Execution on n0213.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:19.389 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# inpute file for test17
#
# electron scattering from C6H6
#
LMax 25 # maximum l to be used for wave functions
EMax 60.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0 # charge, formula type
VCorr 'PZ'
AsyPol
0.15 # SwitchD, distance where switching function is down to 0.1
6 # nterm, number of terms needed to define asymptotic potential
1 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
11.85 # value of the spherical polarizability
2 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
11.85 # value of the spherical polarizability
3 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
11.85 # value of the spherical polarizability
4 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
11.85 # value of the spherical polarizability
5 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
11.85 # value of the spherical polarizability
6 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
11.85 # value of the spherical polarizability
3 # icrtyp, flag to determine where r match is, 3 for second crossing
# or at nearest approach
0 # ilntyp, flag to determine what matching line is used, 0 - use
# l = 0 radial function as matching function
ScatEng 30. # list of scattering energies
FegeEng 9.25 # Energy correction used in the fege potential
ScatContSym 'A1G' # Scattering symmetry
LMaxK 10 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test17.g03' 'gaussian'
GetBlms
ExpOrb
GetPot
Scat
+ End of input reached
+ Data Record LMax - 25
+ Data Record EMax - 60.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 6 / 1 / 1 / 11.85 / 2 / 1 / 11.85 / 3 / 1 / 11.85 / 4 / 1 / 11.85 / 5 / 1 / 11.85 / 6 / 1 / 11.85 / 3 / 0
+ Data Record ScatEng - 30.
+ Data Record FegeEng - 9.25
+ Data Record ScatContSym - 'A1G'
+ Data Record LMaxK - 10
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test17.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # RHF/6-311G(2D,2P) 6D 10F UNITS=AU SCF=TIGHT GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 21 number already selected 0
Number of orbitals selected is 21
Highest orbital read in is = 21
Time Now = 0.0129 Delta time = 0.0129 End GaussianCnv
Atoms found 12 Coordinates in Angstroms
Z = 6 ZS = 6 r = 0.0000000000 1.3970000000 0.0000000000
Z = 6 ZS = 6 r = 1.2098370000 0.6985000000 0.0000000000
Z = 6 ZS = 6 r = 1.2098370000 -0.6985000000 0.0000000000
Z = 6 ZS = 6 r = 0.0000000000 -1.3970000000 0.0000000000
Z = 6 ZS = 6 r = -1.2098370000 -0.6985000000 0.0000000000
Z = 6 ZS = 6 r = -1.2098370000 0.6985000000 0.0000000000
Z = 1 ZS = 1 r = 0.0000000000 2.4810000000 0.0000000000
Z = 1 ZS = 1 r = 2.1486090000 1.2405000000 0.0000000000
Z = 1 ZS = 1 r = 2.1486090000 -1.2405000000 0.0000000000
Z = 1 ZS = 1 r = 0.0000000000 -2.4810000000 0.0000000000
Z = 1 ZS = 1 r = -2.1486090000 -1.2405000000 0.0000000000
Z = 1 ZS = 1 r = -2.1486090000 1.2405000000 0.0000000000
Maximum distance from expansion center is 2.4810000000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group D6h
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.0243 Delta time = 0.0114 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.00000 1.00000 0.00000 6 1.39700 6 1.39700 1 2.48100 1 2.48100
