Execution on n0164.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:29.377 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test18
#
# electron scattering from C6F3H3
#
LMax 25 # maximum l to be used for wave functions
EMax 60.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0 # charge, formula type
VCorr 'PZ'
ScatEng 30. # list of scattering energies
FegeEng 9.5 # Energy correction used in the fege potential
ScatContSym 'A1PP' # Scattering symmetry
LMaxK 10 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test18.molden2012' 'molden'
GetBlms
ExpOrb
GetPot
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 60.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record ScatEng - 30.
+ Data Record FegeEng - 9.5
+ Data Record ScatContSym - 'A1PP'
+ Data Record LMaxK - 10
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test18.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 570 basis functions
Selecting orbitals
Number of orbitals selected is 33
Selecting 1 1 SymOrb = 1.2 Ene = -26.3345 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 1.1 Ene = -26.3345 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 2.1 Ene = -26.3345 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 3.1 Ene = -11.3623 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 2.2 Ene = -11.3623 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 4.1 Ene = -11.3623 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 5.1 Ene = -11.2603 Spin =Alpha Occup = 2.000000
Selecting 8 8 SymOrb = 3.2 Ene = -11.2603 Spin =Alpha Occup = 2.000000
Selecting 9 9 SymOrb = 6.1 Ene = -11.2603 Spin =Alpha Occup = 2.000000
Selecting 10 10 SymOrb = 7.1 Ene = -1.6544 Spin =Alpha Occup = 2.000000
Selecting 11 11 SymOrb = 4.2 Ene = -1.6537 Spin =Alpha Occup = 2.000000
Selecting 12 12 SymOrb = 8.1 Ene = -1.6537 Spin =Alpha Occup = 2.000000
Selecting 13 13 SymOrb = 9.1 Ene = -1.1950 Spin =Alpha Occup = 2.000000
Selecting 14 14 SymOrb = 10.1 Ene = -1.0562 Spin =Alpha Occup = 2.000000
Selecting 15 15 SymOrb = 5.2 Ene = -1.0562 Spin =Alpha Occup = 2.000000
Selecting 16 16 SymOrb = 6.2 Ene = -0.8918 Spin =Alpha Occup = 2.000000
Selecting 17 17 SymOrb = 11.1 Ene = -0.8918 Spin =Alpha Occup = 2.000000
Selecting 18 18 SymOrb = 12.1 Ene = -0.8075 Spin =Alpha Occup = 2.000000
Selecting 19 19 SymOrb = 7.2 Ene = -0.7788 Spin =Alpha Occup = 2.000000
Selecting 20 20 SymOrb = 8.2 Ene = -0.7296 Spin =Alpha Occup = 2.000000
Selecting 21 21 SymOrb = 13.1 Ene = -0.7296 Spin =Alpha Occup = 2.000000
Selecting 22 22 SymOrb = 1.3 Ene = -0.7266 Spin =Alpha Occup = 2.000000
Selecting 23 23 SymOrb = 1.4 Ene = -0.7153 Spin =Alpha Occup = 2.000000
Selecting 24 24 SymOrb = 2.3 Ene = -0.7153 Spin =Alpha Occup = 2.000000
Selecting 25 25 SymOrb = 14.1 Ene = -0.7132 Spin =Alpha Occup = 2.000000
Selecting 26 26 SymOrb = 15.1 Ene = -0.6713 Spin =Alpha Occup = 2.000000
Selecting 27 27 SymOrb = 9.2 Ene = -0.6713 Spin =Alpha Occup = 2.000000
Selecting 28 28 SymOrb = 10.2 Ene = -0.5920 Spin =Alpha Occup = 2.000000
Selecting 29 29 SymOrb = 16.1 Ene = -0.5661 Spin =Alpha Occup = 2.000000
Selecting 30 30 SymOrb = 11.2 Ene = -0.5661 Spin =Alpha Occup = 2.000000
Selecting 31 31 SymOrb = 3.3 Ene = -0.5259 Spin =Alpha Occup = 2.000000
