Execution on n0206.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:42.849 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test16
#
# electron scattering from CH4 using only local potential
#
LMax 20 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 2 # charge, formula type
3 # number of terms in the formulas
2.0 -1.0 1 # orbital occupation and coefficient for the K operators
2.0 -1.0 1
2.0 -1.0 1
VCorr 'PZ'
AsyPol
0.25 # SwitchD, distance where switching function is down to 0.1
1 # nterm, number of terms needed to define asymptotic potential
1 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
17.50 # value of the spherical polarizability
3 # icrtyp, flag to determine where r match is, 3 for second crossing
# or at nearest approach
0 # ilntyp, flag to determine what matching line is used, 0 - use
# l = 0 radial function as matching function
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
LMaxK 10 # Maximum l in the K matirx
ScatEng # list of scattering energies
0.1 0.5 2.0 10.0 20.0
IterMax -1
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test16.g03' 'gaussian'
GetBlms
ExpOrb
GetPot
ScatContSym 'A1' # Scattering symmetry
Scat
#
ScatContSym 'A2' # Scattering symmetry
Scat
#
ScatContSym 'E' # Scattering symmetry
Scat
#
ScatContSym 'T1' # Scattering symmetry
Scat
#
ScatContSym 'T2' # Scattering symmetry
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 20
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 2 / 3 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.25 / 1 / 1 / 1 / 17.50 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record LMaxK - 10
+ Data Record ScatEng - 0.1 0.5 2.0 10.0 20.0
+ Data Record IterMax - -1
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test16.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # HF/AUG-CC-PVQZ SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 5 number already selected 0
Number of orbitals selected is 5
Highest orbital read in is = 5
Time Now = 0.0120 Delta time = 0.0120 End GaussianCnv
Atoms found 5 Coordinates in Angstroms
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = 0.6254700000 0.6254700000 0.6254700000
Z = 1 ZS = 1 r = -0.6254700000 -0.6254700000 0.6254700000
Z = 1 ZS = 1 r = 0.6254700000 -0.6254700000 -0.6254700000
Z = 1 ZS = 1 r = -0.6254700000 0.6254700000 -0.6254700000
Maximum distance from expansion center is 1.0833458186
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Td
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup D2
Time Now = 0.1463 Delta time = 0.1343 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.57735 0.57735 0.57735 1 1.08335
3 -0.57735 -0.57735 0.57735 1 1.08335
4 0.57735 -0.57735 -0.57735 1 1.08335
5 -0.57735 0.57735 -0.57735 1 1.08335
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 0.81650 -0.40825 -0.40825
3 0.81650 -0.40825 0.40825
4 0.81650 0.40825 0.40825
5 0.81650 0.40825 -0.40825
Computed default value of LMaxA = 13
Determining angular grid in GetAxMax LMax = 20 LMaxA = 13 LMaxAb = 40
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 -1 -1 -1 -1 -1 -1
-1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 2 2 2
2
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 2 2 2
2
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 2 2 2
2
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 2 2 2
2
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Td
LMax 20
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) E ( 2) T1 ( 3) T2 ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
8 11 14
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 21 1 1 1
A2 1 2 8 1 1 1
E 1 3 30 1 1 1
E 2 4 30 1 1 1
T1 1 5 38 -1 -1 1
T1 2 6 38 -1 1 -1
T1 3 7 38 1 -1 -1
T2 1 8 52 -1 -1 1
T2 2 9 52 -1 1 -1
T2 3 10 52 1 -1 -1
Time Now = 0.5104 Delta time = 0.3640 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 1) 2( 1) 3( 2) 4( 3) 5( 3) 6( 4) 7( 5) 8( 6) 9( 7)
10( 8) 11( 9) 12( 11) 13( 12)
A2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 2)
10( 3) 11( 3) 12( 4) 13( 5)
E 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
E 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
T1 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T2 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 3 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2
LMax 40
The dimension of each irreducable representation is
A ( 1) B1 ( 1) B2 ( 1) B3 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
irep = 1 sym =A 1 eigs = 1 1 1 1
irep = 2 sym =B1 1 eigs = 1 1 -1 -1
irep = 3 sym =B2 1 eigs = 1 -1 -1 1
irep = 4 sym =B3 1 eigs = 1 -1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A 1 1 421 1 1 1
B1 1 2 420 1 -1 -1
B2 1 3 420 -1 -1 1
B3 1 4 420 -1 1 -1
Time Now = 0.5166 Delta time = 0.0063 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 12.5498886709 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 12.54989 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 0.01058 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.33980E+05
2 Center at = 1.08335 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.28707E-03 0.00230
2 8 16 0.30604E-03 0.00474
3 8 24 0.37726E-03 0.00776
4 8 32 0.57239E-03 0.01234
5 8 40 0.91002E-03 0.01962
6 8 48 0.14468E-02 0.03120
7 8 56 0.23002E-02 0.04960
8 8 64 0.36571E-02 0.07886
9 8 72 0.58142E-02 0.12537
10 8 80 0.92438E-02 0.19932
11 32 112 0.10584E-01 0.53799
12 8 120 0.10220E-01 0.61975
13 8 128 0.99060E-02 0.69900
14 16 144 0.10584E-01 0.86834
15 8 152 0.97241E-02 0.94613
16 8 160 0.62495E-02 0.99613
17 8 168 0.41277E-02 1.02915
18 8 176 0.33083E-02 1.05561
19 8 184 0.30585E-02 1.08008
20 8 192 0.40782E-03 1.08335
21 8 200 0.30552E-02 1.10779
22 8 208 0.32571E-02 1.13384
23 8 216 0.40150E-02 1.16596
24 8 224 0.60918E-02 1.21470
25 8 232 0.96851E-02 1.29218
26 64 296 0.10584E-01 1.96953
27 64 360 0.10584E-01 2.64687
28 64 424 0.10584E-01 3.32422
29 64 488 0.10584E-01 4.00157
30 64 552 0.10584E-01 4.67891
31 64 616 0.10584E-01 5.35626
32 64 680 0.10584E-01 6.03361
33 64 744 0.10584E-01 6.71095
34 64 808 0.10584E-01 7.38830
35 64 872 0.10584E-01 8.06565
36 64 936 0.10584E-01 8.74299
37 64 1000 0.10584E-01 9.42034
38 64 1064 0.10584E-01 10.09769
39 64 1128 0.10584E-01 10.77503
40 64 1192 0.10584E-01 11.45238
41 64 1256 0.10584E-01 12.12973
42 32 1288 0.10584E-01 12.46840
43 8 1296 0.10186E-01 12.54989
Time Now = 0.5559 Delta time = 0.0393 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 20
Maximum scattering m (mmaxs) = 20
Maximum numerical integration l (lmaxi) = 40
Maximum numerical integration m (mmaxi) = 40
Maximum l to include in the asymptotic region (lmasym) = 13
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 13
Actual value of lmasym found = 13
Number of regions of the same l expansion (NAngReg) = 12
Angular regions
1 L = 2 from ( 1) 0.00029 to ( 7) 0.00201
2 L = 4 from ( 8) 0.00230 to ( 15) 0.00444
3 L = 5 from ( 16) 0.00474 to ( 31) 0.01177
4 L = 6 from ( 32) 0.01234 to ( 47) 0.02975
5 L = 7 from ( 48) 0.03120 to ( 55) 0.04730
6 L = 8 from ( 56) 0.04960 to ( 63) 0.07520
7 L = 9 from ( 64) 0.07886 to ( 71) 0.11955
8 L = 11 from ( 72) 0.12537 to ( 79) 0.19008
9 L = 12 from ( 80) 0.19932 to ( 87) 0.27340
10 L = 13 from ( 88) 0.28399 to ( 127) 0.68910
11 L = 20 from ( 128) 0.69900 to ( 280) 1.80019
12 L = 13 from ( 281) 1.81077 to ( 1296) 12.54989
There are 2 angular regions for computing spherical harmonics
1 lval = 13
2 lval = 20
Maximum number of processors is 161
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 128
Proc id = 1 Last grid point = 168
Proc id = 2 Last grid point = 200
Proc id = 3 Last grid point = 240
Proc id = 4 Last grid point = 272
Proc id = 5 Last grid point = 336
Proc id = 6 Last grid point = 400
Proc id = 7 Last grid point = 472
Proc id = 8 Last grid point = 544
Proc id = 9 Last grid point = 608
Proc id = 10 Last grid point = 680
Proc id = 11 Last grid point = 752
Proc id = 12 Last grid point = 816
Proc id = 13 Last grid point = 888
Proc id = 14 Last grid point = 952
Proc id = 15 Last grid point = 1024
Proc id = 16 Last grid point = 1096
Proc id = 17 Last grid point = 1160
Proc id = 18 Last grid point = 1232
Proc id = 19 Last grid point = 1296
Time Now = 0.6077 Delta time = 0.0518 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -11.203038 A1 1 at max irg = 64 r = 0.07886
2 Orig 2 Eng = -0.945017 A1 1 at max irg = 136 r = 0.78367
3 Orig 3 Eng = -0.546411 T2 1 at max irg = 168 r = 1.02915
4 Orig 4 Eng = -0.546411 T2 2 at max irg = 168 r = 1.02915
5 Orig 5 Eng = -0.546411 T2 3 at max irg = 168 r = 1.02915
Rotation coefficients for orbital 1 grp = 1 A1 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A1 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 T2 1
1 -0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 4 grp = 3 T2 2
1 1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 5 grp = 3 T2 3
1 0.0000000000 2 0.0000000000 3 1.0000000000
Number of orbital groups and degeneracis are 3
1 1 3
Number of orbital groups and number of electrons when fully occupied
3
2 2 6
Time Now = 1.0396 Delta time = 0.4319 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 3
Orbital 1 of A1 1 symmetry normalization integral = 0.99999999
Orbital 2 of A1 1 symmetry normalization integral = 0.99999556
Orbital 3 of T2 1 symmetry normalization integral = 0.99999258
Time Now = 2.0768 Delta time = 1.0372 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 10.00000000
Time Now = 2.0870 Delta time = 0.0102 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.10000000E+02 facnorm = 0.10000000E+01
Time Now = 2.1510 Delta time = 0.0641 Electronic part
Time Now = 2.1561 Delta time = 0.0051 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 2.1723 Delta time = 0.0162 End VcpPol
----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------
Switching distance (SwitchD) = 0.25000
Number of terms in the asymptotic polarization potential (nterm) = 1
Term = 1 At center = 1
Explicit coordinates = 0.00000000E+00 0.00000000E+00 0.00000000E+00
Type = 1
Polarizability = 0.17500000E+02 au
Last center is at (RCenterX) = 0.00000 Angs
Radial matching parameter (icrtyp) = 3
Matching line type (ilntyp) = 0
Matching point is at r = 2.2208154305 Angs
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at(RFirstWt) R = 1.46152 Angs
Last point of the switching region (RLastWt) R= 2.98555 Angs
Total asymptotic potential is 0.17500000E+02 a.u.
