Execution on n0151.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:41.623 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test14
#
# script for SF6 photoionization test run using G03 output for orbitals
#
Label 'SF6 core ionization'
LMax 15 # maximum l to be used for wave functions
LMaxI 40 # maximum l value used to determine numerical angular grids
EMax 100.0 # EMax, maximum asymptotic energy in eV
OrbOcc # occupation of the orbital groups of target
1 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
ScatSym 'T1U' # Scattering symmetry of total final state
ScatContSym 'T1U' # Scattering symmetry of continuum electron
SpinDeg 1 # Spin degeneracy of the total scattering state (=1 singlet)
TargSym 'A1G' # Symmetry of the target state
TargSpinDeg 2 # Target spin degeneracy
InitSym 'A1G' # Initial state symmetry
InitSpinDeg 1 # Initial state spin degeneracy
OrbOccInit # Orbital occupation of initial state
2 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
ScatEng 0.1 60.0 90.0 # list of scattering energies
FegeEng 2490. # Energy correction used in the fege potential
IPot 2490. # IPot, ionization potential
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test14.g03' 'gaussian'
FileName 'MatrixElements' 'test14.idy' 'REWIND'
FileName 'PlotData' 'test14.dat' 'REWIND'
GetBlms
ExpOrb
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
+ End of input reached
+ Data Record Label - 'SF6 core ionization'
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record EMax - 100.0
+ Data Record OrbOcc - 1 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
+ Data Record ScatSym - 'T1U'
+ Data Record ScatContSym - 'T1U'
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'A1G'
+ Data Record TargSpinDeg - 2
+ Data Record InitSym - 'A1G'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
+ Data Record ScatEng - 0.1 60.0 90.0
+ Data Record FegeEng - 2490.
+ Data Record IPot - 2490.
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test14.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # RHF/6-311G(2D,2P) 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 35 number already selected 0
Number of orbitals selected is 35
Highest orbital read in is = 35
Time Now = 0.0154 Delta time = 0.0154 End GaussianCnv
Atoms found 7 Coordinates in Angstroms
Z = 16 ZS = 16 r = 0.0000000000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 0.0000000000 0.0000000000 1.5602260000
Z = 9 ZS = 9 r = 0.0000000000 1.5602260000 0.0000000000
Z = 9 ZS = 9 r = -1.5602260000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 1.5602260000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 0.0000000000 -1.5602260000 0.0000000000
Z = 9 ZS = 9 r = 0.0000000000 0.0000000000 -1.5602260000
Maximum distance from expansion center is 1.5602260000
+ Command FileName
+ 'MatrixElements' 'test14.idy' 'REWIND'
Opening file test14.idy at position REWIND
+ Command FileName
+ 'PlotData' 'test14.dat' 'REWIND'
Opening file test14.dat at position REWIND
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Oh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.0362 Delta time = 0.0208 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 9 1.56023 9 1.56023
2 0.00000 1.00000 0.00000 9 1.56023 9 1.56023
3 -1.00000 0.00000 0.00000 9 1.56023 9 1.56023
