-0.15255090E-10
ROW 3
-0.63380519E-03-0.86835797E-05-0.65947301E-03 0.32090394E-08-0.75406223E-06
-0.29712877E-05-0.24050699E-03 0.28760046E-09-0.18315175E-09-0.22530930E-06
0.94637076E-07-0.20245883E-06-0.64491115E-16-0.48319851E-11 0.94597864E-12
-0.54701215E-10 0.28352083E-10-0.20977499E-11
ROW 4
-0.15091379E-07 0.36544991E-05 0.32090328E-08 0.50502148E-03 0.76955898E-11
-0.17275124E-05-0.52286609E-09 0.46996498E-08-0.45801617E-04-0.16972243E-11
0.16826741E-06 0.38703682E-10-0.75638447E-07 0.42614636E-12-0.15077600E-07
0.30846583E-13-0.17464325E-08-0.94786466E-12
ROW 5
-0.22126373E-05 0.10740119E-07-0.75406224E-06 0.76955898E-11 0.20399829E-03
-0.83360271E-08 0.20726123E-05 0.79845180E-06 0.96587597E-12-0.72864573E-04
0.41932829E-09-0.33418890E-06 0.25216056E-16 0.82304151E-07-0.16480235E-12
-0.28512123E-07-0.27863560E-11 0.47535598E-08
ROW 6
0.57614740E-06-0.19906095E-03-0.29712877E-05-0.17275124E-05-0.83360271E-08
-0.20233966E-03-0.60057504E-06-0.15020115E-14 0.97978229E-07 0.29177972E-08
-0.10850684E-03 0.58975859E-06 0.36615672E-10 0.33340032E-15 0.63900389E-07
-0.10970680E-10-0.51290638E-07-0.16702022E-07
ROW 7
-0.12793089E-05 0.27761801E-05-0.24050699E-03-0.52286609E-09 0.20726123E-05
-0.60057504E-06-0.30480291E-03-0.14967202E-09 0.23918379E-09 0.25573258E-06
-0.60117426E-06-0.11743942E-03-0.33638338E-16 0.33337242E-10-0.18514993E-10
-0.50473618E-07 0.26037568E-07-0.57875547E-07
ROW 8
-0.16904449E-09 0.25379383E-14 0.28760046E-09 0.46996498E-08 0.79845180E-06
-0.15020117E-14-0.14967202E-09 0.28922411E-03-0.19315439E-08-0.34977754E-06
0.12367364E-14 0.31749993E-10-0.88071222E-12-0.21235132E-04 0.50239872E-10
0.31338654E-07-0.12978696E-15-0.26591431E-11
ROW 9
0.54134459E-11 0.28438463E-06-0.18315176E-09-0.45801617E-04 0.96587597E-12
0.97978229E-07 0.23918379E-09-0.19315439E-08 0.60924343E-04-0.42072555E-12
-0.54851487E-06-0.94549844E-10-0.21612603E-06 0.21726560E-08-0.45529946E-04
-0.68312542E-12 0.10596777E-06 0.12742927E-10
ROW 10
-0.75477076E-09-0.91409454E-10-0.22530930E-06-0.16972243E-11-0.72864573E-04
0.29177972E-08 0.25573258E-06-0.34977754E-06-0.42072555E-12-0.25119447E-04
-0.48765551E-08 0.48022971E-06 0.25591581E-16 0.12372138E-06-0.24862298E-12
-0.54523541E-04 0.31935170E-09-0.14444718E-06
ROW 11
0.31719697E-09-0.15664128E-06 0.94637076E-07 0.16826741E-06 0.41932829E-09
-0.10850684E-03-0.60117426E-06 0.12367356E-14-0.54851487E-06-0.48765551E-08
-0.14021067E-03-0.11476093E-06-0.29970045E-10-0.12222841E-15-0.64699750E-07
0.13968541E-08-0.66518128E-04 0.19531460E-06
ROW 12
-0.22146016E-10-0.48024177E-07-0.20245883E-06 0.38703682E-10-0.33418890E-06
0.58975859E-06-0.11743942E-03 0.31749993E-10-0.94549844E-10 0.48022971E-06
-0.11476093E-06-0.16904319E-03 0.22814097E-16-0.37905362E-10 0.39657809E-10
0.13279148E-06-0.19690972E-06-0.69521087E-04
ROW 13
0.27920860E-15-0.90083923E-11-0.64490611E-16-0.75638447E-07 0.25215953E-16
0.36615672E-10-0.33638324E-16-0.88071222E-12-0.21612603E-06 0.25591676E-16
-0.29970045E-10 0.22814192E-16 0.12470112E-03-0.57349554E-12 0.16200647E-06
-0.26273725E-16 0.85240202E-11-0.67243370E-17
ROW 14
-0.13242793E-12 0.36362318E-15-0.48319851E-11 0.42614636E-12 0.82304151E-07
0.33340030E-15 0.33337242E-10-0.21235132E-04 0.21726560E-08 0.12372138E-06