Selecting 32 32 SymOrb = 4.3 Ene = -0.3670 Spin =Alpha Occup = 2.000000
Selecting 33 33 SymOrb = 2.4 Ene = -0.3670 Spin =Alpha Occup = 2.000000
Atoms found 12 Coordinates in Angstroms
Z = 6 ZS = 6 r = 1.3861950000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 2.7263850000 0.0000000000 0.0000000000
Z = 6 ZS = 6 r = 0.6930975000 -1.2004800846 0.0000000000
Z = 1 ZS = 1 r = 1.2322385000 -2.1342996890 0.0000000000
Z = 6 ZS = 6 r = -0.6930975000 -1.2004800846 0.0000000000
Z = 9 ZS = 9 r = -1.3631925000 -2.3611186705 0.0000000000
Z = 6 ZS = 6 r = -1.3861950000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = -2.4644770000 0.0000000000 0.0000000000
Z = 6 ZS = 6 r = -0.6930975000 1.2004800846 0.0000000000
Z = 9 ZS = 9 r = -1.3631925000 2.3611186705 0.0000000000
Z = 6 ZS = 6 r = 0.6930975000 1.2004800846 0.0000000000
Z = 1 ZS = 1 r = 1.2322385000 2.1342996890 0.0000000000
Maximum distance from expansion center is 2.7263850000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group D3h
Reduce angular grid using nthd = 2 nphid = 2
Found point group for abelian subgroup C2v
Time Now = 0.4741 Delta time = 0.4741 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 1.00000 0.00000 0.00000 6 1.38620 9 2.72639 6 1.38620 1 2.46448
3 0.50000 -0.86603 0.00000 6 1.38620 1 2.46448 6 1.38620 9 2.72639
4 -0.50000 -0.86603 0.00000 6 1.38620 9 2.72639 6 1.38620 1 2.46448
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 0.00000 1.00000 0.00000
3 0.86603 0.50000 0.00000
4 0.86603 -0.50000 0.00000
Computed default value of LMaxA = 20
Determining angular grid in GetAxMax LMax = 25 LMaxA = 20 LMaxAb = 50
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 -1 -1 -1 -1 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 3 3 3 3 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 3 3 3 3 3
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 3 3 3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D3h
LMax 25
The dimension of each irreducable representation is
A1P ( 1) A2P ( 1) EP ( 2) A1PP ( 1) A2PP ( 1)
EPP ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 5 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1P 1 1 54 1 1 1
A2P 1 2 43 1 -1 -1
EP 1 3 97 1 -1 -1
EP 2 4 97 1 1 1
A1PP 1 5 35 -1 -1 1
A2PP 1 6 50 -1 1 -1
EPP 1 7 85 -1 -1 1
EPP 2 8 85 -1 1 -1
Time Now = 1.0021 Delta time = 0.5280 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1P 1 0( 1) 1( 1) 2( 2) 3( 3) 4( 4) 5( 5) 6( 7) 7( 8) 8( 10) 9( 12)
10( 14) 11( 16) 12( 19) 13( 21) 14( 24) 15( 27) 16( 30) 17( 33) 18( 37) 19( 40)
20( 44)
A2P 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 3) 7( 4) 8( 5) 9( 7)
10( 8) 11( 10) 12( 12) 13( 14) 14( 16) 15( 19) 16( 21) 17( 24) 18( 27) 19( 30)
20( 33)
EP 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 5) 5( 7) 6( 9) 7( 12) 8( 15) 9( 18)
10( 22) 11( 26) 12( 30) 13( 35) 14( 40) 15( 45) 16( 51) 17( 57) 18( 63) 19( 70)
20( 77)
EP 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 5) 5( 7) 6( 9) 7( 12) 8( 15) 9( 18)
10( 22) 11( 26) 12( 30) 13( 35) 14( 40) 15( 45) 16( 51) 17( 57) 18( 63) 19( 70)
20( 77)
A1PP 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 3) 8( 4) 9( 5)
10( 7) 11( 8) 12( 10) 13( 12) 14( 14) 15( 16) 16( 19) 17( 21) 18( 24) 19( 27)
20( 30)