Time Now = 2.1890 Delta time = 0.0167 End AsyPol
+ Data Record ScatContSym - 'A1'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+00 eV ( 0.36749326E-02 AU)
Time Now = 2.2014 Delta time = 0.0124 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 21
Number of asymptotic solutions on the right (NAsymR) = 8
Number of asymptotic solutions on the left (NAsymL) = 8
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 8
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 2
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 21
Time Now = 2.2157 Delta time = 0.0144 Energy independent setup
Compute solution for E = 0.1000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24572962E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24551927E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24540044E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24535983E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 4
Final point in integration = 0.22265874E+03 Angstroms
Time Now = 6.7563 Delta time = 4.5406 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.10982660E-01 0.24752797E-03-0.52581561E-05-0.15774718E-08-0.19150923E-10
0.72346613E-13-0.29456388E-14 0.42430670E-16
ROW 2
0.24752797E-03 0.12937002E-02-0.95790957E-04-0.81998413E-05-0.83741441E-07
0.75446475E-12-0.12896526E-10 0.96936245E-13
ROW 3
-0.52581561E-05-0.95790957E-04 0.58057894E-03 0.72302078E-06 0.38057572E-05
-0.49144983E-07 0.82234650E-12-0.37560073E-11
ROW 4
-0.15774718E-08-0.81998413E-05 0.72302078E-06 0.18838574E-03 0.13013285E-04
0.94314546E-07 0.19090426E-05-0.12055932E-07
ROW 5
-0.19150923E-10-0.83741441E-07 0.38057572E-05 0.13013285E-04 0.12143912E-03
-0.77737887E-05 0.10286089E-06-0.12149217E-05
ROW 6
0.72346616E-13 0.75446476E-12-0.49144983E-07 0.94314546E-07-0.77737887E-05
0.82812299E-04 0.19681979E-05 0.54253535E-07
ROW 7
-0.29456390E-14-0.12896526E-10 0.82234650E-12 0.19090426E-05 0.10286089E-06
0.19681979E-05 0.59175673E-04-0.39181441E-05
ROW 8
0.42430667E-16 0.96936247E-13-0.37560073E-11-0.12055932E-07-0.12149217E-05
0.54253535E-07-0.39181441E-05 0.43590244E-04
eigenphases
0.4263714E-04 0.5990835E-04 0.8141128E-04 0.1205437E-03 0.1908095E-03
0.5678962E-03 0.1300150E-02 0.1098854E-01
eigenphase sum 0.133519E-01 scattering length= -0.15575
eps+pi 0.315494E+01 eps+2*pi 0.629654E+01
MaxIter = 1 c.s. = 0.05880288 rmsk= 0.00000547 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 6.7640 Delta time = 0.0077 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 6.7821 Delta time = 0.0181 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 21
Number of asymptotic solutions on the right (NAsymR) = 8
Number of asymptotic solutions on the left (NAsymL) = 8
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 8
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 2
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 21
Time Now = 6.7946 Delta time = 0.0125 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22220532E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22146627E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22076119E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22012017E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 5
Final point in integration = 0.14892033E+03 Angstroms
Time Now = 11.3228 Delta time = 4.5282 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.14495919E+00 0.15907655E-02-0.69335881E-04-0.95286473E-07-0.25946196E-08
0.21437529E-10-0.13464819E-11 0.35329163E-13
ROW 2
0.15907655E-02 0.65703702E-02-0.48481207E-03-0.41152592E-04-0.95542067E-06
0.31648543E-09-0.73070246E-09 0.12547207E-10
ROW 3
-0.69335881E-04-0.48481207E-03 0.28948731E-02 0.81334785E-05 0.19011197E-04
-0.54859726E-06 0.13523945E-09-0.21445048E-09
ROW 4
-0.95286473E-07-0.41152592E-04 0.81334785E-05 0.94641653E-03 0.65177052E-04
0.10462745E-05 0.94599807E-05-0.13655189E-06
ROW 5
-0.25946197E-08-0.95542067E-06 0.19011197E-04 0.65177052E-04 0.60918087E-03
-0.38927883E-04 0.11495563E-05-0.59736336E-05
ROW 6
0.21437529E-10 0.31648543E-09-0.54859726E-06 0.10462745E-05-0.38927883E-04
0.41472266E-03 0.98552412E-05 0.60577399E-06
ROW 7
-0.13464819E-11-0.73070246E-09 0.13523945E-09 0.94599807E-05 0.11495563E-05
0.98552412E-05 0.29813886E-03-0.19642928E-04
ROW 8
0.35329163E-13 0.12547207E-10-0.21445048E-09-0.13655189E-06-0.59736336E-05
0.60577399E-06-0.19642928E-04 0.21972420E-03
eigenphases
-0.1439728E+00 0.2149619E-03 0.3017829E-03 0.4077476E-03 0.6047630E-03
0.9584537E-03 0.2832281E-02 0.6650057E-02
eigenphase sum-0.132003E+00 scattering length= 0.69261
eps+pi 0.300959E+01 eps+2*pi 0.615118E+01
MaxIter = 1 c.s. = 1.97631115 rmsk= 0.00002759 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 11.3233 Delta time = 0.0005 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+01 eV ( 0.73498652E-01 AU)
Time Now = 11.3409 Delta time = 0.0175 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 21
Number of asymptotic solutions on the right (NAsymR) = 8
Number of asymptotic solutions on the left (NAsymL) = 8
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 8
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 2
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 21
Time Now = 11.3533 Delta time = 0.0124 Energy independent setup
Compute solution for E = 2.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19371091E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19076430E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18792798E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18532478E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 7
Final point in integration = 0.10531979E+03 Angstroms
Time Now = 15.8566 Delta time = 4.5033 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.58462349E+00 0.11193210E-01-0.89144642E-03-0.47367237E-05-0.25541119E-06
0.41360505E-08-0.44866935E-09 0.21000836E-10
ROW 2
0.11193210E-01 0.27850684E-01-0.21306551E-02-0.17355804E-03-0.83312286E-05
0.25953387E-07-0.22813984E-07 0.82580285E-09
ROW 3
-0.89144642E-03-0.21306551E-02 0.11560740E-01 0.67168248E-04 0.77863911E-04
-0.43431072E-05 0.95445689E-08-0.68645352E-08
ROW 4
-0.47367237E-05-0.17355804E-03 0.67168248E-04 0.38113774E-02 0.26284384E-03
0.81623549E-05 0.38119184E-04-0.11240727E-05
ROW 5
-0.25541119E-06-0.83312286E-05 0.77863911E-04 0.26284384E-03 0.24412366E-02
-0.15648558E-03 0.92469667E-05-0.23980680E-04
ROW 6
0.41360505E-08 0.25953387E-07-0.43431072E-05 0.81623549E-05-0.15648558E-03
0.16547750E-02 0.39556210E-04 0.48620781E-05
ROW 7
-0.44866935E-09-0.22813984E-07 0.95445689E-08 0.38119184E-04 0.92469667E-05
0.39556210E-04 0.11983303E-02-0.78780478E-04
ROW 8
0.21000836E-10 0.82580285E-09-0.68645352E-08-0.11240727E-05-0.23980680E-04
0.48620781E-05-0.78780478E-04 0.88183950E-03
eigenphases
-0.5291898E+00 0.8628126E-03 0.1212675E-02 0.1626919E-02 0.2423791E-02
0.3859035E-02 0.1128763E-01 0.2832375E-01
eigenphase sum-0.479593E+00 scattering length= 1.35652
eps+pi 0.266200E+01 eps+2*pi 0.580359E+01
MaxIter = 1 c.s. = 6.12385107 rmsk= 0.00011071 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 15.8571 Delta time = 0.0005 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 15.8738 Delta time = 0.0167 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 21
Number of asymptotic solutions on the right (NAsymR) = 8
Number of asymptotic solutions on the left (NAsymL) = 8
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 8
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 2
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 21
Time Now = 15.8859 Delta time = 0.0121 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13700635E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13799424E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13891194E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13972732E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 10
Final point in integration = 0.70451080E+02 Angstroms
Time Now = 20.3955 Delta time = 4.5095 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.50484592E+01 0.55979890E+00-0.93941057E-01-0.28073375E-02-0.32946556E-03
0.11728344E-04-0.25755851E-05 0.25893969E-06
ROW 2
0.55979890E+00 0.16975081E+00-0.20958385E-01-0.18564826E-02-0.20017434E-03
0.46671388E-05-0.18433064E-05 0.18938339E-06
ROW 3
-0.93941057E-01-0.20958385E-01 0.60544791E-01 0.10245564E-02 0.55871941E-03
-0.54518526E-04 0.15135744E-05-0.43125594E-06
ROW 4
-0.28073375E-02-0.18564826E-02 0.10245564E-02 0.19525974E-01 0.14423782E-02
0.81166286E-04 0.21406824E-03-0.14825576E-04
ROW 5
-0.32946556E-03-0.20017434E-03 0.55871941E-03 0.14423782E-02 0.12291879E-01
-0.82282273E-03 0.10811506E-03-0.12981774E-03
ROW 6
0.11728344E-04 0.46671388E-05-0.54518526E-04 0.81166286E-04-0.82282273E-03
0.82119236E-02 0.20406455E-03 0.55904486E-04
ROW 7
-0.25755851E-05-0.18433064E-05 0.15135744E-05 0.21406824E-03 0.10811506E-03
0.20406455E-03 0.60495008E-02-0.40433829E-03
ROW 8
0.25893969E-06 0.18938339E-06-0.43125594E-06-0.14825576E-04-0.12981774E-03
0.55904486E-04-0.40433829E-03 0.44302889E-02
eigenphases
-0.1377524E+01 0.4331284E-02 0.6119126E-02 0.8063524E-02 0.1218404E-01
0.1976539E-01 0.5663090E-01 0.2304666E+00
eigenphase sum-0.103996E+01 scattering length= 1.98698
eps+pi 0.210163E+01 eps+2*pi 0.524322E+01
MaxIter = 1 c.s. = 4.87946635 rmsk= 0.00055637 Abs eps 0.50484592E-05 Rel eps 0.00000000E+00
Time Now = 20.3960 Delta time = 0.0005 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+02 eV ( 0.73498652E+00 AU)
Time Now = 20.4132 Delta time = 0.0172 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 21
Number of asymptotic solutions on the right (NAsymR) = 8
Number of asymptotic solutions on the left (NAsymL) = 8
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 8
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 2
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 21
Time Now = 20.4255 Delta time = 0.0124 Energy independent setup
Compute solution for E = 20.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10761632E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10949725E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11130673E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11296686E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 11
Final point in integration = 0.59251441E+02 Angstroms
Time Now = 24.9391 Delta time = 4.5136 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.62977450E+01-0.25483748E+01 0.58914795E+00 0.34704864E-01 0.57863863E-02
-0.29400459E-03 0.93910575E-04-0.13279410E-04
ROW 2
-0.25483748E+01 0.18076476E+01-0.40156490E+00-0.27499140E-01-0.45110928E-02
0.21842501E-03-0.76846116E-04 0.10920015E-04
ROW 3
0.58914795E+00-0.40156490E+00 0.20096991E+00 0.90518952E-02 0.28512105E-02
-0.27012781E-03 0.30419086E-04-0.62461683E-05
ROW 4
0.34704864E-01-0.27499140E-01 0.90518952E-02 0.41147424E-01 0.36322707E-02
0.20321670E-03 0.55769964E-03-0.55320160E-04
ROW 5
0.57863863E-02-0.45110928E-02 0.28512105E-02 0.36322707E-02 0.25047200E-01
-0.18361707E-02 0.33484540E-03-0.30825392E-03
ROW 6
-0.29400459E-03 0.21842501E-03-0.27012781E-03 0.20321670E-03-0.18361707E-02
0.16383183E-01 0.43321283E-03 0.16623556E-03
ROW 7
0.93910575E-04-0.76846116E-04 0.30419086E-04 0.55769964E-03 0.33484540E-03
0.43321283E-03 0.12207596E-01-0.85232099E-03
ROW 8
-0.13279410E-04 0.10920015E-04-0.62461683E-05-0.55320160E-04-0.30825392E-03
0.16623556E-03-0.85232099E-03 0.89002312E-02
eigenphases
0.8682305E-02 0.1234538E-01 0.1603115E-01 0.2465780E-01 0.4132728E-01
0.1058734E+00 0.5999573E+00 0.1438535E+01
eigenphase sum 0.224741E+01 scattering length= 1.02705
eps+pi 0.538900E+01 eps+2*pi 0.853059E+01
MaxIter = 1 c.s. = 3.14880922 rmsk= 0.00111850 Abs eps 0.62977450E-05 Rel eps 0.00000000E+00
Time Now = 24.9396 Delta time = 0.0005 End ScatStab
+ Data Record ScatContSym - 'A2'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+00 eV ( 0.36749326E-02 AU)
Time Now = 24.9559 Delta time = 0.0163 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 5
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 16
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 24.9680 Delta time = 0.0120 Energy independent setup