3 0.86603 0.50000 0.00000 6 1.39700 6 1.39700 1 2.48100 1 2.48100
4 0.86603 -0.50000 0.00000 6 1.39700 6 1.39700 1 2.48100 1 2.48100
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000
3 0.50000 -0.86603 0.00000
4 0.50000 0.86603 0.00000
Computed default value of LMaxA = 19
Determining angular grid in GetAxMax LMax = 25 LMaxA = 19 LMaxAb = 50
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
-1 -1 -1 -1 -1 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
3 3 3 3 3 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
3 3 3 3 3 3
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
3 3 3 3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D6h
LMax 25
The dimension of each irreducable representation is
A1G ( 1) A2G ( 1) B1G ( 1) B2G ( 1) E1G ( 2)
E2G ( 2) A1U ( 1) A2U ( 1) B1U ( 1) B2U ( 1)
E1U ( 2) E2U ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
12 15 16 2 3 9 6
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1G 1 1 28 1 1 1 1 1 1 1
A2G 1 2 18 1 -1 -1 1 1 -1 -1
B1G 1 3 18 -1 -1 1 1 -1 -1 1
B2G 1 4 21 -1 1 -1 1 -1 1 -1
E1G 1 5 39 -1 -1 1 1 -1 -1 1
E1G 2 6 39 -1 1 -1 1 -1 1 -1
E2G 1 7 45 1 -1 -1 1 1 -1 -1
E2G 2 8 45 1 1 1 1 1 1 1
A1U 1 9 15 1 1 1 -1 -1 -1 -1
A2U 1 10 28 1 -1 -1 -1 -1 1 1
B1U 1 11 24 -1 -1 1 -1 1 1 -1
B2U 1 12 24 -1 1 -1 -1 1 -1 1
E1U 1 13 49 -1 -1 1 -1 1 1 -1
E1U 2 14 49 -1 1 -1 -1 1 -1 1
E2U 1 15 42 1 -1 -1 -1 -1 1 1
E2U 2 16 42 1 1 1 -1 -1 -1 -1
Time Now = 0.8789 Delta time = 0.8546 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G 1 0( 1) 1( 1) 2( 2) 3( 2) 4( 3) 5( 3) 6( 5) 7( 5) 8( 7) 9( 7)
10( 9) 11( 9) 12( 12) 13( 12) 14( 15) 15( 15) 16( 18) 17( 18) 18( 22) 19( 22)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3) 12( 5) 13( 5) 14( 7) 15( 7) 16( 9) 17( 9) 18( 12) 19( 12)
B1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 3) 9( 3)
10( 5) 11( 5) 12( 7) 13( 7) 14( 9) 15( 9) 16( 12) 17( 12) 18( 15) 19( 15)
B2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 3) 9( 3)
10( 5) 11( 5) 12( 7) 13( 7) 14( 9) 15( 9) 16( 12) 17( 12) 18( 15) 19( 15)
E1G 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 7) 9( 7)
10( 10) 11( 10) 12( 14) 13( 14) 14( 19) 15( 19) 16( 24) 17( 24) 18( 30) 19( 30)
E1G 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 7) 9( 7)
10( 10) 11( 10) 12( 14) 13( 14) 14( 19) 15( 19) 16( 24) 17( 24) 18( 30) 19( 30)
E2G 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 3) 5( 3) 6( 5) 7( 5) 8( 8) 9( 8)
10( 12) 11( 12) 12( 16) 13( 16) 14( 21) 15( 21) 16( 27) 17( 27) 18( 33) 19( 33)
E2G 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 3) 5( 3) 6( 5) 7( 5) 8( 8) 9( 8)
10( 12) 11( 12) 12( 16) 13( 16) 14( 21) 15( 21) 16( 27) 17( 27) 18( 33) 19( 33)
A1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 1) 8( 1) 9( 2)
10( 2) 11( 3) 12( 3) 13( 5) 14( 5) 15( 7) 16( 7) 17( 9) 18( 9) 19( 12)
A2U 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 5) 8( 5) 9( 7)
10( 7) 11( 9) 12( 9) 13( 12) 14( 12) 15( 15) 16( 15) 17( 18) 18( 18) 19( 22)
B1U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7) 13( 9) 14( 9) 15( 12) 16( 12) 17( 15) 18( 15) 19( 18)
B2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7) 13( 9) 14( 9) 15( 12) 16( 12) 17( 15) 18( 15) 19( 18)
E1U 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 7) 8( 7) 9( 10)
10( 10) 11( 14) 12( 14) 13( 19) 14( 19) 15( 24) 16( 24) 17( 30) 18( 30) 19( 37)