-0.12222847E-15-0.37905362E-10-0.57349554E-12 0.69810508E-04-0.20898566E-08
-0.19680024E-06 0.48323500E-15 0.13761599E-10
ROW 15
0.27666020E-13 0.57818053E-10 0.94597864E-12-0.15077600E-07-0.16480235E-12
0.63900389E-07-0.18514993E-10 0.50239872E-10-0.45529946E-04-0.24862298E-12
-0.64699750E-07 0.39657809E-10 0.16200647E-06-0.20898566E-08-0.18208823E-04
-0.47763085E-12-0.18904838E-06-0.23186852E-10
ROW 16
0.98635397E-14 0.31203510E-12-0.54701214E-10 0.30846583E-13-0.28512123E-07
-0.10970680E-10-0.50473618E-07 0.31338654E-07-0.68312542E-12-0.54523541E-04
0.13968541E-08 0.13279148E-06-0.26273285E-16-0.19680024E-06-0.47763085E-12
-0.51277748E-04-0.31810670E-08 0.15144477E-06
ROW 17
-0.27260998E-14-0.17891386E-11 0.28352083E-10-0.17464325E-08-0.27863560E-11
-0.51290638E-07 0.26037568E-07-0.12978697E-15 0.10596777E-06 0.31935170E-09
-0.66518128E-04-0.19690972E-06 0.85240202E-11 0.48323482E-15-0.18904838E-06
-0.31810670E-08-0.95421985E-04-0.33686213E-07
ROW 18
0.89732202E-13-0.15255090E-10-0.20977492E-11-0.94786466E-12 0.47535598E-08
-0.16702022E-07-0.57875547E-07-0.26591431E-11 0.12742927E-10-0.14444718E-06
0.19531460E-06-0.69521087E-04-0.67241890E-17 0.13761599E-10-0.23186852E-10
0.15144477E-06-0.33686213E-07-0.10646388E-03
eigenphases
-0.8148736E-03 -0.3638648E-03 -0.2961222E-03 -0.1619656E-03 -0.1347401E-03
-0.1015893E-03 -0.4255140E-04 -0.3963542E-04 -0.3115440E-04 0.3123636E-05
0.6777502E-04 0.7764256E-04 0.1247027E-03 0.1458165E-03 0.2260744E-03
0.2912717E-03 0.5097798E-03 0.1018989E-01
eigenphase sum 0.964958E-02 scattering length= -0.11256
eps+pi 0.315124E+01 eps+2*pi 0.629283E+01
MaxIter = 6 c.s. = 0.05037525 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.27967510E-08
Time Now = 33.1479 Delta time = 23.1308 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.95000000E+01 eV
Do E = 0.30000000E+02 eV ( 0.11024798E+01 AU)
Time Now = 33.1714 Delta time = 0.0235 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = EU 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 59
Number of partial waves (np) = 86
Number of asymptotic solutions on the right (NAsymR) = 18
Number of asymptotic solutions on the left (NAsymL) = 18
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 18
Maximum in the asymptotic region (lpasym) = 16
Number of partial waves in the asymptotic region (npasym) = 45
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 289
Found polarization potential
Maximum l used in usual function (lmax) = 25
Maximum m used in usual function (LMax) = 25
Maxamum l used in expanding static potential (lpotct) = 50
Maximum l used in exapnding the exchange potential (lmaxab) = 50
Higest l included in the expansion of the wave function (lnp) = 25
Higest l included in the K matrix (lna) = 9
Highest l used at large r (lpasym) = 16
Higest l used in the asymptotic potential (lpzb) = 32
Maximum L used in the homogeneous solution (LMaxHomo) = 16
Number of partial waves in the homogeneous solution (npHomo) = 45
Time Now = 33.1825 Delta time = 0.0111 Energy independent setup