A2PP 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 3) 5( 4) 6( 5) 7( 7) 8( 8) 9( 10)
10( 12) 11( 14) 12( 16) 13( 19) 14( 21) 15( 24) 16( 27) 17( 30) 18( 33) 19( 37)
20( 40)
EPP 1 0( 0) 1( 0) 2( 1) 3( 2) 4( 3) 5( 5) 6( 7) 7( 9) 8( 12) 9( 15)
10( 18) 11( 22) 12( 26) 13( 30) 14( 35) 15( 40) 16( 45) 17( 51) 18( 57) 19( 63)
20( 70)
EPP 2 0( 0) 1( 0) 2( 1) 3( 2) 4( 3) 5( 5) 6( 7) 7( 9) 8( 12) 9( 15)
10( 18) 11( 22) 12( 26) 13( 30) 14( 35) 15( 40) 16( 45) 17( 51) 18( 57) 19( 63)
20( 70)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 50
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 0.000000 1.000000 0.000000
2 0.000000 0.000000 1.000000
3 1.000000 0.000000 0.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 2
3 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 1
4 -1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 1 -1 -1
irep = 4 sym =B2 1 eigs = 1 -1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 676 1 1 1
A2 1 2 625 -1 -1 1
B1 1 3 650 1 -1 -1
B2 1 4 650 -1 1 -1
Time Now = 1.6087 Delta time = 0.6066 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 14.6088949180 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 14.60889 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 60.00000 eV
Maximum step size (MaxStep) = 14.60889 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 1.38620 Angs Alpha Max = 0.10800E+05
3 Center at = 2.46448 Angs Alpha Max = 0.30000E+03
4 Center at = 2.72639 Angs Alpha Max = 0.24300E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.48493E-02 0.03879
2 8 16 0.67243E-02 0.09259
3 8 24 0.10780E-01 0.17883
4 8 32 0.14434E-01 0.29430
5 8 40 0.16844E-01 0.42905
6 8 48 0.17212E-01 0.56674
7 8 56 0.15883E-01 0.69381
8 8 64 0.14157E-01 0.80706
9 8 72 0.12316E-01 0.90559
10 8 80 0.11475E-01 0.99739
11 8 88 0.12028E-01 1.09362
12 8 96 0.13189E-01 1.19913
13 8 104 0.85198E-02 1.26729
14 8 112 0.54155E-02 1.31061
15 8 120 0.34423E-02 1.33815
16 8 128 0.21881E-02 1.35566
17 8 136 0.13908E-02 1.36678
18 8 144 0.88407E-03 1.37386
19 8 152 0.62241E-03 1.37884
20 8 160 0.52819E-03 1.38306
21 8 168 0.39168E-03 1.38620
22 8 176 0.50920E-03 1.39027
23 8 184 0.54286E-03 1.39461
24 8 192 0.66917E-03 1.39996
25 8 200 0.10153E-02 1.40809
26 8 208 0.16142E-02 1.42100
27 8 216 0.25663E-02 1.44153
28 8 224 0.40801E-02 1.47417
29 8 232 0.64868E-02 1.52607
30 8 240 0.10313E-01 1.60857
31 8 248 0.16397E-01 1.73974
32 8 256 0.18105E-01 1.88459
33 8 264 0.17994E-01 2.02854
34 8 272 0.18257E-01 2.17459
35 8 280 0.13202E-01 2.28021
36 8 288 0.83926E-02 2.34735
37 8 296 0.53347E-02 2.39002
38 8 304 0.37457E-02 2.41999
39 8 312 0.31729E-02 2.44537
40 8 320 0.23879E-02 2.46448
41 8 328 0.30552E-02 2.48892
42 8 336 0.32571E-02 2.51498
43 8 344 0.40150E-02 2.54710
44 8 352 0.60918E-02 2.59583
45 8 360 0.59461E-02 2.64340
46 8 368 0.37796E-02 2.67364
47 8 376 0.24025E-02 2.69286
48 8 384 0.15271E-02 2.70507
49 8 392 0.97068E-03 2.71284
50 8 400 0.61700E-03 2.71777
51 8 408 0.42550E-03 2.72118
52 8 416 0.35572E-03 2.72402
53 8 424 0.29516E-03 2.72639
54 8 432 0.33947E-03 2.72910
55 8 440 0.36190E-03 2.73200
56 8 448 0.44612E-03 2.73556
57 8 456 0.67686E-03 2.74098
58 8 464 0.10761E-02 2.74959
59 8 472 0.17109E-02 2.76328
60 8 480 0.27201E-02 2.78504