Compute solution for E = 0.1000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24572962E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24551927E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24540044E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24535983E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 4
Final point in integration = 0.22265874E+03 Angstroms
Time Now = 26.4863 Delta time = 1.5183 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.18772348E-03 0.15781247E-05-0.14775400E-07
ROW 2
0.15781247E-05 0.59127777E-04-0.29983390E-05
ROW 3
-0.14775400E-07-0.29983390E-05 0.43505618E-04
eigenphases
0.4294940E-04 0.5966461E-04 0.1877429E-03
eigenphase sum 0.290357E-03 scattering length= -0.00339
eps+pi 0.314188E+01 eps+2*pi 0.628348E+01
MaxIter = 1 c.s. = 0.00001946 rmsk= 0.00001454 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 26.4865 Delta time = 0.0002 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 26.5373 Delta time = 0.0508 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 5
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 16
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 26.5492 Delta time = 0.0120 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22220532E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22146627E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22076119E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22012017E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 5
Final point in integration = 0.14892033E+03 Angstroms
Time Now = 28.0669 Delta time = 1.5177 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.93897929E-03 0.78199306E-05-0.16576251E-06
ROW 2
0.78199306E-05 0.29760156E-03-0.15031603E-04
ROW 3
-0.16576251E-06-0.15031603E-04 0.21877462E-03
eigenphases
0.2160033E-03 0.3002774E-03 0.9390745E-03
eigenphase sum 0.145536E-02 scattering length= -0.00759
eps+pi 0.314305E+01 eps+2*pi 0.628464E+01
MaxIter = 1 c.s. = 0.00009754 rmsk= 0.00007310 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 28.0672 Delta time = 0.0003 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+01 eV ( 0.73498652E-01 AU)
Time Now = 28.1189 Delta time = 0.0516 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 5
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 16
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 28.1314 Delta time = 0.0125 Energy independent setup
Compute solution for E = 2.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19371091E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19076430E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18792798E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18532478E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 7
Final point in integration = 0.10531979E+03 Angstroms
Time Now = 29.6485 Delta time = 1.5171 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.37508036E-02 0.31494612E-04-0.13153495E-05
ROW 2
0.31494612E-04 0.11939985E-02-0.60283380E-04
ROW 3
-0.13153495E-05-0.60283380E-04 0.87419457E-03
eigenphases
0.8632017E-03 0.1204601E-02 0.3751175E-02
eigenphase sum 0.581898E-02 scattering length= -0.01518
eps+pi 0.314741E+01 eps+2*pi 0.628900E+01
MaxIter = 1 c.s. = 0.00038942 rmsk= 0.00029209 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 29.6487 Delta time = 0.0002 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 29.7013 Delta time = 0.0526 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 5
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 16
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 29.7133 Delta time = 0.0121 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13700635E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13799424E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13891194E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13972732E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 10
Final point in integration = 0.70451080E+02 Angstroms
Time Now = 31.2327 Delta time = 1.5194 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.18748763E-01 0.17468674E-03-0.14494010E-04
ROW 2
0.17468674E-03 0.59987528E-02-0.30902813E-03
ROW 3
-0.14494010E-04-0.30902813E-03 0.43417203E-02
eigenphases
0.4285919E-02 0.6052037E-02 0.1874898E-01
eigenphase sum 0.290869E-01 scattering length= -0.03394
eps+pi 0.317068E+01 eps+2*pi 0.631227E+01
MaxIter = 1 c.s. = 0.00194612 rmsk= 0.00145091 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 31.2329 Delta time = 0.0002 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+02 eV ( 0.73498652E+00 AU)
Time Now = 31.2830 Delta time = 0.0501 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 5
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 16
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 31.2950 Delta time = 0.0120 Energy independent setup
Compute solution for E = 20.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10761632E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10949725E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11130673E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11296686E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 11
Final point in integration = 0.59251441E+02 Angstroms
Time Now = 32.8136 Delta time = 1.5186 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.38013485E-01 0.43966442E-03-0.45317028E-04
ROW 2
0.43966442E-03 0.12053418E-01-0.64893073E-03
ROW 3
-0.45317028E-04-0.64893073E-03 0.86369658E-02
eigenphases
0.8517611E-02 0.1216441E-01 0.3800273E-01
eigenphase sum 0.586848E-01 scattering length= -0.04846
eps+pi 0.320028E+01 eps+2*pi 0.634187E+01
MaxIter = 1 c.s. = 0.00398348 rmsk= 0.00288714 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 32.8138 Delta time = 0.0002 End ScatStab
+ Data Record ScatContSym - 'E'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+00 eV ( 0.36749326E-02 AU)
Time Now = 32.8652 Delta time = 0.0513 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = E 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 30
Number of asymptotic solutions on the right (NAsymR) = 10
Number of asymptotic solutions on the left (NAsymL) = 10
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 10
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 16
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 30
Time Now = 32.8772 Delta time = 0.0121 Energy independent setup
Compute solution for E = 0.1000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24572962E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24551927E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24540044E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24535983E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 4
Final point in integration = 0.22265874E+03 Angstroms
Time Now = 38.7450 Delta time = 5.8678 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.38402585E-02 0.48794523E-05 0.15492514E-04-0.23277021E-06 0.92529844E-11
0.43570947E-11-0.35561059E-10-0.33915319E-12 0.12571196E-15 0.10461426E-14
ROW 2
0.48794523E-05 0.58251668E-03 0.20627703E-04 0.32227668E-06 0.41421810E-05
-0.39283266E-07-0.21466056E-07 0.16180897E-12-0.43131237E-11-0.44119071E-12
ROW 3
0.15492514E-04 0.20627703E-04 0.31414120E-03-0.20521190E-04 0.21006010E-06
0.33660757E-06-0.27497814E-05-0.22220964E-07-0.16134316E-12 0.10891056E-12
ROW 4
-0.23277021E-06 0.32227668E-06-0.20521190E-04 0.18755863E-03 0.45244109E-05
0.63845708E-08 0.15773115E-06 0.15020265E-05-0.20338070E-08-0.15739673E-07
ROW 5
0.92529844E-11 0.41421810E-05 0.21006010E-06 0.45244109E-05 0.12156445E-03
-0.54760961E-05-0.50236598E-05 0.53675718E-07-0.12819360E-05-0.13106556E-06
ROW 6
0.43570947E-11-0.39283266E-07 0.33660757E-06 0.63845708E-08-0.54760961E-05
0.82835716E-04-0.45605624E-07-0.47023845E-12 0.33219205E-07 0.33963335E-08
ROW 7
-0.35561059E-10-0.21466056E-07-0.27497814E-05 0.15773115E-06-0.50236598E-05
-0.45605624E-07 0.83060016E-04 0.55669067E-05 0.39568358E-07 0.26901661E-07
ROW 8
-0.33915320E-12 0.16180897E-12-0.22220964E-07 0.15020265E-05 0.53675718E-07
-0.47023845E-12 0.55669067E-05 0.59091922E-04-0.13175404E-05-0.34462120E-05
ROW 9
0.12571196E-15-0.43131237E-11-0.16134316E-12-0.20338070E-08-0.12819360E-05
0.33219205E-07 0.39568358E-07-0.13175404E-05 0.43614282E-04 0.57883098E-08
ROW 10
0.10461427E-14-0.44119072E-12 0.10891056E-12-0.15739673E-07-0.13106556E-06
0.33963335E-08 0.26901661E-07-0.34462120E-05 0.57883098E-08 0.43503770E-04
eigenphases
0.4264667E-04 0.4358037E-04 0.5867650E-04 0.8180273E-04 0.8393467E-04
0.1226185E-03 0.1846196E-03 0.3158093E-03 0.5841226E-03 0.3840315E-02
eigenphase sum 0.535813E-02 scattering length= -0.06250
eps+pi 0.314695E+01 eps+2*pi 0.628854E+01
MaxIter = 1 c.s. = 0.00730560 rmsk= 0.00000436 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 38.7458 Delta time = 0.0008 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 38.7633 Delta time = 0.0176 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = E 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 30
Number of asymptotic solutions on the right (NAsymR) = 10
Number of asymptotic solutions on the left (NAsymL) = 10
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 10
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 16
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 30
Time Now = 38.7755 Delta time = 0.0122 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22220532E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22146627E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22076119E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22012017E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 5
Final point in integration = 0.14892033E+03 Angstroms
Time Now = 44.6524 Delta time = 5.8769 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.19623733E-01 0.55515581E-04 0.78384168E-04-0.25914886E-05 0.15785513E-08
0.23200436E-09-0.19955326E-08-0.42850519E-10 0.26599619E-13 0.29607064E-12
ROW 2
0.55515581E-04 0.29160859E-02 0.10361096E-03 0.35682671E-05 0.20690778E-04
-0.43804477E-06-0.24354851E-06 0.87450841E-11-0.24545542E-09-0.25526216E-10
ROW 3
0.78384168E-04 0.10361096E-03 0.15770629E-02-0.10284328E-03 0.23468564E-05
0.16755499E-05-0.13690338E-04-0.25122352E-06-0.24282431E-10 0.28751631E-10
ROW 4
-0.25914886E-05 0.35682671E-05-0.10284328E-03 0.93716388E-03 0.22659695E-04
0.68922589E-07 0.17653132E-05 0.74430181E-05-0.23292306E-07-0.17662835E-06
ROW 5
0.15785513E-08 0.20690778E-04 0.23468564E-05 0.22659695E-04 0.61057340E-03
-0.27422157E-04-0.25156633E-04 0.59786469E-06-0.63030803E-05-0.64447235E-06
ROW 6
0.23200436E-09-0.43804477E-06 0.16755499E-05 0.68922589E-07-0.27422157E-04
0.41498234E-03-0.50865183E-06-0.66468273E-10 0.37137001E-06 0.37968718E-07
ROW 7
-0.19955326E-08-0.24354851E-06-0.13690338E-04 0.17653132E-05-0.25156633E-04
-0.50865183E-06 0.41749598E-03 0.27875168E-04 0.44164072E-06 0.29888672E-06
ROW 8
-0.42850520E-10 0.87450841E-11-0.25122352E-06 0.74430181E-05 0.59786469E-06
-0.66468273E-10 0.27875168E-04 0.29720256E-03-0.66052295E-05-0.17276897E-04
ROW 9
0.26599621E-13-0.24545542E-09-0.24282431E-10-0.23292306E-07-0.63030803E-05
0.37137001E-06 0.44164072E-06-0.66052295E-05 0.21999240E-03 0.65354329E-07
ROW 10
0.29607065E-12-0.25526217E-10 0.28751631E-10-0.17662835E-06-0.64447235E-06
0.37968718E-07 0.29888672E-06-0.17276897E-04 0.65354329E-07 0.21875418E-03
eigenphases
0.2145394E-03 0.2197415E-03 0.2951486E-03 0.4098453E-03 0.4218639E-03
0.6157742E-03 0.9225704E-03 0.1585273E-02 0.2924019E-02 0.1962174E-01
eigenphase sum 0.272305E-01 scattering length= -0.14208
eps+pi 0.316882E+01 eps+2*pi 0.631042E+01
MaxIter = 1 c.s. = 0.03808992 rmsk= 0.00002194 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 44.6531 Delta time = 0.0008 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+01 eV ( 0.73498652E-01 AU)
Time Now = 44.6707 Delta time = 0.0175 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = E 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 30
Number of asymptotic solutions on the right (NAsymR) = 10
Number of asymptotic solutions on the left (NAsymL) = 10
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 10
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 16
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 30
Time Now = 44.6830 Delta time = 0.0124 Energy independent setup