Compute solution for E = 30.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.21094237E-14 Asymp Coef = -0.15495365E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.25095645E-03 Asymp Moment = 0.70668014E-01 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.14490209E-03 Asymp Moment = 0.40803666E-01 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.52041704E-17 Asymp Moment = -0.14654670E-14 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.54485470E+02 -0.20000000E+01 stpote = -0.13144815E-15
i = 2 exps = -0.54485470E+02 -0.20000000E+01 stpote = -0.13156664E-15
i = 3 exps = -0.54485470E+02 -0.20000000E+01 stpote = -0.13167541E-15
i = 4 exps = -0.54485470E+02 -0.20000000E+01 stpote = -0.13176840E-15
For potential 3
i = 1 exps = -0.18007176E+01 -0.85801564E-01 stpote = -0.35472923E-05
i = 2 exps = -0.18007178E+01 -0.85799614E-01 stpote = -0.35472960E-05
i = 3 exps = -0.18007179E+01 -0.85797827E-01 stpote = -0.35472994E-05
i = 4 exps = -0.18007180E+01 -0.85796303E-01 stpote = -0.35473023E-05
Number of asymptotic regions = 68
Final point in integration = 0.67585798E+02 Angstroms
Time Now = 43.4456 Delta time = 10.2631 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.34259587E+01-0.54411824E+01 0.40804852E+01-0.10724642E+00-0.59065585E+00
-0.13483994E+01-0.10925392E+00-0.77175414E-02-0.48905102E-01-0.10662373E+00
-0.22835870E-01-0.94493764E-01-0.58380004E-04-0.16774767E-02-0.37415438E-02
-0.49077469E-02 0.15491109E-02-0.18901157E-02
ROW 2
-0.54411824E+01-0.10676289E+02 0.13874494E+02-0.18366548E+00-0.11954651E+01
-0.27996547E+01 0.64381398E+00-0.15601309E-01-0.88207871E-01-0.19631827E+00
-0.72630331E-01-0.13843972E+00-0.33160927E-03-0.29498284E-02-0.60564708E-02
-0.83435301E-02 0.70017645E-03-0.15230138E-02
ROW 3
0.40804852E+01 0.13874494E+02-0.16431000E+02 0.24535811E+00 0.12673679E+01
0.34676301E+01-0.77918727E+00 0.16212632E-01 0.10761653E+00 0.19972523E+00
0.96213226E-01 0.14804637E+00 0.29785085E-03 0.28227717E-02 0.73203759E-02
0.81448153E-02 0.43297125E-04 0.12730512E-02
ROW 4
-0.10724643E+00-0.18366548E+00 0.24535811E+00 0.12144304E+00-0.20827687E-01
-0.61223517E-01 0.14895705E-01-0.26776612E-03 0.14402074E-01-0.35192761E-02
-0.36533254E-02-0.26044078E-02-0.14964589E-03-0.48096597E-04 0.57953528E-03
-0.17108009E-03 0.19711538E-04-0.10832363E-03
ROW 5
-0.59065585E+00-0.11954651E+01 0.12673679E+01-0.20827687E-01 0.10809871E+00
-0.30549206E+00 0.98745107E-01 0.65741165E-02-0.90585180E-02 0.85894593E-02
-0.10568643E-01-0.11623708E-01-0.32410668E-04 0.83711240E-03-0.66143306E-03
-0.19924617E-03 0.64105879E-05-0.66567951E-03
ROW 6
-0.13483994E+01-0.27996546E+01 0.34676301E+01-0.61223517E-01-0.30549206E+00
-0.43687603E+00 0.12169034E+00-0.40883192E-02-0.15035685E-01-0.45903145E-01
0.13793431E-02-0.21260684E-01-0.58824155E-04-0.74288238E-03 0.14699739E-03
-0.15374111E-02-0.43147923E-03 0.50639878E-03
ROW 7
-0.10925392E+00 0.64381398E+00-0.77918727E+00 0.14895707E-01 0.98745107E-01
0.12169034E+00 0.23397742E+00 0.14626096E-02 0.76270480E-02 0.13963605E-01
-0.14094411E-01 0.20778730E-01-0.35498673E-04 0.51909470E-03 0.37554345E-03
-0.49046401E-03-0.38165107E-03-0.66404494E-03
ROW 8
-0.77175414E-02-0.15601308E-01 0.16212631E-01-0.26776612E-03 0.65741165E-02
-0.40883192E-02 0.14626096E-02 0.58015615E-01-0.12133047E-03-0.26375460E-02
-0.15941681E-03-0.12184556E-03-0.10074791E-05 0.54695754E-02-0.84900534E-05
0.17930393E-03 0.11777768E-04-0.56346838E-04
ROW 9
-0.48905104E-01-0.88207871E-01 0.10761653E+00 0.14402074E-01-0.90585179E-02