E1U 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 7) 8( 7) 9( 10)
10( 10) 11( 14) 12( 14) 13( 19) 14( 19) 15( 24) 16( 24) 17( 30) 18( 30) 19( 37)
E2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 3) 6( 3) 7( 5) 8( 5) 9( 8)
10( 8) 11( 12) 12( 12) 13( 16) 14( 16) 15( 21) 16( 21) 17( 27) 18( 27) 19( 33)
E2U 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 3) 6( 3) 7( 5) 8( 5) 9( 8)
10( 8) 11( 12) 12( 12) 13( 16) 14( 16) 15( 21) 16( 21) 17( 27) 18( 27) 19( 33)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 50
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 351 1 1 1 1 1 1 1
B1G 1 2 325 1 -1 -1 1 1 -1 -1
B2G 1 3 325 -1 -1 1 1 -1 -1 1
B3G 1 4 325 -1 1 -1 1 -1 1 -1
AU 1 5 300 1 1 1 -1 -1 -1 -1
B1U 1 6 325 1 -1 -1 -1 -1 1 1
B2U 1 7 325 -1 -1 1 -1 1 1 -1
B3U 1 8 325 -1 1 -1 -1 1 -1 1
Time Now = 0.8899 Delta time = 0.0110 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 8.8462201314 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 8.84622 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 60.00000 eV
Maximum step size (MaxStep) = 0.01058 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 1.39700 Angs Alpha Max = 0.10800E+05
3 Center at = 2.48100 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.50599E-02 0.04048
2 8 16 0.69146E-02 0.09580
3 64 80 0.10584E-01 0.77314
4 40 120 0.10584E-01 1.19648
5 8 128 0.91394E-02 1.26960
6 8 136 0.58025E-02 1.31602
7 8 144 0.36883E-02 1.34553
8 8 152 0.23444E-02 1.36428
9 8 160 0.14902E-02 1.37620
10 8 168 0.94723E-03 1.38378
11 8 176 0.64695E-03 1.38896
12 8 184 0.53663E-03 1.39325
13 8 192 0.46890E-03 1.39700
14 8 200 0.50920E-03 1.40107
15 8 208 0.54286E-03 1.40542
16 8 216 0.66917E-03 1.41077
17 8 224 0.10153E-02 1.41889
18 8 232 0.16142E-02 1.43181
19 8 240 0.25663E-02 1.45234
20 8 248 0.40801E-02 1.48498
21 8 256 0.64868E-02 1.53687
22 8 264 0.10313E-01 1.61938
23 64 328 0.10584E-01 2.29672
24 8 336 0.83989E-02 2.36391
25 8 344 0.53327E-02 2.40658
26 8 352 0.37450E-02 2.43654
27 8 360 0.31727E-02 2.46192
28 8 368 0.23854E-02 2.48100
29 8 376 0.30552E-02 2.50544
30 8 384 0.32571E-02 2.53150
31 8 392 0.40150E-02 2.56362
32 8 400 0.60918E-02 2.61235
33 8 408 0.96851E-02 2.68983
34 64 472 0.10584E-01 3.36718
35 64 536 0.10584E-01 4.04453
36 64 600 0.10584E-01 4.72187
37 64 664 0.10584E-01 5.39922
38 64 728 0.10584E-01 6.07657
39 64 792 0.10584E-01 6.75391
40 64 856 0.10584E-01 7.43126
41 64 920 0.10584E-01 8.10861
42 64 984 0.10584E-01 8.78595
43 8 992 0.75332E-02 8.84622
Time Now = 0.9394 Delta time = 0.0494 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 25
Maximum scattering m (mmaxs) = 25
Maximum numerical integration l (lmaxi) = 50
Maximum numerical integration m (mmaxi) = 50
Maximum l to include in the asymptotic region (lmasym) = 19
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 60.00000
Print flag (iprnfg) = 0
lmasymtyts = 18
Actual value of lmasym found = 19
Number of regions of the same l expansion (NAngReg) = 6
Angular regions
1 L = 2 from ( 1) 0.00506 to ( 7) 0.03542
2 L = 7 from ( 8) 0.04048 to ( 15) 0.08888
3 L = 10 from ( 16) 0.09580 to ( 23) 0.16988
4 L = 19 from ( 24) 0.18046 to ( 87) 0.84723
5 L = 25 from ( 88) 0.85781 to ( 496) 3.62119
6 L = 19 from ( 497) 3.63177 to ( 992) 8.84622
There are 2 angular regions for computing spherical harmonics