61 8 488 0.43245E-02 2.81963
62 8 496 0.68754E-02 2.87464
63 8 504 0.10931E-01 2.96208
64 8 512 0.17379E-01 3.10111
65 8 520 0.20431E-01 3.26456
66 8 528 0.20912E-01 3.43186
67 8 536 0.23140E-01 3.61698
68 8 544 0.25204E-01 3.81862
69 8 552 0.27131E-01 4.03567
70 8 560 0.28943E-01 4.26721
71 8 568 0.30654E-01 4.51244
72 8 576 0.32277E-01 4.77066
73 8 584 0.33820E-01 5.04121
74 8 592 0.35289E-01 5.32353
75 8 600 0.36691E-01 5.61706
76 8 608 0.38030E-01 5.92130
77 8 616 0.39309E-01 6.23578
78 8 624 0.40533E-01 6.56004
79 8 632 0.41702E-01 6.89366
80 8 640 0.42822E-01 7.23623
81 8 648 0.43893E-01 7.58737
82 8 656 0.44918E-01 7.94672
83 8 664 0.45900E-01 8.31392
84 8 672 0.46840E-01 8.68864
85 8 680 0.47741E-01 9.07057
86 8 688 0.48604E-01 9.45940
87 8 696 0.49431E-01 9.85485
88 8 704 0.50224E-01 10.25664
89 8 712 0.50984E-01 10.66451
90 8 720 0.51714E-01 11.07822
91 8 728 0.52413E-01 11.49753
92 8 736 0.53085E-01 11.92221
93 8 744 0.53730E-01 12.35205
94 8 752 0.54350E-01 12.78685
95 8 760 0.54945E-01 13.22641
96 8 768 0.55517E-01 13.67055
97 8 776 0.56068E-01 14.11909
98 8 784 0.56597E-01 14.57187
99 8 792 0.46280E-02 14.60889
Time Now = 1.9591 Delta time = 0.3504 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 25
Maximum scattering m (mmaxs) = 25
Maximum numerical integration l (lmaxi) = 50
Maximum numerical integration m (mmaxi) = 50
Maximum l to include in the asymptotic region (lmasym) = 20
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 60.00000
Print flag (iprnfg) = 0
lmasymtyts = 20
Actual value of lmasym found = 20
Number of regions of the same l expansion (NAngReg) = 6
Angular regions
1 L = 2 from ( 1) 0.00485 to ( 7) 0.03395
2 L = 7 from ( 8) 0.03879 to ( 15) 0.08586
3 L = 11 from ( 16) 0.09259 to ( 23) 0.16805
4 L = 20 from ( 24) 0.17883 to ( 71) 0.89328
5 L = 25 from ( 72) 0.90559 to ( 552) 4.03567
6 L = 20 from ( 553) 4.06461 to ( 792) 14.60889
There are 2 angular regions for computing spherical harmonics
1 lval = 20
2 lval = 25
Maximum number of processors is 98
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 72
Proc id = 1 Last grid point = 104
Proc id = 2 Last grid point = 144
Proc id = 3 Last grid point = 176
Proc id = 4 Last grid point = 208
Proc id = 5 Last grid point = 248
Proc id = 6 Last grid point = 280
Proc id = 7 Last grid point = 312
Proc id = 8 Last grid point = 352
Proc id = 9 Last grid point = 384
Proc id = 10 Last grid point = 416
Proc id = 11 Last grid point = 448
Proc id = 12 Last grid point = 488
Proc id = 13 Last grid point = 520
Proc id = 14 Last grid point = 552
Proc id = 15 Last grid point = 600
Proc id = 16 Last grid point = 648
Proc id = 17 Last grid point = 696
Proc id = 18 Last grid point = 744
Proc id = 19 Last grid point = 792
Time Now = 2.2423 Delta time = 0.2832 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -26.334500 EP 1 at max irg = 424 r = 2.72639
2 Orig 2 Eng = -26.334500 EP 2 at max irg = 424 r = 2.72639
3 Orig 3 Eng = -26.334500 A1P 1 at max irg = 424 r = 2.72639
4 Orig 4 Eng = -11.362300 A1P 1 at max irg = 168 r = 1.38620
5 Orig 5 Eng = -11.362300 EP 1 at max irg = 168 r = 1.38620
6 Orig 6 Eng = -11.362300 EP 2 at max irg = 168 r = 1.38620
7 Orig 7 Eng = -11.260300 EP 1 at max irg = 168 r = 1.38620