Compute solution for E = 2.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19371091E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19076430E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18792798E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18532478E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 7
Final point in integration = 0.10531979E+03 Angstroms
Time Now = 50.5555 Delta time = 5.8724 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.86224117E-01 0.51607617E-03 0.36534207E-03-0.21651646E-04 0.11890131E-06
0.53928200E-08-0.63397452E-07-0.26500178E-08-0.31953378E-11 0.35348555E-10
ROW 2
0.51607617E-03 0.11717140E-01 0.42663093E-03 0.27675585E-04 0.84671529E-04
-0.34546871E-05-0.20513302E-05 0.12993757E-09-0.77347418E-08-0.86075211E-09
ROW 3
0.36534207E-03 0.42663093E-03 0.63528536E-02-0.41702695E-03 0.18831241E-04
0.67720392E-05-0.55502216E-04-0.20640736E-05-0.16364618E-08 0.22028312E-08
ROW 4
-0.21651646E-04 0.27675585E-04-0.41702695E-03 0.37371204E-02 0.91326840E-04
0.47875211E-06 0.14249774E-04 0.29987555E-04-0.19954305E-06-0.14029732E-05
ROW 5
0.11890131E-06 0.84671529E-04 0.18831241E-04 0.91326840E-04 0.24520985E-02
-0.11024409E-03-0.10114283E-03 0.47480840E-05-0.25299771E-04-0.25895920E-05
ROW 6
0.53928200E-08-0.34546871E-05 0.67720392E-05 0.47875211E-06-0.11024409E-03
0.16567821E-02-0.40216610E-05-0.44417544E-08 0.29945885E-05 0.30614372E-06
ROW 7
-0.63397452E-07-0.20513302E-05-0.55502216E-04 0.14249774E-04-0.10114283E-03
-0.40216610E-05 0.16770233E-02 0.11190463E-03 0.35398574E-05 0.23538169E-05
ROW 8
-0.26500178E-08 0.12993757E-09-0.20640736E-05 0.29987555E-04 0.47480840E-05
-0.44417544E-08 0.11190463E-03 0.11908800E-02-0.26489278E-04-0.69285905E-04
ROW 9
-0.31953378E-11-0.77347418E-08-0.16364618E-08-0.19954305E-06-0.25299771E-04
0.29945885E-05 0.35398574E-05-0.26489278E-04 0.88395254E-03 0.53847855E-06
ROW 10
0.35348555E-10-0.86075211E-09 0.22028312E-08-0.14029732E-05-0.25895920E-05
0.30614372E-06 0.23538169E-05-0.69285905E-04 0.53847855E-06 0.87403908E-03
eigenphases
0.8575768E-03 0.8824730E-03 0.1182800E-02 0.1636234E-02 0.1694396E-02
0.2472481E-02 0.3678434E-02 0.6384404E-02 0.1174716E-01 0.8601662E-01
eigenphase sum 0.116553E+00 scattering length= -0.30538
eps+pi 0.325815E+01 eps+2*pi 0.639974E+01
MaxIter = 1 c.s. = 0.18163544 rmsk= 0.00008768 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 50.5562 Delta time = 0.0007 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 50.5729 Delta time = 0.0167 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = E 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 30
Number of asymptotic solutions on the right (NAsymR) = 10
Number of asymptotic solutions on the left (NAsymL) = 10
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 10
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 16
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 30
Time Now = 50.5850 Delta time = 0.0121 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13700635E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13799424E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13891194E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13972732E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 10
Final point in integration = 0.70451080E+02 Angstroms
Time Now = 56.4863 Delta time = 5.9013 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.45868876E+00 0.99882842E-02 0.56913546E-02-0.51721707E-03 0.23666502E-04
-0.10928095E-06-0.81524657E-05-0.63593966E-06-0.14343302E-07 0.14997371E-07
ROW 2
0.99882842E-02 0.61867423E-01 0.31001281E-02 0.28634638E-03 0.59178961E-03
-0.42765039E-04-0.33733643E-04-0.13568376E-06-0.42509005E-06-0.59553179E-07
ROW 3
0.56913546E-02 0.31001281E-02 0.33145197E-01-0.24560858E-02 0.22823957E-03
0.38400583E-04-0.33670374E-03-0.28001307E-04-0.20644271E-06 0.28948082E-06
ROW 4
-0.51721707E-03 0.28634638E-03-0.24560858E-02 0.18643334E-01 0.49335997E-03
0.11003782E-05 0.17118695E-03 0.16780974E-03-0.30388481E-05-0.15525061E-04
ROW 5
0.23666502E-04 0.59178961E-03 0.22823957E-03 0.49335997E-03 0.12398704E-01
-0.58088337E-03-0.53387140E-03 0.51860287E-04-0.13649774E-03-0.14309080E-04
ROW 6
-0.10928095E-06-0.42765039E-04 0.38400583E-04 0.11003782E-05-0.58088337E-03
0.82303337E-02-0.42511010E-04-0.55456084E-06 0.35256474E-04 0.36005261E-05
ROW 7
-0.81524657E-05-0.33733643E-04-0.33670374E-03 0.17118695E-03-0.53387140E-03
-0.42511010E-04 0.84666657E-02 0.58020241E-03 0.40455398E-04 0.24397953E-04
ROW 8
-0.63593966E-06-0.13568376E-06-0.28001307E-04 0.16780974E-03 0.51860287E-04
-0.55456084E-06 0.58020241E-03 0.59681206E-02-0.13571392E-03-0.35492240E-03
ROW 9
-0.14343302E-07-0.42509005E-06-0.20644271E-06-0.30388481E-05-0.13649774E-03
0.35256474E-04 0.40455398E-04-0.13571392E-03 0.44520260E-02 0.69752659E-05
ROW 10
0.14997371E-07-0.59553179E-07 0.28948082E-06-0.15525061E-04-0.14309080E-04
0.36005261E-05 0.24397953E-04-0.35492240E-03 0.69752659E-05 0.43404617E-02
eigenphases
0.4258224E-02 0.4439914E-02 0.5925097E-02 0.8120314E-02 0.8553011E-02
0.1249731E-01 0.1826998E-01 0.3317628E-01 0.6184774E-01 0.4303286E+00
eigenphase sum 0.587416E+00 scattering length= -0.77664
eps+pi 0.372901E+01 eps+2*pi 0.687060E+01
MaxIter = 1 c.s. = 0.86013556 rmsk= 0.00043551 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 56.4870 Delta time = 0.0007 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+02 eV ( 0.73498652E+00 AU)
Time Now = 56.5036 Delta time = 0.0167 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = E 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 30
Number of asymptotic solutions on the right (NAsymR) = 10
Number of asymptotic solutions on the left (NAsymL) = 10
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 10
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 16
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 30
Time Now = 56.5157 Delta time = 0.0121 Energy independent setup
Compute solution for E = 20.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10761632E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10949725E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11130673E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11296686E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 11
Final point in integration = 0.59251441E+02 Angstroms
Time Now = 62.4244 Delta time = 5.9086 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.71511216E+00 0.25360752E-01 0.15080083E-01-0.15856109E-02 0.16770605E-03
-0.31652119E-05-0.63163030E-04-0.60489738E-05-0.23756935E-06 0.17951760E-06
ROW 2
0.25360752E-01 0.12419207E+00 0.10062236E-01 0.71481964E-03 0.20696982E-02
-0.17760799E-03-0.17555596E-03-0.30347251E-05-0.37293091E-05-0.49778852E-06
ROW 3
0.15080083E-01 0.10062236E-01 0.70851143E-01-0.68175622E-02 0.80988674E-03
0.10163386E-03-0.10341879E-02-0.11718511E-03-0.18823845E-05 0.25576789E-05
ROW 4
-0.15856109E-02 0.71481964E-03-0.68175622E-02 0.37902500E-01 0.11664809E-02
-0.12382017E-04 0.56409606E-03 0.43267609E-03-0.12049741E-04-0.48793080E-04
ROW 5
0.16770605E-03 0.20696982E-02 0.80988674E-03 0.11664809E-02 0.25298151E-01
-0.13021924E-02-0.12037967E-02 0.14752722E-03-0.32099130E-03-0.35495624E-04
ROW 6
-0.31652119E-05-0.17760799E-03 0.10163386E-03-0.12382017E-04-0.13021924E-02
0.16422339E-01-0.11447033E-03-0.43753146E-05 0.10760728E-03 0.10996015E-04
ROW 7
-0.63163030E-04-0.17555596E-03-0.10341879E-02 0.56409606E-03-0.12037967E-02
-0.11447033E-03 0.17144925E-01 0.12513502E-02 0.11974529E-03 0.63591302E-04
ROW 8
-0.60489738E-05-0.30347251E-05-0.11718511E-03 0.43267609E-03 0.14752722E-03
-0.43753146E-05 0.12513502E-02 0.11980564E-01-0.28456269E-03-0.74392860E-03
ROW 9
-0.23756935E-06-0.37293091E-05-0.18823845E-05-0.12049741E-04-0.32099130E-03
0.10760728E-03 0.11974529E-03-0.28456269E-03 0.89556125E-02 0.23227753E-04
ROW 10
0.17951760E-06-0.49778852E-06 0.25576789E-05-0.48793080E-04-0.35495624E-04
0.10996015E-04 0.63591302E-04-0.74392860E-03 0.23227753E-04 0.86350491E-02
eigenphases
0.8459961E-02 0.8922634E-02 0.1187449E-01 0.1616428E-01 0.1731076E-01
0.2547519E-01 0.3659384E-01 0.7019062E-01 0.1241445E+00 0.6217638E+00
eigenphase sum 0.940900E+00 scattering length= -1.13147
eps+pi 0.408249E+01 eps+2*pi 0.722409E+01
MaxIter = 1 c.s. = 0.86745406 rmsk= 0.00086675 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 62.4250 Delta time = 0.0007 End ScatStab
+ Data Record ScatContSym - 'T1'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+00 eV ( 0.36749326E-02 AU)
Time Now = 62.4414 Delta time = 0.0163 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 38
Number of asymptotic solutions on the right (NAsymR) = 12
Number of asymptotic solutions on the left (NAsymL) = 12
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 12
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 21
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 38
Time Now = 62.4535 Delta time = 0.0121 Energy independent setup
Compute solution for E = 0.1000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24572962E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24551927E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24540044E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24535983E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 4
Final point in integration = 0.22265874E+03 Angstroms
Time Now = 70.4914 Delta time = 8.0380 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.12854490E-02 0.61832811E-04 0.83514348E-06-0.76702173E-05 0.70781891E-07
0.56693247E-07-0.93722916E-12-0.43897989E-12 0.18613710E-11-0.11624768E-10
-0.66127075E-13-0.67645603E-13
ROW 2
0.61832811E-04 0.58170930E-03-0.15754607E-04-0.52358998E-06-0.33377959E-06
0.39915081E-05 0.14583311E-07-0.44298697E-07 0.19258157E-12-0.53199061E-12
0.56833119E-12-0.40603648E-11
ROW 3
0.83514348E-06-0.15754607E-04 0.31314786E-03-0.72553317E-05-0.38693362E-07
-0.15459999E-06-0.24459251E-05 0.18016323E-11-0.23064815E-07-0.96219553E-08
-0.72876628E-14 0.10213298E-12
ROW 4
-0.76702173E-05-0.52358998E-06-0.72553317E-05 0.18828235E-03-0.78759951E-05
-0.94183230E-05 0.79857113E-07-0.58665219E-07-0.29457101E-06 0.18395994E-05
0.88096868E-08 0.89939801E-08
ROW 5
0.70781891E-07-0.33377959E-06-0.38693362E-07-0.78759951E-05 0.12123273E-03
-0.62447136E-07 0.72028889E-06 0.74537653E-12 0.50505957E-08-0.52503174E-07
-0.10484927E-05-0.19877844E-12
ROW 6
0.56693247E-07 0.39915081E-05-0.15459999E-06-0.94183230E-05-0.62447136E-07
0.12150700E-03 0.36019718E-05-0.66811024E-05-0.54548857E-08-0.79875925E-07
0.87679102E-07-0.12523124E-05
ROW 7
-0.93722917E-12 0.14583311E-07-0.24459251E-05 0.79857113E-07 0.72028889E-06
0.36019718E-05 0.83020870E-04 0.15850456E-07 0.39055229E-05 0.27099982E-05
-0.88258393E-08-0.31537371E-07
ROW 8
-0.43897990E-12-0.44298697E-07 0.18016323E-11-0.58665219E-07 0.74537653E-12
-0.66811024E-05 0.15850456E-07 0.82822702E-04 0.13208744E-12-0.12704662E-05
0.10294603E-08 0.44370530E-07
ROW 9
0.18613710E-11 0.19258157E-12-0.23064815E-07-0.29457101E-06 0.50505957E-08
-0.54548857E-08 0.39055229E-05 0.13208744E-12 0.59008835E-04-0.32689071E-07
-0.28133601E-06-0.19314694E-12
ROW 10
-0.11624768E-10-0.53199061E-12-0.96219553E-08 0.18395994E-05-0.52503174E-07
-0.79875925E-07 0.27099982E-05-0.12704662E-05-0.32689071E-07 0.59159970E-04
0.24133824E-05 0.30333596E-05
ROW 11
-0.66127076E-13 0.56833120E-12-0.72876627E-14 0.88096868E-08-0.10484927E-05
0.87679102E-07-0.88258393E-08 0.10294603E-08-0.28133601E-06 0.24133824E-05
0.43577004E-04-0.14147179E-07
ROW 12
-0.67645604E-13-0.40603648E-11 0.10213298E-12 0.89939801E-08-0.19877844E-12
-0.12523124E-05-0.31537371E-07 0.44370530E-07-0.19314694E-12 0.30333596E-05
-0.14147179E-07 0.43602130E-04
eigenphases
0.4263876E-04 0.4357961E-04 0.5822477E-04 0.5984806E-04 0.8163542E-04
0.8368613E-04 0.1197713E-03 0.1222600E-03 0.1900304E-03 0.3126560E-03
0.5772947E-03 0.1290894E-02
eigenphase sum 0.298252E-02 scattering length= -0.03479
eps+pi 0.314458E+01 eps+2*pi 0.628617E+01
MaxIter = 1 c.s. = 0.00104718 rmsk= 0.00000364 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 70.4924 Delta time = 0.0010 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 70.5088 Delta time = 0.0164 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 38
Number of asymptotic solutions on the right (NAsymR) = 12
Number of asymptotic solutions on the left (NAsymL) = 12
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 12