1 lval = 19
2 lval = 25
Maximum number of processors is 123
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 80
Proc id = 1 Last grid point = 128
Proc id = 2 Last grid point = 160
Proc id = 3 Last grid point = 200
Proc id = 4 Last grid point = 240
Proc id = 5 Last grid point = 280
Proc id = 6 Last grid point = 320
Proc id = 7 Last grid point = 360
Proc id = 8 Last grid point = 400
Proc id = 9 Last grid point = 440
Proc id = 10 Last grid point = 480
Proc id = 11 Last grid point = 528
Proc id = 12 Last grid point = 584
Proc id = 13 Last grid point = 640
Proc id = 14 Last grid point = 704
Proc id = 15 Last grid point = 760
Proc id = 16 Last grid point = 816
Proc id = 17 Last grid point = 880
Proc id = 18 Last grid point = 936
Proc id = 19 Last grid point = 992
Time Now = 1.0344 Delta time = 0.0951 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -11.233798 A1G 1 at max irg = 192 r = 1.39700
2 Orig 2 Eng = -11.233231 E1U 1 at max irg = 192 r = 1.39700
3 Orig 3 Eng = -11.233231 E1U 2 at max irg = 192 r = 1.39700
4 Orig 4 Eng = -11.232006 E2G 1 at max irg = 192 r = 1.39700
5 Orig 5 Eng = -11.232006 E2G 2 at max irg = 192 r = 1.39700
6 Orig 6 Eng = -11.231406 B1U 1 at max irg = 192 r = 1.39700
7 Orig 7 Eng = -1.144706 A1G 1 at max irg = 192 r = 1.39700
8 Orig 8 Eng = -1.010152 E1U 1 at max irg = 200 r = 1.40107
9 Orig 9 Eng = -1.010152 E1U 2 at max irg = 200 r = 1.40107
10 Orig 10 Eng = -0.820115 E2G 1 at max irg = 272 r = 1.70405
11 Orig 11 Eng = -0.820115 E2G 2 at max irg = 272 r = 1.70405
12 Orig 12 Eng = -0.705081 A1G 1 at max irg = 320 r = 2.21206
13 Orig 13 Eng = -0.641299 B1U 1 at max irg = 320 r = 2.21206
14 Orig 14 Eng = -0.614953 B2U 1 at max irg = 240 r = 1.45234
15 Orig 15 Eng = -0.584328 E1U 1 at max irg = 112 r = 1.11182
16 Orig 16 Eng = -0.584328 E1U 2 at max irg = 112 r = 1.11182
17 Orig 17 Eng = -0.497019 A2U 1 at max irg = 240 r = 1.45234
18 Orig 18 Eng = -0.491880 E2G 1 at max irg = 136 r = 1.31602
19 Orig 19 Eng = -0.491880 E2G 2 at max irg = 136 r = 1.31602
20 Orig 20 Eng = -0.332139 E1G 1 at max irg = 248 r = 1.48498
21 Orig 21 Eng = -0.332139 E1G 2 at max irg = 248 r = 1.48498
Rotation coefficients for orbital 1 grp = 1 A1G 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 E1U 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 3 grp = 2 E1U 2
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 4 grp = 3 E2G 1
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 5 grp = 3 E2G 2
1 -1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 6 grp = 4 B1U 1
1 1.0000000000
Rotation coefficients for orbital 7 grp = 5 A1G 1
1 1.0000000000
Rotation coefficients for orbital 8 grp = 6 E1U 1
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 9 grp = 6 E1U 2
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 10 grp = 7 E2G 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 11 grp = 7 E2G 2
1 0.0000000000 2 -1.0000000000
Rotation coefficients for orbital 12 grp = 8 A1G 1
1 1.0000000000
Rotation coefficients for orbital 13 grp = 9 B1U 1
1 1.0000000000
Rotation coefficients for orbital 14 grp = 10 B2U 1
1 1.0000000000
Rotation coefficients for orbital 15 grp = 11 E1U 1
1 0.0000000000 2 1.0000000000
Rotation coefficients for orbital 16 grp = 11 E1U 2
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 17 grp = 12 A2U 1