8 Orig 8 Eng = -11.260300 EP 2 at max irg = 168 r = 1.38620
9 Orig 9 Eng = -11.260300 A1P 1 at max irg = 168 r = 1.38620
10 Orig 10 Eng = -1.654400 A1P 1 at max irg = 416 r = 2.72402
11 Orig 11 Eng = -1.653700 EP 1 at max irg = 424 r = 2.72639
12 Orig 12 Eng = -1.653700 EP 2 at max irg = 424 r = 2.72639
13 Orig 13 Eng = -1.195000 A1P 1 at max irg = 88 r = 1.09362
14 Orig 14 Eng = -1.056200 EP 1 at max irg = 176 r = 1.39027
15 Orig 15 Eng = -1.056200 EP 2 at max irg = 176 r = 1.39027
16 Orig 16 Eng = -0.891800 EP 1 at max irg = 240 r = 1.60857
17 Orig 17 Eng = -0.891800 EP 2 at max irg = 240 r = 1.60857
18 Orig 18 Eng = -0.807500 A1P 1 at max irg = 504 r = 2.96208
19 Orig 19 Eng = -0.778800 A2P 1 at max irg = 440 r = 2.73200
20 Orig 20 Eng = -0.729600 EP 1 at max irg = 504 r = 2.96208
21 Orig 21 Eng = -0.729600 EP 2 at max irg = 504 r = 2.96208
22 Orig 22 Eng = -0.726600 A2PP 1 at max irg = 448 r = 2.73556
23 Orig 23 Eng = -0.715300 EPP 1 at max irg = 448 r = 2.73556
24 Orig 24 Eng = -0.715300 EPP 2 at max irg = 448 r = 2.73556
25 Orig 25 Eng = -0.713200 A1P 1 at max irg = 272 r = 2.17459
26 Orig 26 Eng = -0.671300 EP 1 at max irg = 448 r = 2.73556
27 Orig 27 Eng = -0.671300 EP 2 at max irg = 448 r = 2.73556
28 Orig 28 Eng = -0.592000 A2P 1 at max irg = 464 r = 2.74959
29 Orig 29 Eng = -0.566100 EP 1 at max irg = 104 r = 1.26729
30 Orig 30 Eng = -0.566100 EP 2 at max irg = 104 r = 1.26729
31 Orig 31 Eng = -0.525900 A2PP 1 at max irg = 216 r = 1.44153
32 Orig 32 Eng = -0.367000 EPP 1 at max irg = 224 r = 1.47417
33 Orig 33 Eng = -0.367000 EPP 2 at max irg = 224 r = 1.47417
Rotation coefficients for orbital 1 grp = 1 EP 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 2 grp = 1 EP 2
1 -0.0000000000 2 -1.0000000000
Rotation coefficients for orbital 3 grp = 2 A1P 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 3 A1P 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 4 EP 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 6 grp = 4 EP 2
1 0.0000000000 2 -1.0000000000
Rotation coefficients for orbital 7 grp = 5 EP 1
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 8 grp = 5 EP 2
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 9 grp = 6 A1P 1
1 1.0000000000
Rotation coefficients for orbital 10 grp = 7 A1P 1
1 1.0000000000
Rotation coefficients for orbital 11 grp = 8 EP 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 12 grp = 8 EP 2
1 -0.0000000000 2 -1.0000000000
Rotation coefficients for orbital 13 grp = 9 A1P 1
1 1.0000000000
Rotation coefficients for orbital 14 grp = 10 EP 1
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 15 grp = 10 EP 2
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 16 grp = 11 EP 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 17 grp = 11 EP 2
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 18 grp = 12 A1P 1
1 1.0000000000
Rotation coefficients for orbital 19 grp = 13 A2P 1
1 1.0000000000
Rotation coefficients for orbital 20 grp = 14 EP 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 21 grp = 14 EP 2
1 0.0000000000 2 1.0000000000
Rotation coefficients for orbital 22 grp = 15 A2PP 1
1 1.0000000000
Rotation coefficients for orbital 23 grp = 16 EPP 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 24 grp = 16 EPP 2