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000
3 0.00000 1.00000 0.00000
Computed default value of LMaxA = 15
Determining angular grid in GetAxMax LMax = 15 LMaxA = 15 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Oh
LMax 15
The dimension of each irreducable representation is
A1G ( 1) A2G ( 1) EG ( 2) T1G ( 3) T2G ( 3)
A1U ( 1) A2U ( 1) EU ( 2) T1U ( 3) T2U ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
16 19 24 2 4 3 5
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1G 1 1 8 1 1 1 1 1 1 1
A2G 1 2 4 1 1 1 1 1 1 1
EG 1 3 12 1 1 1 1 1 1 1
EG 2 4 12 1 1 1 1 1 1 1
T1G 1 5 12 -1 -1 1 1 -1 -1 1
T1G 2 6 12 -1 1 -1 1 -1 1 -1
T1G 3 7 12 1 -1 -1 1 1 -1 -1
T2G 1 8 16 -1 -1 1 1 -1 -1 1
T2G 2 9 16 -1 1 -1 1 -1 1 -1
T2G 3 10 16 1 -1 -1 1 1 -1 -1
A1U 1 11 3 1 1 1 -1 -1 -1 -1
A2U 1 12 7 1 1 1 -1 -1 -1 -1
EU 1 13 9 1 1 1 -1 -1 -1 -1
EU 2 14 9 1 1 1 -1 -1 -1 -1
T1U 1 15 20 -1 -1 1 -1 1 1 -1
T1U 2 16 20 -1 1 -1 -1 1 -1 1
T1U 3 17 20 1 -1 -1 -1 -1 1 1
T2U 1 18 16 -1 -1 1 -1 1 1 -1
T2U 2 19 16 -1 1 -1 -1 1 -1 1
T2U 3 20 16 1 -1 -1 -1 -1 1 1
Time Now = 0.3728 Delta time = 0.3366 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G 1 0( 1) 1( 1) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 5) 11( 5) 12( 7) 13( 7) 14( 8) 15( 8)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 1)
10( 2) 11( 2) 12( 3) 13( 3) 14( 4) 15( 4)
EG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9) 13( 9) 14( 12) 15( 12)
EG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9) 13( 9) 14( 12) 15( 12)
T1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12) 15( 12)
T1G 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12) 15( 12)
T1G 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12) 15( 12)
T2G 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 6) 9( 6)
10( 9) 11( 9) 12( 12) 13( 12) 14( 16) 15( 16)
T2G 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 6) 9( 6)
10( 9) 11( 9) 12( 12) 13( 12) 14( 16) 15( 16)
T2G 3 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 6) 9( 6)
10( 9) 11( 9) 12( 12) 13( 12) 14( 16) 15( 16)
A1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 1)
10( 1) 11( 1) 12( 1) 13( 2) 14( 2) 15( 3)
A2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4) 12( 4) 13( 5) 14( 5) 15( 7)
EU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 5) 12( 5) 13( 7) 14( 7) 15( 9)
EU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 5) 12( 5) 13( 7) 14( 7) 15( 9)
T1U 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 6) 8( 6) 9( 9)
10( 9) 11( 12) 12( 12) 13( 16) 14( 16) 15( 20)
T1U 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 6) 8( 6) 9( 9)
10( 9) 11( 12) 12( 12) 13( 16) 14( 16) 15( 20)
T1U 3 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 6) 8( 6) 9( 9)
10( 9) 11( 12) 12( 12) 13( 16) 14( 16) 15( 20)
T2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12) 15( 16)
T2U 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12) 15( 16)
T2U 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12) 15( 16)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 30
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 3 sym =B2G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 7 sym =B2U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 136 1 1 1 1 1 1 1
B1G 1 2 120 -1 -1 1 1 -1 -1 1