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 21
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 38
Time Now = 70.5208 Delta time = 0.0121 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22220532E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22146627E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22076119E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22012017E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 5
Final point in integration = 0.14892033E+03 Angstroms
Time Now = 78.5610 Delta time = 8.0402 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.64710121E-02 0.31282040E-03 0.92555499E-05-0.38487733E-04 0.78756253E-06
0.64677522E-06-0.11792751E-09-0.18411847E-09 0.10406634E-09-0.65914863E-09
-0.84289568E-11-0.87550886E-11
ROW 2
0.31282040E-03 0.29072454E-02-0.79121583E-04-0.58746665E-05-0.16661612E-05
0.19938541E-04 0.16545652E-06-0.49450692E-06 0.45284184E-10-0.81582255E-10
0.31937200E-10-0.23142183E-09
ROW 3
0.92555499E-05-0.79121583E-04 0.15658570E-02-0.36360117E-04-0.42764574E-06
-0.17272136E-05-0.12177013E-04 0.26598803E-09-0.25815731E-06-0.10878070E-06
-0.34553420E-11 0.14004039E-10
ROW 4
-0.38487733E-04-0.58746665E-05-0.36360117E-04 0.94525991E-03-0.39446394E-04
-0.47171466E-04 0.89078062E-06-0.65079919E-06-0.14596140E-05 0.91158571E-05
0.99445070E-07 0.10187032E-06
ROW 5
0.78756253E-06-0.16661612E-05-0.42764574E-06-0.39446394E-04 0.60685675E-03
-0.69383834E-06 0.36068280E-05 0.10656062E-09 0.56802568E-07-0.58735263E-06
-0.51552253E-05-0.24405997E-10
ROW 6
0.64677522E-06 0.19938541E-04-0.17272136E-05-0.47171466E-04-0.69383834E-06
0.60993515E-03 0.18037277E-04-0.33456279E-04-0.59631330E-07-0.89204077E-06
0.43106864E-06-0.61574540E-05
ROW 7
-0.11792751E-09 0.16545652E-06-0.12177013E-04 0.89078062E-06 0.36068280E-05
0.18037277E-04 0.41705613E-03 0.17545611E-06 0.19556061E-04 0.13569743E-04
-0.98140647E-07-0.35177304E-06
ROW 8
-0.18411847E-09-0.49450692E-06 0.26598803E-09-0.65079919E-06 0.10656062E-09
-0.33456279E-04 0.17545611E-06 0.41483782E-03 0.18402069E-10-0.63615220E-05
0.11211711E-07 0.49566180E-06
ROW 9
0.10406634E-09 0.45284185E-10-0.25815731E-06-0.14596140E-05 0.56802568E-07
-0.59631330E-07 0.19556061E-04 0.18402069E-10 0.29626963E-03-0.36544906E-06
-0.14104371E-05-0.27069225E-10
ROW 10
-0.65914864E-09-0.81582255E-10-0.10878070E-06 0.91158571E-05-0.58735263E-06
-0.89204077E-06 0.13569743E-04-0.63615220E-05-0.36544906E-06 0.29796331E-03
0.12099060E-04 0.15207203E-04
ROW 11
-0.84289570E-11 0.31937201E-10-0.34553421E-11 0.99445070E-07-0.51552253E-05
0.43106864E-06-0.98140647E-07 0.11211711E-07-0.14104371E-05 0.12099060E-04
0.21957480E-03-0.15791859E-06
ROW 12
-0.87550889E-11-0.23142183E-09 0.14004039E-10 0.10187032E-06-0.24405997E-10
-0.61574540E-05-0.35177304E-06 0.49566180E-06-0.27069225E-10 0.15207203E-04
-0.15791859E-06 0.21985688E-03
eigenphases
0.2148902E-03 0.2197406E-03 0.2923369E-03 0.3014178E-03 0.4089606E-03
0.4203440E-03 0.5996623E-03 0.6136081E-03 0.9539161E-03 0.1563331E-02
0.2884970E-02 0.6498446E-02
eigenphase sum 0.149716E-01 scattering length= -0.07810
eps+pi 0.315656E+01 eps+2*pi 0.629816E+01
MaxIter = 1 c.s. = 0.00529115 rmsk= 0.00001837 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 78.5621 Delta time = 0.0011 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+01 eV ( 0.73498652E-01 AU)
Time Now = 78.5805 Delta time = 0.0183 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 38
Number of asymptotic solutions on the right (NAsymR) = 12
Number of asymptotic solutions on the left (NAsymL) = 12
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 12
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 21
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 38
Time Now = 78.5932 Delta time = 0.0127 Energy independent setup
Compute solution for E = 2.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19371091E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19076430E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18792798E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18532478E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 7
Final point in integration = 0.10531979E+03 Angstroms
Time Now = 86.6264 Delta time = 8.0333 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.26659107E-01 0.13596987E-02 0.73099142E-04-0.16168088E-03 0.62341945E-05
0.56265499E-05-0.69651538E-08-0.15030222E-07 0.30487280E-08-0.20598196E-07
-0.51454174E-09-0.57473887E-09
ROW 2
0.13596987E-02 0.11651304E-01-0.32488056E-03-0.48036508E-04-0.67426218E-05
0.81621642E-04 0.13931514E-05-0.39160435E-05 0.34077593E-08-0.55990616E-08
0.94398825E-09-0.73453973E-08
ROW 3
0.73099142E-04-0.32488056E-03 0.62597528E-02-0.14741104E-03-0.32868071E-05
-0.13855312E-04-0.49331440E-04 0.17887958E-07-0.20402313E-05-0.89341644E-06
-0.29532287E-09 0.91411802E-09
ROW 4
-0.16168088E-03-0.48036508E-04-0.14741104E-03 0.38020897E-02-0.15904160E-03
-0.19021734E-03 0.71003349E-05-0.50769903E-05-0.58757727E-05 0.36731881E-04
0.80820303E-06 0.83853824E-06
ROW 5
0.62341945E-05-0.67426218E-05-0.32868071E-05-0.15904160E-03 0.24221529E-02
-0.54112516E-05 0.14493947E-04 0.70748203E-08 0.46781963E-06-0.47422206E-05
-0.20688928E-04-0.15690409E-08
ROW 6
0.56265499E-05 0.81621642E-04-0.13855312E-04-0.19021734E-03-0.54112516E-05
0.24471201E-02 0.72514898E-04-0.13449759E-03-0.43905886E-06-0.71560523E-05
0.17279843E-05-0.24717013E-04
ROW 7
-0.69651538E-08 0.13931514E-05-0.49331440E-04 0.71003349E-05 0.14493947E-04
0.72514898E-04 0.16734458E-02 0.13464336E-05 0.78503700E-04 0.54473698E-04
-0.77540250E-06-0.28125303E-05
ROW 8
-0.15030222E-07-0.39160435E-05 0.17887958E-07-0.50769903E-05 0.70748203E-08
-0.13449759E-03 0.13464336E-05 0.16556586E-02 0.12031773E-08-0.25532846E-04
0.81382262E-07 0.39855202E-05
ROW 9
0.30487280E-08 0.34077593E-08-0.20402313E-05-0.58757727E-05 0.46781963E-06
-0.43905886E-06 0.78503700E-04 0.12031773E-08 0.11833331E-02-0.29078064E-05
-0.56572789E-05-0.18114857E-08
ROW 10
-0.20598196E-07-0.55990616E-08-0.89341644E-06 0.36731881E-04-0.47422206E-05
-0.71560523E-05 0.54473698E-04-0.25532846E-04-0.29078064E-05 0.11969333E-02
0.48524250E-04 0.60989619E-04
ROW 11
-0.51454174E-09 0.94398825E-09-0.29532287E-09 0.80820303E-06-0.20688928E-04
0.17279843E-05-0.77540250E-06 0.81382262E-07-0.56572789E-05 0.48524250E-04
0.88061131E-03-0.12462579E-05
ROW 12
-0.57473887E-09-0.73453973E-08 0.91411802E-09 0.83853824E-06-0.15690409E-08
-0.24717013E-04-0.28125303E-05 0.39855202E-05-0.18114857E-08 0.60989619E-04
-0.12462579E-05 0.88288658E-03
eigenphases
0.8619225E-03 0.8823715E-03 0.1167512E-02 0.1210790E-02 0.1632381E-02
0.1686292E-02 0.2393815E-02 0.2461367E-02 0.3836115E-02 0.6248580E-02
0.1155002E-01 0.2677620E-01
eigenphase sum 0.607074E-01 scattering length= -0.15853
eps+pi 0.320230E+01 eps+2*pi 0.634389E+01
MaxIter = 1 c.s. = 0.02215772 rmsk= 0.00007378 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 86.6274 Delta time = 0.0010 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 86.6506 Delta time = 0.0232 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 38
Number of asymptotic solutions on the right (NAsymR) = 12
Number of asymptotic solutions on the left (NAsymL) = 12
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 12
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 21
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 38
Time Now = 86.6627 Delta time = 0.0122 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13700635E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13799424E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13891194E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13972732E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 10
Final point in integration = 0.70451080E+02 Angstroms
Time Now = 94.7194 Delta time = 8.0567 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.15444658E+00 0.13928389E-01 0.96723656E-03-0.16396046E-02 0.10136088E-03
0.13223882E-03-0.53581312E-06-0.27393254E-05 0.18012223E-06-0.15771666E-05
-0.75858094E-07-0.12653073E-06
ROW 2
0.13928389E-01 0.61405341E-01-0.22053640E-02-0.70229253E-03-0.35991070E-04
0.57698383E-03 0.22513834E-04-0.49396205E-04 0.48264166E-06-0.85211144E-06
0.20843804E-07-0.42936522E-06
ROW 3
0.96723656E-03-0.22053640E-02 0.31738966E-01-0.86228360E-03-0.30317901E-04
-0.16619016E-03-0.29390375E-03 0.22301345E-05-0.22939839E-04-0.11996043E-04
-0.50178217E-07 0.11255823E-06
ROW 4
-0.16396046E-02-0.70229253E-03-0.86228360E-03 0.19413067E-01-0.86720780E-03
-0.10417843E-02 0.80086411E-04-0.50469367E-04-0.32285420E-04 0.20618141E-03
0.10061855E-04 0.11044825E-04
ROW 5
0.10136088E-03-0.35991070E-04-0.30317901E-04-0.86720780E-03 0.12045197E-01
-0.53048988E-04 0.75543016E-04 0.82710812E-06 0.61109007E-05-0.56404415E-04
-0.11114896E-03-0.20702110E-06
ROW 6
0.13223882E-03 0.57698383E-03-0.16619016E-03-0.10417843E-02-0.53048988E-04
0.12349741E-01 0.38222120E-03-0.70807165E-03-0.27030710E-05-0.82503802E-04
0.90297764E-05-0.13358747E-03
ROW 7
-0.53581312E-06 0.22513834E-04-0.29390375E-03 0.80086411E-04 0.75543016E-04
0.38222120E-03 0.84226510E-02 0.11744788E-04 0.40647941E-03 0.28216849E-03
-0.81886132E-05-0.31718953E-04
ROW 8
-0.27393254E-05-0.49396205E-04 0.22301345E-05-0.50469367E-04 0.82710812E-06
-0.70807165E-03 0.11744788E-04 0.82196263E-02 0.13392130E-06-0.13165850E-03
0.42177704E-06 0.46257624E-04
ROW 9
0.18012223E-06 0.48264166E-06-0.22939839E-04-0.32285420E-04 0.61109007E-05
-0.27030710E-05 0.40647941E-03 0.13392130E-06 0.58783541E-02-0.31727230E-04
-0.29102985E-04-0.23128631E-06
ROW 10
-0.15771666E-05-0.85211144E-06-0.11996043E-04 0.20618141E-03-0.56404415E-04
-0.82503802E-04 0.28216849E-03-0.13165850E-03-0.31727230E-04 0.60342420E-02
0.24897488E-03 0.31292047E-03
ROW 11
-0.75858094E-07 0.20843804E-07-0.50178217E-07 0.10061855E-04-0.11114896E-03
0.90297764E-05-0.81886132E-05 0.42177704E-06-0.29102985E-04 0.24897488E-03
0.44145331E-02-0.12945066E-04
ROW 12
-0.12653073E-06-0.42936522E-06 0.11255823E-06 0.11044825E-04-0.20702110E-06
-0.13358747E-03-0.31718953E-04 0.46257624E-04-0.23128631E-06 0.31292047E-03
-0.12945066E-04 0.44411679E-02
eigenphases
0.4318639E-02 0.4436726E-02 0.5794343E-02 0.6104648E-02 0.8097597E-02
0.8484619E-02 0.1189237E-01 0.1241171E-01 0.1957201E-01 0.3159997E-01
0.5949931E-01 0.1552529E+00
eigenphase sum 0.327465E+00 scattering length= -0.39623
eps+pi 0.346906E+01 eps+2*pi 0.661065E+01
MaxIter = 1 c.s. = 0.14061592 rmsk= 0.00037121 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 94.7203 Delta time = 0.0010 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+02 eV ( 0.73498652E+00 AU)
Time Now = 94.7378 Delta time = 0.0175 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 38
Number of asymptotic solutions on the right (NAsymR) = 12
Number of asymptotic solutions on the left (NAsymL) = 12
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 12
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 21
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 38
Time Now = 94.7500 Delta time = 0.0122 Energy independent setup
Compute solution for E = 20.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10761632E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10949725E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11130673E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11296686E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 11
Final point in integration = 0.59251441E+02 Angstroms
Time Now = 102.8070 Delta time = 8.0570 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.29826965E+00 0.42815599E-01 0.28290217E-02-0.63512409E-02 0.46321596E-03
0.77036032E-03-0.19191848E-05-0.29310666E-04 0.20308726E-05-0.17770660E-04
-0.10852336E-05-0.20475131E-05
ROW 2
0.42815599E-01 0.12430852E+00-0.64128056E-02-0.29521883E-02-0.57421371E-04
0.20767384E-02 0.11128036E-03-0.20971376E-03 0.48401885E-05-0.98376408E-05
-0.15944151E-06-0.40787787E-05
ROW 3
0.28290217E-02-0.64128056E-02 0.64848263E-01-0.23346759E-02-0.67765478E-04
-0.56794693E-03-0.86121872E-03 0.18754855E-04-0.80872405E-04-0.48692081E-04
-0.57675737E-06 0.98879862E-06
ROW 4
-0.63512409E-02-0.29521883E-02-0.23346759E-02 0.40461203E-01-0.21110057E-02
-0.25743356E-02 0.24563423E-03-0.12796305E-03-0.79988461E-04 0.53561528E-03
0.35622521E-04 0.40953807E-04
ROW 5