1 0.0000000000 2 -1.0000000000
Rotation coefficients for orbital 25 grp = 17 A1P 1
1 1.0000000000
Rotation coefficients for orbital 26 grp = 18 EP 1
1 0.0000000000 2 1.0000000000
Rotation coefficients for orbital 27 grp = 18 EP 2
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 28 grp = 19 A2P 1
1 1.0000000000
Rotation coefficients for orbital 29 grp = 20 EP 1
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 30 grp = 20 EP 2
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 31 grp = 21 A2PP 1
1 1.0000000000
Rotation coefficients for orbital 32 grp = 22 EPP 1
1 0.0000000000 2 1.0000000000
Rotation coefficients for orbital 33 grp = 22 EPP 2
1 1.0000000000 2 -0.0000000000
Number of orbital groups and degeneracis are 22
2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 2 1 2 1 2
1 2
Number of orbital groups and number of electrons when fully occupied
22
4 2 2 4 4 2 2 4 2 4 4 2 2 4 2 4 2 4 2 4
2 4
Time Now = 3.8697 Delta time = 1.6273 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 22
Orbital 1 of EP 1 symmetry normalization integral = 0.52427097
Orbital 2 of A1P 1 symmetry normalization integral = 0.52036730
Orbital 3 of A1P 1 symmetry normalization integral = 0.96833695
Orbital 4 of EP 1 symmetry normalization integral = 0.96876586
Orbital 5 of EP 1 symmetry normalization integral = 0.96872047
Orbital 6 of A1P 1 symmetry normalization integral = 0.96840403
Orbital 7 of A1P 1 symmetry normalization integral = 0.95659064
Orbital 8 of EP 1 symmetry normalization integral = 0.95650556
Orbital 9 of A1P 1 symmetry normalization integral = 0.99618604
Orbital 10 of EP 1 symmetry normalization integral = 0.99624353
Orbital 11 of EP 1 symmetry normalization integral = 0.99451571
Orbital 12 of A1P 1 symmetry normalization integral = 0.99275449
Orbital 13 of A2P 1 symmetry normalization integral = 0.98772553
Orbital 14 of EP 1 symmetry normalization integral = 0.99013675
Orbital 15 of A2PP 1 symmetry normalization integral = 0.98054147
Orbital 16 of EPP 1 symmetry normalization integral = 0.97771981
Orbital 17 of A1P 1 symmetry normalization integral = 0.99931990
Orbital 18 of EP 1 symmetry normalization integral = 0.98420433
Orbital 19 of A2P 1 symmetry normalization integral = 0.98655975
Orbital 20 of EP 1 symmetry normalization integral = 0.99773172
Orbital 21 of A2PP 1 symmetry normalization integral = 0.99481653
Orbital 22 of EPP 1 symmetry normalization integral = 0.99771892
Time Now = 10.2322 Delta time = 6.3625 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 66.00000000
Time Now = 10.2605 Delta time = 0.0283 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.66000000E+02 facnorm = 0.10000000E+01
Time Now = 10.3908 Delta time = 0.1303 Electronic part
Time Now = 10.5100 Delta time = 0.1192 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 10.5351 Delta time = 0.0250 End VcpPol
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.95000000E+01 eV
Do E = 0.30000000E+02 eV ( 0.11024798E+01 AU)
Time Now = 10.5545 Delta time = 0.0195 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1PP 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 53
Number of partial waves (np) = 35
Number of asymptotic solutions on the right (NAsymR) = 7