1 1.0000000000
Rotation coefficients for orbital 18 grp = 13 E2G 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 19 grp = 13 E2G 2
1 0.0000000000 2 -1.0000000000
Rotation coefficients for orbital 20 grp = 14 E1G 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 21 grp = 14 E1G 2
1 0.0000000000 2 1.0000000000
Number of orbital groups and degeneracis are 14
1 2 2 1 1 2 2 1 1 1 2 1 2 2
Number of orbital groups and number of electrons when fully occupied
14
2 4 4 2 2 4 4 2 2 2 4 2 4 4
Time Now = 1.2813 Delta time = 0.2469 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 14
Orbital 1 of A1G 1 symmetry normalization integral = 0.96650918
Orbital 2 of E1U 1 symmetry normalization integral = 0.97039415
Orbital 3 of E2G 1 symmetry normalization integral = 0.96487322
Orbital 4 of B1U 1 symmetry normalization integral = 0.96821783
Orbital 5 of A1G 1 symmetry normalization integral = 0.99811453
Orbital 6 of E1U 1 symmetry normalization integral = 0.99840375
Orbital 7 of E2G 1 symmetry normalization integral = 0.99879725
Orbital 8 of A1G 1 symmetry normalization integral = 0.99989255
Orbital 9 of B1U 1 symmetry normalization integral = 0.99922987
Orbital 10 of B2U 1 symmetry normalization integral = 0.99993249
Orbital 11 of E1U 1 symmetry normalization integral = 0.99985680
Orbital 12 of A2U 1 symmetry normalization integral = 0.99996766
Orbital 13 of E2G 1 symmetry normalization integral = 0.99985483
Orbital 14 of E1G 1 symmetry normalization integral = 0.99995330
Time Now = 1.8399 Delta time = 0.5586 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 42.00000000
Time Now = 1.8490 Delta time = 0.0091 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.42000000E+02 facnorm = 0.10000000E+01
Time Now = 1.9229 Delta time = 0.0739 Electronic part
Time Now = 1.9281 Delta time = 0.0052 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 1.9415 Delta time = 0.0133 End VcpPol
----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------
Switching distance (SwitchD) = 0.15000
Number of terms in the asymptotic polarization potential (nterm) = 6
Term = 1 At center = 1
Explicit coordinates = 0.00000000E+00 0.13970000E+01 0.00000000E+00
Type = 1
Polarizability = 0.11850000E+02 au
Term = 2 At center = 2
Explicit coordinates = 0.12098370E+01 0.69850000E+00 0.00000000E+00
Type = 1
Polarizability = 0.11850000E+02 au
Term = 3 At center = 3
Explicit coordinates = 0.12098370E+01 -0.69850000E+00 0.00000000E+00
Type = 1
Polarizability = 0.11850000E+02 au
Term = 4 At center = 4
Explicit coordinates = 0.00000000E+00 -0.13970000E+01 0.00000000E+00
Type = 1
Polarizability = 0.11850000E+02 au
Term = 5 At center = 5
Explicit coordinates = -0.12098370E+01 -0.69850000E+00 0.00000000E+00
Type = 1
Polarizability = 0.11850000E+02 au
Term = 6 At center = 6
Explicit coordinates = -0.12098370E+01 0.69850000E+00 0.00000000E+00
Type = 1
Polarizability = 0.11850000E+02 au
Last center is at (RCenterX) = 1.39700 Angs
Radial matching parameter (icrtyp) = 3
Matching line type (ilntyp) = 0
Using closest approach for matching r
Matching point is at r = 4.1640524550 Angs
Matching uses closest approach (iMatchType = 2)
First nonzero weight at(RFirstWt) R = 3.70585 Angs
Last point of the switching region (RLastWt) R= 4.63721 Angs
Total asymptotic potential is 0.71100000E+02 a.u.