0.46321596E-03-0.57421371E-04-0.67765478E-04-0.21110057E-02 0.24176265E-01
-0.12784666E-03 0.16415104E-03 0.59148478E-05 0.20947510E-04-0.17711604E-03
-0.25838059E-03-0.18450821E-05
ROW 6
0.77036032E-03 0.20767384E-02-0.56794693E-03-0.25743356E-02-0.12784666E-03
0.25179569E-01 0.85862587E-03-0.15843687E-02 0.52866308E-07-0.25127981E-03
0.19394349E-04-0.31569261E-03
ROW 7
-0.19191848E-05 0.11128036E-03-0.86121872E-03 0.24563423E-03 0.16415104E-03
0.85862587E-03 0.17001294E-01 0.22134550E-04 0.87283324E-03 0.60670327E-03
-0.21897699E-04-0.92397531E-04
ROW 8
-0.29310666E-04-0.20971376E-03 0.18754855E-04-0.12796305E-03 0.59148478E-05
-0.15843687E-02 0.22134550E-04 0.16397869E-01 0.85057732E-06-0.27922549E-03
-0.48296516E-06 0.13902143E-03
ROW 9
0.20308726E-05 0.48401885E-05-0.80872405E-04-0.79988461E-04 0.20947510E-04
0.52866308E-07 0.87283324E-03 0.85057732E-06 0.11704585E-01-0.88195561E-04
-0.61725046E-04-0.18631630E-05
ROW 10
-0.17770660E-04-0.98376408E-05-0.48692081E-04 0.53561528E-03-0.17711604E-03
-0.25127981E-03 0.60670327E-03-0.27922549E-03-0.88195561E-04 0.12165023E-01
0.52436372E-03 0.65895109E-03
ROW 11
-0.10852336E-05-0.15944151E-06-0.57675737E-06 0.35622521E-04-0.25838059E-03
0.19394349E-04-0.21897699E-04-0.48296516E-06-0.61725046E-04 0.52436372E-03
0.88481155E-02-0.33449463E-04
ROW 12
-0.20475131E-05-0.40787787E-05 0.98879862E-06 0.40953807E-04-0.18450821E-05
-0.31569261E-03-0.92397531E-04 0.13902143E-03-0.18631630E-05 0.65895109E-03
-0.33449463E-04 0.89283582E-02
eigenphases
0.8643278E-02 0.8911253E-02 0.1151677E-01 0.1230809E-01 0.1611181E-01
0.1712020E-01 0.2378024E-01 0.2524127E-01 0.4067790E-01 0.6408505E-01
0.1148344E+00 0.2991692E+00
eigenphase sum 0.642399E+00 scattering length= -0.61718
eps+pi 0.378399E+01 eps+2*pi 0.692558E+01
MaxIter = 1 c.s. = 0.25839807 rmsk= 0.00074666 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 102.8080 Delta time = 0.0010 End ScatStab
+ Data Record ScatContSym - 'T2'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+00 eV ( 0.36749326E-02 AU)
Time Now = 102.8245 Delta time = 0.0165 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 52
Number of asymptotic solutions on the right (NAsymR) = 18
Number of asymptotic solutions on the left (NAsymL) = 18
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 18
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 28
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 52
Time Now = 102.8366 Delta time = 0.0121 Energy independent setup
Compute solution for E = 0.1000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24572962E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24551927E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24540044E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.24535983E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 4
Final point in integration = 0.22265874E+03 Angstroms
Time Now = 114.1302 Delta time = 11.2936 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.17514812E-01 0.64501314E-03 0.22017229E-04-0.43441622E-04-0.67033430E-06
0.34749367E-06-0.66832772E-10-0.24638042E-11-0.69483830E-10-0.15089721E-09
0.14706090E-11-0.93728337E-12 0.49059009E-14-0.25224611E-14-0.19496510E-14
0.10566697E-15 0.17658341E-15 0.48952304E-18
ROW 2
0.64501314E-03 0.39095914E-02 0.19307725E-03-0.24617751E-05 0.43646554E-05
0.15492807E-04-0.11389217E-06-0.19300102E-06-0.32481522E-11-0.42983555E-11
-0.13061909E-10-0.35562726E-10-0.10149546E-12-0.15788141E-12-0.28544819E-12
0.41359755E-15-0.32473349E-15 0.84016897E-15
ROW 3
0.22017229E-04 0.19307725E-03 0.12789133E-02-0.18102964E-04 0.94842925E-06
0.11256428E-05-0.72315383E-05-0.20710069E-10-0.92182350E-07 0.28506702E-07
-0.13005745E-11-0.16980403E-11-0.54991691E-11-0.92628341E-11-0.11009537E-15
0.88002548E-13-0.34457168E-13 0.11621101E-18
ROW 4
-0.43441622E-04-0.24617751E-05-0.18102964E-04 0.58495783E-03 0.34867193E-04
-0.20627743E-04 0.18055626E-06-0.26721779E-06 0.19077548E-05 0.41421884E-05
-0.34143926E-07 0.21466065E-07-0.14742014E-12 0.30553353E-12-0.13618287E-12
-0.25032508E-11-0.42545375E-11 0.17613551E-15
ROW 5
-0.67033430E-06 0.43646554E-05 0.94842925E-06 0.34867193E-04 0.31295083E-03
0.50239498E-06-0.90489935E-05-0.13424969E-10 0.19073851E-06 0.20738382E-06
-0.23896916E-05 0.35756195E-12-0.25253157E-07 0.60549284E-08-0.41211060E-14
-0.12529301E-12-0.19037055E-12 0.76669992E-19
ROW 6
0.34749367E-06 0.15492807E-04 0.11256428E-05-0.20627743E-04 0.50239498E-06
0.31414120E-03-0.11471710E-04-0.17015272E-04 0.48116435E-07-0.21006006E-06
-0.33660921E-06-0.27497814E-05 0.49356939E-09-0.12000691E-07-0.18701728E-07
0.56480958E-13 0.13280108E-12 0.10196224E-12
ROW 7
-0.66832772E-10-0.11389217E-06-0.72315383E-05 0.18055626E-06-0.90489935E-05
-0.11471710E-04 0.18815500E-03-0.76407876E-07 0.11648752E-04-0.25292229E-05
0.97091605E-07 0.88174409E-07 0.92301072E-06 0.15547451E-05 0.61740704E-12
-0.12429099E-07 0.48728852E-08 0.82442300E-15
ROW 8
-0.24638045E-11-0.19300102E-06-0.20710069E-10-0.26721779E-06-0.13424969E-10
-0.17015272E-04-0.76407876E-07 0.18761015E-03-0.20987886E-11-0.37514433E-05
-0.52938096E-08 0.13078376E-06-0.13365228E-12-0.69879950E-07 0.15246143E-05
-0.41518664E-10 0.30703634E-08-0.15230132E-07
ROW 9
-0.69483831E-10-0.32481522E-11-0.92182350E-07 0.19077548E-05 0.19073851E-06
0.48116435E-07 0.11648752E-04-0.20987886E-11 0.12125903E-03 0.15902397E-06
-0.44507727E-05 0.12789953E-11 0.62295960E-07 0.63008692E-07-0.32693725E-14
-0.10769128E-05-0.80522586E-13 0.49071656E-19
ROW 10
-0.15089721E-09-0.42983555E-11 0.28506702E-07 0.41421884E-05 0.20738382E-06
-0.21006006E-06-0.25292229E-05-0.37514433E-05 0.15902397E-06 0.12156445E-03
-0.54760979E-05 0.50236598E-05 0.22501310E-07-0.28988196E-07-0.45174849E-07
-0.24799491E-06-0.12645302E-05 0.27028275E-12
ROW 11
0.14706091E-11-0.13061909E-10-0.13005745E-11-0.34143926E-07-0.23896916E-05
-0.33660921E-06 0.97091605E-07-0.52938096E-08-0.44507727E-05-0.54760979E-05
0.82992248E-04 0.45605630E-07 0.52073637E-05 0.39228776E-12 0.39576473E-12
0.44958535E-07 0.32768165E-07 0.41497816E-15
ROW 12
-0.93728340E-12-0.35562726E-10-0.16980403E-11 0.21466065E-07 0.35756195E-12
-0.27497814E-05 0.88174409E-07 0.13078376E-06 0.12789953E-11 0.50236598E-05
0.45605630E-07 0.83060016E-04 0.51973271E-12 0.30064733E-05 0.46852502E-05
0.47549935E-08-0.43833819E-07 0.18583342E-07
ROW 13
0.49059014E-14-0.10149546E-12-0.54991692E-11-0.14742014E-12-0.25253157E-07
0.49356939E-09 0.92301072E-06-0.13365228E-12 0.62295960E-07 0.22501310E-07
0.52073637E-05 0.51973271E-12 0.59032952E-04 0.63523423E-07-0.81779610E-15
-0.24551108E-05 0.17086194E-12 0.11571635E-19
ROW 14
-0.25224614E-14-0.15788142E-12-0.92628341E-11 0.30553353E-12 0.60549284E-08
-0.12000691E-07 0.15547451E-05-0.69879950E-07 0.63008692E-07-0.28988196E-07
0.39228776E-12 0.30064733E-05 0.63523423E-07 0.59117320E-04-0.16297140E-07
-0.28572274E-05 0.14746008E-05 0.10348221E-12
ROW 15
-0.19496512E-14-0.28544819E-12-0.11009544E-15-0.13618287E-12-0.41211060E-14
-0.18701728E-07 0.61740704E-12 0.15246143E-05-0.32693726E-14-0.45174849E-07
0.39576473E-12 0.46852502E-05-0.81779625E-15-0.16297140E-07 0.59102380E-04
0.98307688E-13 0.14247596E-05-0.31990925E-05
ROW 16
0.10566704E-15 0.41359761E-15 0.88002550E-13-0.25032508E-11-0.12529301E-12
0.56480959E-13-0.12429099E-07-0.41518664E-10-0.10769128E-05-0.24799491E-06
0.44958535E-07 0.47549935E-08-0.24551108E-05-0.28572274E-05 0.98307688E-13
0.43575699E-04 0.23585891E-07 0.83303898E-16
ROW 17
0.17658347E-15-0.32473353E-15-0.34457168E-13-0.42545376E-11-0.19037055E-12
0.13280108E-12 0.48728852E-08 0.30703634E-08-0.80522586E-13-0.12645302E-05
0.32768165E-07-0.43833819E-07 0.17086194E-12 0.14746008E-05 0.14247596E-05
0.23585891E-07 0.43609061E-04 0.45918143E-08
ROW 18
0.48953330E-18 0.84016908E-15 0.11620738E-18 0.17613555E-15 0.76696095E-19
0.10196224E-12 0.82442304E-15-0.15230132E-07 0.49057201E-19 0.27028275E-12
0.41497816E-15 0.18583342E-07 0.11598419E-19 0.10348221E-12-0.31990925E-05
0.83303869E-16 0.45918143E-08 0.43504365E-04
eigenphases
0.4252332E-04 0.4279369E-04 0.4353921E-04 0.5804972E-04 0.5878993E-04
0.5977183E-04 0.8242676E-04 0.8405832E-04 0.1193384E-03 0.1230560E-03
0.1850329E-03 0.1891332E-03 0.3074632E-03 0.3176158E-03 0.5903328E-03
0.1265300E-02 0.3893209E-02 0.1754369E-01
eigenphase sum 0.250061E-01 scattering length= -0.29174
eps+pi 0.316660E+01 eps+2*pi 0.630819E+01
MaxIter = 1 c.s. = 0.15568886 rmsk= 0.00000242 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 114.1322 Delta time = 0.0019 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 114.1485 Delta time = 0.0164 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 52
Number of asymptotic solutions on the right (NAsymR) = 18
Number of asymptotic solutions on the left (NAsymL) = 18
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 18
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 28
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 52
Time Now = 114.1607 Delta time = 0.0122 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22220532E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22146627E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22076119E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.22012017E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 5
Final point in integration = 0.14892033E+03 Angstroms
Time Now = 125.4394 Delta time = 11.2787 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.33287166E-01 0.98467450E-03 0.15518620E-03-0.22555280E-03-0.74764824E-05
0.41823582E-05-0.10064960E-07-0.39750903E-08-0.38837556E-08-0.82431758E-08
0.17931381E-09-0.12234330E-09 0.12789248E-11-0.81571467E-12-0.63300585E-12
0.48002476E-13 0.76846497E-13 0.78211053E-15
ROW 2
0.98467450E-03 0.20582891E-01 0.10355182E-02-0.29861559E-04 0.22081012E-04
0.78486350E-04-0.13409023E-05-0.21494905E-05-0.13134410E-08-0.55050326E-09
-0.72533273E-09-0.19941330E-08-0.13217073E-10-0.20617790E-10-0.36085344E-10
0.13097845E-12-0.91669362E-13 0.23865447E-12
ROW 3
0.15518620E-03 0.10355182E-02 0.63989295E-02-0.91680359E-04 0.10598636E-04
0.12789913E-04-0.36284561E-04-0.50946599E-08-0.10293465E-05 0.31311980E-06
-0.19144451E-09-0.30159431E-09-0.31322420E-09-0.52531872E-09-0.16006369E-11
0.11259349E-10-0.43648823E-11 0.52256829E-15
ROW 4
-0.22555280E-03-0.29861559E-04-0.91680359E-04 0.29438585E-02 0.17513084E-03
-0.10361640E-03 0.20206086E-05-0.29587629E-05 0.95305979E-05 0.20692172E-04
-0.38644512E-06 0.24355714E-06-0.57772671E-10 0.67326775E-10-0.73608118E-11
-0.14262517E-09-0.24207398E-09 0.35030843E-12
ROW 5
-0.74764824E-05 0.22081012E-04 0.10598636E-04 0.17513084E-03 0.15637180E-02
0.56001694E-05-0.45349764E-04-0.20236587E-08 0.21285098E-05 0.23301796E-05
-0.11897355E-04 0.19814114E-10-0.28346444E-06 0.66739804E-07-0.22383102E-11
-0.16044128E-10-0.32082250E-10 0.31813670E-15
ROW 6
0.41823582E-05 0.78486350E-04 0.12789913E-04-0.10361640E-03 0.56001694E-05
0.15770631E-02-0.57493806E-04-0.85273146E-04 0.52455941E-06-0.23468391E-05
-0.16758209E-05-0.13690338E-04 0.47180452E-08-0.13567553E-06-0.21143610E-06
0.14180655E-10 0.17389205E-10 0.25395183E-10
ROW 7
-0.10064960E-07-0.13409023E-05-0.36284561E-04 0.20206086E-05-0.45349764E-04
-0.57493806E-04 0.94384342E-03-0.84148207E-06 0.58341754E-04-0.12667171E-04
0.10841014E-05 0.98684730E-06 0.45739065E-05 0.77042730E-05 0.82865773E-10
-0.14041845E-06 0.54930779E-07 0.35766623E-12
ROW 8
-0.39750904E-08-0.21494905E-05-0.50946599E-08-0.29587629E-05-0.20236587E-08
-0.85273146E-04-0.84148207E-06 0.93773119E-03-0.31458565E-09-0.18788427E-04
-0.57148807E-07 0.14637204E-05-0.20585043E-10-0.34619348E-06 0.75548936E-05
-0.38922985E-09 0.34834538E-07-0.17086356E-06
ROW 9
-0.38837556E-08-0.13134410E-08-0.10293465E-05 0.95305979E-05 0.21285098E-05
0.52455941E-06 0.58341754E-04-0.31458565E-09 0.60715819E-03 0.17809315E-05
-0.22287700E-04 0.18345181E-09 0.69481067E-06 0.70511361E-06-0.12164517E-11
-0.52950224E-05-0.17590535E-10 0.14407919E-15
ROW 10
-0.82431759E-08-0.55050326E-09 0.31311980E-06 0.20692172E-04 0.23301796E-05
-0.23468391E-05-0.12667171E-04-0.18788427E-04 0.17809315E-05 0.61057341E-03
-0.27422420E-04 0.25156633E-04 0.24894458E-06-0.32288213E-06-0.50317812E-06
-0.12193764E-05-0.62175081E-05 0.36552715E-10
ROW 11
0.17931381E-09-0.72533274E-09-0.19144451E-09-0.38644512E-06-0.11897355E-04