-0.15035685E-01 0.76270479E-02-0.12133047E-03 0.87564987E-01-0.13215352E-02
-0.96242714E-02-0.71173350E-03-0.32480719E-02-0.23447332E-04 0.72534655E-02
-0.80148977E-04 0.73432211E-03-0.55686916E-04
ROW 10
-0.10662371E+00-0.19631826E+00 0.19972522E+00-0.35192761E-02 0.85894595E-02
-0.45903145E-01 0.13963605E-01-0.26375460E-02-0.13215352E-02 0.90425409E-01
-0.19841473E-02 0.80392998E-02-0.49358582E-05 0.26165176E-02-0.41326138E-04
0.64187153E-02-0.82281430E-04-0.16315636E-02
ROW 11
-0.22835870E-01-0.72630331E-01 0.96213226E-01-0.36533254E-02-0.10568643E-01
0.13793433E-02-0.14094411E-01-0.15941681E-03-0.96242714E-02-0.19841473E-02
0.89133525E-01-0.37170407E-02 0.23201962E-04-0.63175393E-04-0.86904130E-03
0.72422349E-04 0.43280930E-02 0.34206153E-02
ROW 12
-0.94493765E-01-0.13843972E+00 0.14804637E+00-0.26044078E-02-0.11623708E-01
-0.21260684E-01 0.20778731E-01-0.12184556E-03-0.71173350E-03 0.80392998E-02
-0.37170407E-02 0.85835163E-01 0.10073588E-04-0.45278694E-04 0.14094912E-03
0.23988230E-02-0.37987784E-02 0.36180233E-02
ROW 13
-0.58377513E-04-0.33160912E-03 0.29785087E-03-0.14964589E-03-0.32410612E-04
-0.58824128E-04-0.35498564E-04-0.10074784E-05-0.32480719E-02-0.49358500E-05
0.23201959E-04 0.10073592E-04 0.31959475E-01-0.72276104E-06 0.17126449E-02
-0.14831918E-05 0.24100951E-04 0.35625333E-05
ROW 14
-0.16774756E-02-0.29498290E-02 0.28227714E-02-0.48096629E-04 0.83711213E-03
-0.74288291E-03 0.51909405E-03 0.54695754E-02-0.23447351E-04 0.26165176E-02
-0.63175360E-04-0.45278770E-04-0.72276104E-06 0.35795041E-01-0.18442940E-05
-0.25101361E-02 0.24864708E-05 0.35645115E-04
ROW 15
-0.37415606E-02-0.60564781E-02 0.73203737E-02 0.57953524E-03-0.66143329E-03
0.14699741E-03 0.37554399E-03-0.84900581E-05 0.72534655E-02-0.41326247E-04
-0.86904121E-03 0.14094914E-03 0.17126449E-02-0.18442940E-05 0.38703304E-01
0.97426441E-05-0.31476739E-02-0.65739577E-04
ROW 16
-0.49077471E-02-0.83435299E-02 0.81448152E-02-0.17108009E-03-0.19924616E-03
-0.15374111E-02-0.49046402E-03 0.17930394E-03-0.80148977E-04 0.64187153E-02
0.72422349E-04 0.23988230E-02-0.14831920E-05-0.25101361E-02 0.97426775E-05
0.38570604E-01-0.60852192E-04 0.27417631E-02
ROW 17
0.15491110E-02 0.70017642E-03 0.43297166E-04 0.19711538E-04 0.64105880E-05
-0.43147925E-03-0.38165110E-03 0.11777768E-04 0.73432211E-03-0.82281430E-04
0.43280930E-02-0.37987784E-02 0.24100951E-04 0.24864684E-05-0.31476739E-02
-0.60852192E-04 0.37340912E-01-0.67069045E-03
ROW 18
-0.18901203E-02-0.15230139E-02 0.12730507E-02-0.10832360E-03-0.66567889E-03
0.50639903E-03-0.66404474E-03-0.56346823E-04-0.55686903E-04-0.16315636E-02
0.34206154E-02 0.36180234E-02 0.35625333E-05 0.35645115E-04-0.65739577E-04
0.27417631E-02-0.67069045E-03 0.36842495E-01
eigenphases
-0.1537791E+01 -0.1204258E+01 0.3079793E-01 0.3204807E-01 0.3440674E-01
0.3573452E-01 0.4052498E-01 0.4079581E-01 0.5848908E-01 0.7503191E-01
0.7824765E-01 0.9228386E-01 0.9747770E-01 0.1297488E+00 0.1884809E+00
0.2630892E+00 0.3300199E+00 0.9721514E+00
eigenphase sum-0.242721E+00 scattering length= 0.16675
eps+pi 0.289887E+01 eps+2*pi 0.604046E+01
MaxIter = 8 c.s. = 4.49771862 rmsk= 0.00000000 Abs eps 0.79372701E-05 Rel eps 0.36871445E-04
Time Now = 110.2917 Delta time = 66.8461 End ScatStab
Time Now = 110.2925 Delta time = 0.0008 Finalize