Number of asymptotic solutions on the left (NAsymL) = 7
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 7
Maximum in the asymptotic region (lpasym) = 20
Number of partial waves in the asymptotic region (npasym) = 30
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 441
Found polarization potential
Maximum l used in usual function (lmax) = 25
Maximum m used in usual function (LMax) = 25
Maxamum l used in expanding static potential (lpotct) = 50
Maximum l used in exapnding the exchange potential (lmaxab) = 50
Higest l included in the expansion of the wave function (lnp) = 25
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 20
Higest l used in the asymptotic potential (lpzb) = 40
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 30
Time Now = 10.5758 Delta time = 0.0213 Energy independent setup
Compute solution for E = 30.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.52180482E-14 Asymp Coef = -0.64673769E-08 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.15959456E-15 Asymp Moment = -0.15366079E-13 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.30337791E-03 Asymp Moment = 0.71120542E+00 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = -0.17515532E-03 Asymp Moment = 0.41061464E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.11042724E+03 -0.20000000E+01 stpote = 0.44007877E-17
i = 2 exps = -0.11042724E+03 -0.20000000E+01 stpote = 0.43911885E-17
i = 3 exps = -0.11042724E+03 -0.20000000E+01 stpote = 0.43720968E-17
i = 4 exps = -0.11042724E+03 -0.20000000E+01 stpote = 0.43437202E-17
For potential 3
i = 1 exps = -0.91206185E+00 -0.17468816E-01 stpote = -0.18197527E-07
i = 2 exps = -0.91203873E+00 -0.17469347E-01 stpote = -0.18206020E-07
i = 3 exps = -0.91199344E+00 -0.17470389E-01 stpote = -0.18222678E-07
i = 4 exps = -0.91192787E+00 -0.17471903E-01 stpote = -0.18246857E-07
Number of asymptotic regions = 75
Final point in integration = 0.14713483E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 25.4536 Delta time = 14.8778 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.41959518E+01-0.44934244E+00-0.13723456E+00-0.47418406E-01 0.57581765E-01
-0.39213296E-01 0.17433430E-01
ROW 2
-0.44934244E+00 0.35423687E+00-0.10617675E+00-0.75687510E-01 0.37063051E-01
-0.22262904E-01 0.88957023E-02
ROW 3
-0.13723456E+00-0.10617675E+00 0.49803470E+00 0.69525768E-01-0.11409156E+00
0.45442490E-01-0.17227600E-01
ROW 4
-0.47418406E-01-0.75687510E-01 0.69525768E-01 0.12153767E+00-0.27772382E-01
0.24726583E-01-0.26605283E-01
ROW 5
0.57581765E-01 0.37063051E-01-0.11409156E+00-0.27772382E-01 0.13394023E+00
-0.21904100E-01 0.97527850E-02
ROW 6
-0.39213296E-01-0.22262904E-01 0.45442490E-01 0.24726583E-01-0.21904100E-01
0.12461490E+00-0.91042340E-02
ROW 7
0.17433430E-01 0.88957023E-02-0.17227600E-01-0.26605283E-01 0.97527850E-02
-0.91042340E-02 0.50516175E-01
eigenphases
0.4034285E-01 0.9065352E-01 0.9741805E-01 0.1255203E+00 0.2509110E+00
0.5505030E+00 0.1339891E+01
eigenphase sum 0.249524E+01 scattering length= 0.50809
eps+pi 0.563683E+01 eps+2*pi 0.877843E+01
MaxIter = 7 c.s. = 2.10322583 rmsk= 0.00000000 Abs eps 0.23667092E-05 Rel eps 0.17984647E-07
Time Now = 99.2790 Delta time = 73.8254 End ScatStab
Time Now = 99.2796 Delta time = 0.0006 Finalize