-0.16758209E-05 0.10841014E-05-0.57148807E-07-0.22287700E-04-0.27422420E-04
0.41673864E-03 0.50865402E-06 0.26074723E-04 0.53961056E-10 0.55941712E-10
0.50137166E-06 0.36632850E-06 0.14539181E-12
ROW 12
-0.12234330E-09-0.19941330E-08-0.30159431E-09 0.24355714E-06 0.19814114E-10
-0.13690338E-04 0.98684730E-06 0.14637204E-05 0.18345181E-09 0.25156633E-04
0.50865402E-06 0.41749598E-03 0.72604901E-10 0.15054311E-04 0.23460450E-04
0.52326345E-07-0.48896055E-06 0.20629920E-06
ROW 13
0.12789249E-11-0.13217074E-10-0.31322421E-09-0.57772671E-10-0.28346444E-06
0.47180452E-08 0.45739065E-05-0.20585043E-10 0.69481067E-06 0.24894458E-06
0.26074723E-04 0.72604901E-10 0.29654112E-03 0.71211687E-06-0.28643443E-12
-0.12308222E-04 0.24420602E-10 0.35668206E-16
ROW 14
-0.81571467E-12-0.20617791E-10-0.52531872E-09 0.67326775E-10 0.66739804E-07
-0.13567553E-06 0.77042730E-05-0.34619348E-06 0.70511361E-06-0.32288213E-06
0.53961056E-10 0.15054311E-04 0.71211687E-06 0.29748519E-03-0.18135795E-06
-0.14324204E-04 0.73926228E-05 0.14391492E-10
ROW 15
-0.63300585E-12-0.36085345E-10-0.16006369E-11-0.73608118E-11-0.22383102E-11
-0.21143610E-06 0.82865773E-10 0.75548936E-05-0.12164517E-11-0.50317812E-06
0.55941712E-10 0.23460450E-04-0.28643443E-12-0.18135795E-06 0.29731894E-03
0.13459074E-10 0.71427486E-05-0.16038021E-04
ROW 16
0.48002477E-13 0.13097846E-12 0.11259350E-10-0.14262517E-09-0.16044128E-10
0.14180655E-10-0.14041845E-06-0.38922985E-09-0.52950224E-05-0.12193764E-05
0.50137166E-06 0.52326345E-07-0.12308222E-04-0.14324204E-04 0.13459074E-10
0.21956099E-03 0.26406573E-06 0.27903881E-13
ROW 17
0.76846498E-13-0.91669366E-13-0.43648824E-11-0.24207398E-09-0.32082250E-10
0.17389205E-10 0.54930779E-07 0.34834538E-07-0.17590535E-10-0.62175081E-05
0.36632850E-06-0.48896055E-06 0.24420602E-10 0.73926228E-05 0.71427486E-05
0.26406573E-06 0.21993411E-03 0.51041410E-07
ROW 18
0.78211043E-15 0.23865448E-12 0.52256837E-15 0.35030843E-12 0.31813682E-15
0.25395183E-10 0.35766623E-12-0.17086356E-06 0.14407931E-15 0.36552715E-10
0.14539181E-12 0.20629920E-06 0.35668303E-16 0.14391492E-10-0.16038021E-04
0.27903882E-13 0.51041410E-07 0.21876069E-03
eigenphases
0.2141267E-03 0.2153748E-03 0.2195739E-03 0.2914388E-03 0.2957758E-03
0.3009532E-03 0.4138270E-03 0.4225930E-03 0.5971773E-03 0.6183739E-03
0.9250806E-03 0.9485671E-03 0.1535411E-02 0.1595372E-02 0.2969446E-02
0.6325974E-02 0.2057791E-01 0.3335441E-01
eigenphase sum 0.718214E-01 scattering length= -0.37530
eps+pi 0.321341E+01 eps+2*pi 0.635501E+01
MaxIter = 1 c.s. = 0.15248844 rmsk= 0.00001219 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 125.4413 Delta time = 0.0019 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+01 eV ( 0.73498652E-01 AU)
Time Now = 125.4581 Delta time = 0.0168 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 52
Number of asymptotic solutions on the right (NAsymR) = 18
Number of asymptotic solutions on the left (NAsymL) = 18
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 18
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 28
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 52
Time Now = 125.4706 Delta time = 0.0125 Energy independent setup
Compute solution for E = 2.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19371091E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.19076430E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18792798E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.18532478E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 7
Final point in integration = 0.10531979E+03 Angstroms
Time Now = 136.7611 Delta time = 11.2906 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.84009644E-01-0.16147415E-01-0.41452924E-03-0.10822594E-02-0.69833659E-04
0.34824500E-04-0.12313062E-06-0.12678375E-06-0.12851788E-06-0.26903502E-06
0.11435413E-07-0.96528060E-08 0.12920008E-09-0.16709376E-09-0.14449281E-09
0.15036760E-10 0.20534711E-10 0.10666163E-11
ROW 2
-0.16147415E-01 0.10066466E+00 0.64229266E-02-0.36671676E-03 0.10279585E-03
0.37854361E-03-0.14232855E-04-0.18217627E-04-0.13345775E-06-0.57901553E-07
-0.21498921E-07-0.64737330E-07-0.96964588E-09-0.15514810E-08-0.22740276E-08
0.27438309E-10-0.10398559E-10 0.29454503E-10
ROW 3
-0.41452924E-03 0.64229266E-02 0.26122326E-01-0.40917214E-03 0.86606725E-04
0.11262206E-03-0.15234098E-03-0.42623877E-06-0.82582308E-05 0.23447870E-05
-0.12809878E-07-0.22577224E-07-0.99879005E-08-0.16438315E-07-0.32924111E-09
0.69961746E-09-0.25797787E-09 0.85632032E-12
ROW 4
-0.10822594E-02-0.36671676E-03-0.40917214E-03 0.11958962E-01 0.72074542E-03
-0.42710254E-03 0.16376866E-04-0.22964349E-04 0.39079196E-04 0.84776535E-04
-0.32276585E-05 0.20528547E-05-0.46508090E-08 0.49923844E-08-0.10997083E-09
-0.45240730E-08-0.76277241E-08 0.56914091E-10
ROW 5
-0.69833659E-04 0.10279585E-03 0.86606725E-04 0.72074542E-03 0.62445864E-02
0.44457801E-04-0.18390563E-03-0.13674964E-06 0.16998581E-04 0.19100476E-04
-0.48218524E-04 0.83581494E-09-0.22653987E-05 0.49521890E-06-0.34857710E-09
-0.10219160E-08-0.22759325E-08 0.43864913E-12
ROW 6
0.34824500E-04 0.37854361E-03 0.11262206E-03-0.42710254E-03 0.44457801E-04
0.63528975E-02-0.23331780E-03-0.34578080E-03 0.38073769E-05-0.18828724E-04
-0.67907080E-05-0.55502226E-04 0.11897495E-07-0.11146459E-05-0.17371769E-05
0.11119883E-08 0.11157588E-08 0.19270576E-08
ROW 7
-0.12313062E-06-0.14232855E-04-0.15234098E-03 0.16376866E-04-0.18390563E-03
-0.23331780E-03 0.37909688E-02-0.63443116E-05 0.23520953E-03-0.51053944E-04
0.86741689E-05 0.79669399E-05 0.18434551E-04 0.31041886E-04 0.54868101E-08
-0.11447468E-05 0.44408810E-06 0.49568450E-10
ROW 8
-0.12678375E-06-0.18217627E-04-0.42623877E-06-0.22964349E-04-0.13674964E-06
-0.34578080E-03-0.63443116E-05 0.37413964E-02-0.20923778E-07-0.75724228E-04
-0.39709785E-06 0.11815289E-04-0.13531454E-08-0.13893841E-05 0.30434823E-04
-0.68543774E-09 0.28843475E-06-0.13557577E-05
ROW 9
-0.12851788E-06-0.13345775E-06-0.82582308E-05 0.39079196E-04 0.16998581E-04
0.38073769E-05 0.23520953E-03-0.20923778E-07 0.24247899E-02 0.14323849E-04
-0.89599903E-04 0.12463509E-07 0.55462046E-05 0.57002487E-05-0.16747544E-09
-0.21253968E-04-0.13147702E-08 0.16648340E-12
ROW 10
-0.26903502E-06-0.57901553E-07 0.23447870E-05 0.84776535E-04 0.19100476E-04
-0.18828724E-04-0.51053944E-04-0.75724228E-04 0.14323849E-04 0.24520998E-02
-0.11026194E-03 0.10114283E-03 0.19256349E-05-0.25640178E-05-0.39961082E-05
-0.48960711E-05-0.24956875E-04 0.23916513E-08
ROW 11
0.11435413E-07-0.21498921E-07-0.12809878E-07-0.32276585E-05-0.48218524E-04
-0.67907080E-05 0.86741689E-05-0.39709785E-06-0.89599903E-04-0.11026194E-03
0.16709891E-02 0.40219675E-05 0.10466990E-03 0.35680067E-08 0.37386681E-08
0.40054701E-05 0.29540516E-05 0.18886712E-10
ROW 12
-0.96528060E-08-0.64737330E-07-0.22577224E-07 0.20528547E-05 0.83581494E-09
-0.55502226E-04 0.79669399E-05 0.11815289E-04 0.12463509E-07 0.10114283E-03
0.40219675E-05 0.16770233E-02 0.48301663E-08 0.60435409E-04 0.94181783E-04
0.39673276E-06-0.39103472E-05 0.16195259E-05
ROW 13
0.12920008E-09-0.96964588E-09-0.99879005E-08-0.46508090E-08-0.22653987E-05
0.11897495E-07 0.18434551E-04-0.13531454E-08 0.55462046E-05 0.19256349E-05
0.10466990E-03 0.48301663E-08 0.11855505E-02 0.57259426E-05-0.37575255E-10
-0.49360751E-04 0.16585570E-08 0.38389106E-13
ROW 14
-0.16709376E-09-0.15514809E-08-0.16438315E-07 0.49923844E-08 0.49521890E-06
-0.11146459E-05 0.31041886E-04-0.13893841E-05 0.57002487E-05-0.25640178E-05
0.35680067E-08 0.60435409E-04 0.57259426E-05 0.11930891E-02-0.14174405E-05
-0.57448785E-04 0.29647130E-04 0.95031044E-09
ROW 15
-0.14449281E-09-0.22740276E-08-0.32924111E-09-0.10997083E-09-0.34857710E-09
-0.17371769E-05 0.54868101E-08 0.30434823E-04-0.16747544E-09-0.39961082E-05
0.37386681E-08 0.94181783E-04-0.37575255E-10-0.14174405E-05 0.11917895E-02
0.88277304E-09 0.28644712E-04-0.64318169E-04
ROW 16
0.15036760E-10 0.27438309E-10 0.69961746E-09-0.45240730E-08-0.10219160E-08
0.11119883E-08-0.11447468E-05-0.68543775E-09-0.21253968E-04-0.48960711E-05
0.40054701E-05 0.39673276E-06-0.49360751E-04-0.57448785E-04 0.88277304E-09
0.88052524E-03 0.21080572E-05 0.35075970E-11
ROW 17
0.20534711E-10-0.10398559E-10-0.25797787E-09-0.76277241E-08-0.22759325E-08
0.11157588E-08 0.44408810E-06 0.28843475E-06-0.13147702E-08-0.24956875E-04
0.29540516E-05-0.39103472E-05 0.16585570E-08 0.29647130E-04 0.28644712E-04
0.21080572E-05 0.88349178E-03 0.39621681E-06
ROW 18
0.10666163E-11 0.29454503E-10 0.85632031E-12 0.56914092E-10 0.43864913E-12
0.19270576E-08 0.49568450E-10-0.13557577E-05 0.16648340E-12 0.23916513E-08
0.18886712E-10 0.16195259E-05 0.38389106E-13 0.95031044E-09-0.64318169E-04
0.35075970E-11 0.39621681E-06 0.87408643E-03
eigenphases
-0.8521691E-01 0.8571339E-03 0.8620475E-03 0.8820931E-03 0.1163776E-02
0.1185712E-02 0.1208358E-02 0.1658490E-02 0.1698021E-02 0.2381827E-02
0.2485923E-02 0.3691309E-02 0.3808762E-02 0.6121864E-02 0.6433135E-02
0.1208035E-01 0.2558821E-01 0.1022521E+00
eigenphase sum 0.891422E-01 scattering length= -0.23312
eps+pi 0.323073E+01 eps+2*pi 0.637233E+01
MaxIter = 1 c.s. = 0.44514150 rmsk= 0.00004869 Abs eps 0.10000000E-05 Rel eps 0.00000000E+00
Time Now = 136.7629 Delta time = 0.0018 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 136.7792 Delta time = 0.0163 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 52
Number of asymptotic solutions on the right (NAsymR) = 18
Number of asymptotic solutions on the left (NAsymL) = 18
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 18
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 28
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 52
Time Now = 136.7913 Delta time = 0.0121 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13700635E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13799424E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13891194E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.13972732E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 10
Final point in integration = 0.70451080E+02 Angstroms
Time Now = 148.0970 Delta time = 11.3058 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.78381631E+00-0.11565447E+00-0.10211723E-01-0.13414271E-01-0.18922168E-02
0.71685981E-03 0.10622813E-04-0.61053545E-05-0.16930664E-04-0.36691874E-04
0.33320307E-05-0.30554577E-05 0.59880812E-07-0.13683647E-06-0.12045402E-06
0.23573814E-07 0.26981950E-07 0.26284471E-08
ROW 2
-0.11565447E+00 0.11956512E+01 0.20204382E+00-0.34499170E-01 0.12133088E-02
0.12768302E-01-0.13036783E-02-0.74289523E-03-0.87523221E-04-0.66620462E-04
0.35962109E-07-0.19055597E-04-0.60213924E-06-0.12723961E-05-0.10555903E-05
0.87483445E-07 0.20098673E-07 0.23691767E-07
ROW 3
-0.10211723E-01 0.20204382E+00 0.17106839E+00-0.10017697E-01 0.13169351E-02
0.37876662E-02-0.16704364E-02-0.13420554E-03-0.15242782E-03 0.14149582E-04
-0.15731798E-05-0.70821641E-05-0.87323525E-06-0.14103522E-05-0.33204525E-06
0.12367784E-06-0.23511247E-07 0.58839122E-08
ROW 4
-0.13414271E-01-0.34499170E-01-0.10017697E-01 0.67813351E-01 0.51752764E-02
-0.34588721E-02 0.26578940E-03-0.23087690E-03 0.28962266E-03 0.61441882E-03
-0.52187462E-04 0.34942978E-04-0.65480594E-06 0.74578115E-06 0.13164325E-06
-0.27471210E-06-0.43497254E-06 0.13081737E-07
ROW 5
-0.18922168E-02 0.12133088E-02 0.13169351E-02 0.51752764E-02 0.31703845E-01
0.52258031E-03-0.10848437E-02-0.18007040E-04 0.19943697E-03 0.25560913E-03
-0.29034054E-03 0.23519568E-06-0.26927313E-04 0.36454896E-05-0.12279846E-06
-0.12528036E-06-0.32489516E-06 0.17510176E-08
ROW 6
0.71685981E-03 0.12768302E-01 0.37876662E-02-0.34588721E-02 0.52258031E-03
0.33229926E-01-0.14133838E-02-0.20398667E-02 0.19055030E-04-0.22812832E-03
-0.40626557E-04-0.33685394E-03-0.14630956E-05-0.15151464E-04-0.23573125E-04
0.17916950E-06 0.13687744E-06 0.25263871E-06
ROW 7
0.10622813E-04-0.13036783E-02-0.16704364E-02 0.26578940E-03-0.10848437E-02
-0.14133838E-02 0.19296607E-01-0.48402059E-04 0.12809319E-02-0.27589585E-03
0.99847849E-04 0.96112434E-04 0.10401415E-03 0.17401633E-03 0.73279911E-06
-0.14437009E-04 0.53867185E-05 0.98398291E-08
ROW 8
-0.61053545E-05-0.74289523E-03-0.13420554E-03-0.23087690E-03-0.18007040E-04
-0.20398667E-02-0.48402059E-04 0.18676439E-01-0.22319803E-05-0.40910214E-03
-0.88493357E-06 0.14194512E-03-0.12138248E-06-0.70441764E-05 0.16984301E-03
0.13870614E-06 0.38618378E-05-0.14925545E-04