Time Now = 1.9591 Delta time = 0.0176 End AsyPol
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.92500000E+01 eV
Do E = 0.30000000E+02 eV ( 0.11024798E+01 AU)
Time Now = 1.9662 Delta time = 0.0070 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1G 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.71100000E+02 au
Number of integration regions used = 54
Number of partial waves (np) = 28
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 9
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 9
Maximum in the asymptotic region (lpasym) = 19
Number of partial waves in the asymptotic region (npasym) = 22
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 210
Found polarization potential
Maximum l used in usual function (lmax) = 25
Maximum m used in usual function (LMax) = 25
Maxamum l used in expanding static potential (lpotct) = 50
Maximum l used in exapnding the exchange potential (lmaxab) = 50
Higest l included in the expansion of the wave function (lnp) = 24
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 19
Higest l used in the asymptotic potential (lpzb) = 38
Maximum L used in the homogeneous solution (LMaxHomo) = 19
Number of partial waves in the homogeneous solution (npHomo) = 22
Time Now = 1.9839 Delta time = 0.0178 Energy independent setup
Compute solution for E = 30.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.71100000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.21094237E-14 Asymp Coef = -0.35151626E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.30291252E-07 Asymp Moment = -0.15767014E-04 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.22661143E-02 Asymp Moment = -0.11795437E+01 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.28769305E-15 Asymp Moment = 0.21093546E-10 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.56391995E-09 Asymp Moment = 0.41346399E-04 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.15735151E-03 Asymp Moment = 0.11536954E+02 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.66867733E+02 -0.20000000E+01 stpote = -0.66652314E-18
i = 2 exps = -0.66867733E+02 -0.20000000E+01 stpote = -0.61135083E-18
i = 3 exps = -0.66867733E+02 -0.20000000E+01 stpote = -0.50252064E-18
i = 4 exps = -0.66867733E+02 -0.20000000E+01 stpote = -0.34300835E-18
For potential 3
i = 1 lvals = 6 8 stpote = -0.44475835E-04 second term = -0.38002696E-04
i = 2 lvals = 6 6 stpote = -0.14891531E-10 second term = 0.00000000E+00
i = 3 lvals = 6 8 stpote = 0.19130275E-03 second term = 0.18466622E-03
i = 4 lvals = 8 8 stpote = 0.19250816E-12 second term = 0.00000000E+00
i = 5 lvals = 8 8 stpote = 0.50711726E-12 second term = 0.00000000E+00
i = 6 lvals = 8 10 stpote = -0.76897321E-05 second term = -0.74883335E-05
Number of asymptotic regions = 59
Final point in integration = 0.16655616E+03 Angstroms
Time Now = 7.9410 Delta time = 5.9571 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.23517274E+01-0.99237542E-01-0.39614245E+00-0.97476251E+00-0.33267580E+00
0.24034897E+00 0.13007442E+00-0.32466167E-01-0.20376133E-01
ROW 2
-0.99237542E-01 0.96931835E-01-0.51805924E+00 0.55585118E+00 0.14371260E+00
-0.46074739E-01-0.17983423E-01 0.22192883E-02 0.11915435E-02
ROW 3
-0.39614245E+00-0.51805924E+00 0.54547914E+00 0.74532589E+00 0.23734319E-01
-0.98903008E-01-0.41463953E-01 0.12098284E-01 0.79221097E-02
ROW 4
-0.97476251E+00 0.55585118E+00 0.74532589E+00 0.26579274E+01 0.62584931E+00
-0.53936012E+00-0.26287209E+00 0.70756948E-01 0.42934910E-01
ROW 5
-0.33267580E+00 0.14371260E+00 0.23734319E-01 0.62584931E+00 0.39865541E+00
-0.17860016E+00-0.13493573E+00 0.25766842E-01 0.16886388E-01
ROW 6
0.24034897E+00-0.46074692E-01-0.98903006E-01-0.53936011E+00-0.17860016E+00
0.25541252E+00 0.79504395E-01-0.42260109E-01-0.15140942E-01
ROW 7
0.13007442E+00-0.17983405E-01-0.41463951E-01-0.26287209E+00-0.13493573E+00
0.79504395E-01 0.10473319E+00-0.18005741E-01-0.33211296E-01
ROW 8
-0.32466167E-01 0.22192878E-02 0.12098284E-01 0.70756947E-01 0.25766842E-01
-0.42260109E-01-0.18005741E-01 0.59459670E-01 0.74073138E-02
ROW 9
-0.20376133E-01 0.11915431E-02 0.79221095E-02 0.42934909E-01 0.16886387E-01
-0.15140942E-01-0.33211296E-01 0.74073138E-02 0.31444975E-01
eigenphases
-0.4641567E+00 0.1334280E-01 0.4716439E-01 0.6711694E-01 0.1288438E+00
0.2630940E+00 0.7141461E+00 0.1012515E+01 0.1326279E+01
eigenphase sum 0.310835E+01 scattering length= 0.02240
eps+pi 0.624994E+01 eps+2*pi 0.939153E+01
MaxIter = 9 c.s. = 3.80024070 rmsk= 0.00000000 Abs eps 0.21642141E-05 Rel eps 0.67498403E-08
Time Now = 47.0041 Delta time = 39.0631 End ScatStab
Time Now = 47.0047 Delta time = 0.0006 Finalize