ROW 9
-0.16930664E-04-0.87523221E-04-0.15242782E-03 0.28962266E-03 0.19943697E-03
0.19055030E-04 0.12809319E-02-0.22319803E-05 0.12088987E-01 0.16777263E-03
-0.47186670E-03 0.16972586E-05 0.62225782E-04 0.68245081E-04-0.41643507E-07
-0.11471237E-03-0.18065459E-06 0.54742733E-09
ROW 10
-0.36691874E-04-0.66620462E-04 0.14149582E-04 0.61441882E-03 0.25560913E-03
-0.22812832E-03-0.27589585E-03-0.40910214E-03 0.16777263E-03 0.12399228E-01
-0.58331751E-03 0.53387491E-03 0.17958953E-04-0.27937454E-04-0.43647102E-04
-0.26635752E-04-0.13471961E-03 0.28744957E-06
ROW 11
0.33320307E-05 0.35962109E-07-0.15731798E-05-0.52187462E-04-0.29034054E-03
-0.40626557E-04 0.99847849E-04-0.88493357E-06-0.47186670E-03-0.58331751E-03
0.83999421E-02 0.42595268E-04 0.54179104E-03 0.44899754E-06 0.46809024E-06
0.44983117E-04 0.34818082E-04 0.33377811E-08
ROW 12
-0.30554577E-05-0.19055597E-04-0.70821641E-05 0.34942978E-04 0.23519568E-06
-0.33685394E-03 0.96112434E-04 0.14194512E-03 0.16972586E-05 0.53387491E-03
0.42595268E-04 0.84666663E-02 0.60604609E-06 0.31334652E-03 0.48831310E-03
0.31821509E-05-0.44163636E-04 0.16473952E-04
ROW 13
0.59880812E-07-0.60213924E-06-0.87323525E-06-0.65480594E-06-0.26927313E-04
-0.14630956E-05 0.10401415E-03-0.12138248E-06 0.62225782E-04 0.17958953E-04
0.54179104E-03 0.60604609E-06 0.59060026E-02 0.66081779E-04-0.72081437E-08
-0.25295939E-03 0.22119353E-06 0.11356772E-09
ROW 14
-0.13683647E-06-0.12723961E-05-0.14103522E-05 0.74578115E-06 0.36454896E-05
-0.15151464E-04 0.17401633E-03-0.70441764E-05 0.68245081E-04-0.27937454E-04
0.44899754E-06 0.31334652E-03 0.66081779E-04 0.59898702E-02-0.13923260E-04
-0.29482332E-03 0.15190982E-03 0.11338479E-06
ROW 15
-0.12045402E-06-0.10555903E-05-0.33204525E-06 0.13164325E-06-0.12279846E-06
-0.23573125E-04 0.73279911E-06 0.16984301E-03-0.41643507E-07-0.43647102E-04
0.46809024E-06 0.48831310E-03-0.72081437E-08-0.13923260E-04 0.59770550E-02
0.10514230E-06 0.14673260E-03-0.32954240E-03
ROW 16
0.23573814E-07 0.87483445E-07 0.12367784E-06-0.27471210E-06-0.12528036E-06
0.17916950E-06-0.14437009E-04 0.13870614E-06-0.11471237E-03-0.26635752E-04
0.44983117E-04 0.31821509E-05-0.25295939E-03-0.29482332E-03 0.10514230E-06
0.44150438E-02 0.23369909E-04 0.50461417E-09
ROW 17
0.26981950E-07 0.20098673E-07-0.23511247E-07-0.43497254E-06-0.32489516E-06
0.13687744E-06 0.53867185E-05 0.38618378E-05-0.18065459E-06-0.13471961E-03
0.34818082E-04-0.44163636E-04 0.22119353E-06 0.15190982E-03 0.14673260E-03
0.23369909E-04 0.44471998E-02 0.37122971E-05
ROW 18
0.26284471E-08 0.23691767E-07 0.58839122E-08 0.13081737E-07 0.17510176E-08
0.25263871E-06 0.98398291E-08-0.14925545E-04 0.54742733E-09 0.28744957E-06
0.33377811E-08 0.16473952E-04 0.11356772E-09 0.11338479E-06-0.32954240E-03
0.50461417E-09 0.37122971E-05 0.43407077E-02
eigenphases
-0.6691276E+00 0.4262447E-02 0.4306009E-02 0.4441419E-02 0.5773962E-02
0.5944486E-02 0.6085491E-02 0.8319765E-02 0.8579492E-02 0.1180926E-01
0.1260814E-01 0.1837045E-01 0.1934773E-01 0.3061238E-01 0.3362124E-01
0.6778238E-01 0.1322778E+00 0.8928572E+00
eigenphase sum 0.597872E+00 scattering length= -0.79436
eps+pi 0.373946E+01 eps+2*pi 0.688106E+01
MaxIter = 1 c.s. = 4.86807009 rmsk= 0.00024185 Abs eps 0.11956512E-05 Rel eps 0.00000000E+00
Time Now = 148.0989 Delta time = 0.0019 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E+02 eV ( 0.73498652E+00 AU)
Time Now = 148.1155 Delta time = 0.0166 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = -1
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 56
Number of partial waves (np) = 52
Number of asymptotic solutions on the right (NAsymR) = 18
Number of asymptotic solutions on the left (NAsymL) = 18
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 18
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 28
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Found polarization potential
Maximum l used in usual function (lmax) = 20
Maximum m used in usual function (LMax) = 20
Maxamum l used in expanding static potential (lpotct) = 40
Maximum l used in exapnding the exchange potential (lmaxab) = 40
Higest l included in the expansion of the wave function (lnp) = 20
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 20
Number of partial waves in the homogeneous solution (npHomo) = 52
Time Now = 148.1277 Delta time = 0.0122 Energy independent setup
Compute solution for E = 20.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.16653345E-15 Asymp Coef = -0.11241172E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.99744834E-19 Asymp Moment = -0.14824124E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.82329047E-19 Asymp Moment = 0.12235782E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.15747508E-04 Asymp Moment = 0.41120498E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10761632E-16
i = 2 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.10949725E-16
i = 3 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11130673E-16
i = 4 exps = -0.94863410E+02 -0.20000000E+01 stpote = -0.11296686E-16
For potential 3
i = 1 lvals = 6 6 stpote = -0.13552527E-19 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.49389827E-20 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.77856548E-20 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.60857196E-07 second term = -0.60857196E-07
Number of asymptotic regions = 11
Final point in integration = 0.59251441E+02 Angstroms
Time Now = 159.4176 Delta time = 11.2899 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.12428814E+01 0.69465873E+00 0.22078244E+00-0.12333990E+00-0.11660502E-01
0.25714664E-01-0.32380274E-02-0.13003911E-02-0.59542377E-03-0.80922496E-03
0.78618124E-04-0.13778273E-03-0.98409197E-06-0.10826696E-04-0.79379808E-05
0.15373777E-05 0.11893225E-05 0.21166198E-06
ROW 2
0.69465873E+00 0.34648230E+01 0.84544405E+00-0.23584600E+00-0.42612731E-02
0.77359937E-01-0.11436864E-01-0.46652917E-02-0.13421145E-02-0.12916230E-02
0.72371764E-04-0.33681654E-03-0.10075584E-04-0.29440706E-04-0.21603435E-04
0.33005671E-05 0.16610790E-05 0.59784912E-06
ROW 3
0.22078244E+00 0.84544405E+00 0.45695314E+00-0.72776229E-01 0.26038248E-02
0.26791002E-01-0.82225328E-02-0.14716980E-02-0.96818844E-03-0.27395715E-03
0.38733593E-05-0.13200013E-03-0.11056413E-04-0.20740778E-04-0.86557743E-05
0.23910895E-05 0.13098994E-06 0.23451617E-06
ROW 4
-0.12333990E+00-0.23584600E+00-0.72776229E-01 0.16309192E+00 0.17193058E-01
-0.15933681E-01 0.17745443E-02-0.37223140E-03 0.12098403E-02 0.24050437E-02
-0.28048268E-03 0.21241402E-03-0.61601135E-05 0.97477007E-05 0.39086180E-05
-0.30335901E-05-0.43267139E-05 0.74540781E-07
ROW 5
-0.11660502E-01-0.42612731E-02 0.26038248E-02 0.17193058E-01 0.65495384E-01
0.15074250E-02-0.29926359E-02-0.14772674E-03 0.67380563E-03 0.99986788E-03
-0.87650785E-03 0.48661744E-05-0.10032746E-03 0.61726242E-05-0.17630041E-05
-0.11214634E-05-0.33636268E-05 0.60665692E-07
ROW 6
0.25714664E-01 0.77359937E-01 0.26791002E-01-0.15933681E-01 0.15074250E-02
0.72525799E-01-0.43765803E-02-0.57413774E-02-0.81500028E-04-0.83318632E-03
-0.11738603E-03-0.10424073E-02-0.11881045E-04-0.65016843E-04-0.99113232E-04
0.21469332E-05 0.12618311E-05 0.22481966E-05
ROW 7
-0.32380274E-02-0.11436864E-01-0.82225328E-02 0.17745443E-02-0.29926359E-02
-0.43765803E-02 0.40159628E-01-0.28063834E-04 0.31146810E-02-0.65018019E-03
0.31459111E-03 0.32294090E-03 0.27352499E-03 0.45135162E-03 0.69475367E-05
-0.51563408E-04 0.18573706E-04 0.33178395E-07
ROW 8
-0.13003911E-02-0.46652917E-02-0.14716980E-02-0.37223140E-03-0.14772674E-03
-0.57413774E-02-0.28063834E-04 0.37942437E-01-0.12223771E-04-0.96729149E-03
0.11620860E-04 0.46809304E-03-0.28932327E-06-0.13109986E-04 0.43470189E-03
0.91253698E-06 0.14157538E-04-0.46661523E-04
ROW 9
-0.59542377E-03-0.13421145E-02-0.96818844E-03 0.12098403E-02 0.67380563E-03
-0.81500028E-04 0.31146810E-02-0.12223771E-04 0.24362951E-01 0.53140623E-03
-0.10571247E-02 0.15876140E-04 0.18297576E-03 0.21590909E-03-0.34825762E-06
-0.27002526E-03-0.15696102E-05 0.17615099E-07
ROW 10
-0.80922496E-03-0.12916230E-02-0.27395715E-03 0.24050437E-02 0.99986788E-03
-0.83318632E-03-0.65018019E-03-0.96729149E-03 0.53140623E-03 0.25307401E-01
-0.13247671E-02 0.12040623E-02 0.39914237E-04-0.78828701E-04-0.12416500E-03
-0.64029166E-04-0.31723350E-03 0.21769659E-05
ROW 11
0.78618124E-04 0.72371764E-04 0.38733593E-05-0.28048268E-03-0.87650785E-03
-0.11738603E-03 0.31459111E-03 0.11620860E-04-0.10571247E-02-0.13247671E-02
0.16952957E-01 0.11535513E-03 0.11627526E-02 0.36209502E-05 0.37303172E-05
0.13036692E-03 0.10669121E-03 0.47400271E-08
ROW 12
-0.13778273E-03-0.33681654E-03-0.13200013E-03 0.21241402E-03 0.48661744E-05
-0.10424073E-02 0.32294090E-03 0.46809304E-03 0.15876140E-04 0.12040623E-02
0.11535513E-03 0.17144984E-01 0.48583325E-05 0.67586387E-03 0.10531709E-02
0.47292636E-05-0.12890818E-03 0.41749123E-04
ROW 13
-0.98409197E-06-0.10075584E-04-0.11056413E-04-0.61601135E-05-0.10032746E-03
-0.11881045E-04 0.27352499E-03-0.28932327E-06 0.18297576E-03 0.39914237E-04
0.11627526E-02 0.48583325E-05 0.11793885E-01 0.19672330E-03-0.22326289E-07
-0.53085209E-03 0.18803178E-05 0.33808680E-08
ROW 14
-0.10826696E-04-0.29440706E-04-0.20740778E-04 0.97477007E-05 0.61726242E-05
-0.65016843E-04 0.45135162E-03-0.13109986E-04 0.21590909E-03-0.78828701E-04
0.36209502E-05 0.67586387E-03 0.19672330E-03 0.12032850E-01-0.33113952E-04
-0.62130851E-03 0.31862052E-03 0.82320595E-06
ROW 15
-0.79379808E-05-0.21603435E-04-0.86557743E-05 0.39086180E-05-0.17630041E-05
-0.99113232E-04 0.69475367E-05 0.43470189E-03-0.34825762E-06-0.12416500E-03
0.37303172E-05 0.10531709E-02-0.22326289E-07-0.33113952E-04 0.12001813E-01
0.76696630E-06 0.30753731E-03-0.69109698E-03
ROW 16
0.15373777E-05 0.33005671E-05 0.23910895E-05-0.30335901E-05-0.11214634E-05
0.21469332E-05-0.51563408E-04 0.91253698E-06-0.27002526E-03-0.64029166E-04
0.13036692E-03 0.47292636E-05-0.53085209E-03-0.62130851E-03 0.76696630E-06
0.88547838E-02 0.66006406E-04-0.16685379E-08
ROW 17
0.11893225E-05 0.16610790E-05 0.13098994E-06-0.43267139E-05-0.33636268E-05
0.12618311E-05 0.18573706E-04 0.14157538E-04-0.15696102E-05-0.31723350E-03
0.10669121E-03-0.12890818E-03 0.18803178E-05 0.31862052E-03 0.30753731E-03
0.66006406E-04 0.89429953E-02 0.80692628E-05
ROW 18
0.21166198E-06 0.59784912E-06 0.23451617E-06 0.74540781E-07 0.60665692E-07
0.22481966E-05 0.33178395E-07-0.46661523E-04 0.17615099E-07 0.21769659E-05
0.47400271E-08 0.41749123E-04 0.33808680E-08 0.82320595E-06-0.69109698E-03
-0.16685379E-08 0.80692628E-05 0.86347609E-02
eigenphases
-0.9347254E+00 0.8471873E-02 0.8605098E-02 0.8930207E-02 0.1147309E-01
0.1192137E-01 0.1225808E-01 0.1672888E-01 0.1737861E-01 0.2356043E-01
0.2579809E-01 0.3689974E-01 0.3997193E-01 0.6079439E-01 0.7202696E-01
0.1511555E+00 0.2343062E+00 0.1314263E+01
eigenphase sum 0.111982E+01 scattering length= -1.70320
eps+pi 0.426141E+01 eps+2*pi 0.740300E+01
MaxIter = 1 c.s. = 4.00639014 rmsk= 0.00048126 Abs eps 0.34648230E-05 Rel eps 0.00000000E+00
Time Now = 159.4194 Delta time = 0.0018 End ScatStab
+ Command TotalCrossSection
+
Using LMaxK 10
Continuum Symmetry A1 -
E (eV) XS(angs^2) EPS(radians)
0.100000 0.058803 0.013352
0.500000 1.976311 -0.132003
2.000000 6.123851 -0.479593
10.000000 4.879466 -1.039963
20.000000 3.148809 -0.894183
Continuum Symmetry A2 -
E (eV) XS(angs^2) EPS(radians)
0.100000 0.000019 0.000290
0.500000 0.000098 0.001455
2.000000 0.000389 0.005819
10.000000 0.001946 0.029087
20.000000 0.003983 0.058685
Continuum Symmetry E -
E (eV) XS(angs^2) EPS(radians)
0.100000 0.007306 0.005358
0.500000 0.038090 0.027231
2.000000 0.181635 0.116553
10.000000 0.860136 0.587416
20.000000 0.867454 0.940900
Continuum Symmetry T1 -
E (eV) XS(angs^2) EPS(radians)
0.100000 0.001047 0.002983
0.500000 0.005291 0.014972
2.000000 0.022158 0.060707
10.000000 0.140616 0.327465
20.000000 0.258398 0.642399
Continuum Symmetry T2 -
E (eV) XS(angs^2) EPS(radians)
0.100000 0.155689 0.025006
0.500000 0.152488 0.071821
2.000000 0.445141 0.089142
10.000000 4.868070 0.597872
20.000000 4.006390 1.119818
Largest value of LMaxK found 10
Total Cross Sections
Energy Total Cross Section
0.10000 0.54364
0.50000 2.52593
2.00000 7.88941
10.00000 21.62774
20.00000 17.68207
Time Now = 159.4291 Delta time = 0.0097 Finalize