B2G 1 3 120 1 -1 -1 1 1 -1 -1
B3G 1 4 120 -1 1 -1 1 -1 1 -1
AU 1 5 105 1 1 1 -1 -1 -1 -1
B1U 1 6 120 -1 -1 1 -1 1 1 -1
B2U 1 7 120 1 -1 -1 -1 -1 1 1
B3U 1 8 120 -1 1 -1 -1 1 -1 1
Time Now = 0.3777 Delta time = 0.0049 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 7.6821016117 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 7.68210 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 100.00000 eV
Maximum step size (MaxStep) = 7.68210 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.93413E+05
2 Center at = 1.56023 Angs Alpha Max = 0.24300E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.17314E-03 0.00139
2 8 16 0.18458E-03 0.00286
3 8 24 0.22753E-03 0.00468
4 8 32 0.34522E-03 0.00744
5 8 40 0.54886E-03 0.01183
6 8 48 0.87261E-03 0.01882
7 8 56 0.13873E-02 0.02991
8 8 64 0.22057E-02 0.04756
9 8 72 0.35067E-02 0.07561
10 8 80 0.55752E-02 0.12021
11 8 88 0.88638E-02 0.19112
12 8 96 0.14092E-01 0.30386
13 8 104 0.19060E-01 0.45635
14 8 112 0.20002E-01 0.61636
15 8 120 0.18519E-01 0.76451
16 8 128 0.17538E-01 0.90481
17 8 136 0.16840E-01 1.03953
18 8 144 0.16840E-01 1.17425
19 8 152 0.16901E-01 1.30946
20 8 160 0.11421E-01 1.40083
21 8 168 0.72598E-02 1.45891
22 8 176 0.46146E-02 1.49582
23 8 184 0.29332E-02 1.51929
24 8 192 0.18645E-02 1.53420
25 8 200 0.11851E-02 1.54369
26 8 208 0.75332E-03 1.54971
27 8 216 0.48738E-03 1.55361
28 8 224 0.37814E-03 1.55664
29 8 232 0.34156E-03 1.55937
30 8 240 0.10710E-03 1.56023
31 8 248 0.33947E-03 1.56294
32 8 256 0.36190E-03 1.56584
33 8 264 0.44612E-03 1.56941
34 8 272 0.67686E-03 1.57482
35 8 280 0.10761E-02 1.58343
36 8 288 0.17109E-02 1.59712
37 8 296 0.27201E-02 1.61888
38 8 304 0.43245E-02 1.65347
39 8 312 0.68754E-02 1.70848
40 8 320 0.10931E-01 1.79593
41 8 328 0.17067E-01 1.93246
42 8 336 0.17089E-01 2.06917
43 8 344 0.17109E-01 2.20604
44 8 352 0.18697E-01 2.35562
45 8 360 0.20474E-01 2.51942
46 8 368 0.22174E-01 2.69681
47 8 376 0.23795E-01 2.88716
48 8 384 0.25338E-01 3.08987
49 8 392 0.26805E-01 3.30431
50 8 400 0.28198E-01 3.52989
51 8 408 0.29519E-01 3.76605
52 8 416 0.30772E-01 4.01222
53 8 424 0.31958E-01 4.26789
54 8 432 0.33081E-01 4.53254
55 8 440 0.34145E-01 4.80569
56 8 448 0.35151E-01 5.08691
57 8 456 0.36104E-01 5.37574
58 8 464 0.37006E-01 5.67179
59 8 472 0.37861E-01 5.97468
60 8 480 0.38670E-01 6.28404
61 8 488 0.39437E-01 6.59954
62 8 496 0.40164E-01 6.92085
63 8 504 0.40853E-01 7.24767
64 8 512 0.41508E-01 7.57973
65 8 520 0.12796E-01 7.68210
Time Now = 0.4160 Delta time = 0.0383 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 40
Maximum numerical integration m (mmaxi) = 40
Maximum l to include in the asymptotic region (lmasym) = 15
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 100.00000
Print flag (iprnfg) = 0
lmasymtyts = 14
Actual value of lmasym found = 15
Number of regions of the same l expansion (NAngReg) = 9
Angular regions
1 L = 2 from ( 1) 0.00017 to ( 7) 0.00121
2 L = 5 from ( 8) 0.00139 to ( 23) 0.00445
3 L = 6 from ( 24) 0.00468 to ( 31) 0.00710
4 L = 7 from ( 32) 0.00744 to ( 47) 0.01794
5 L = 8 from ( 48) 0.01882 to ( 55) 0.02853
6 L = 10 from ( 56) 0.02991 to ( 63) 0.04535
7 L = 11 from ( 64) 0.04756 to ( 71) 0.07211
8 L = 13 from ( 72) 0.07561 to ( 79) 0.11464
9 L = 15 from ( 80) 0.12021 to ( 520) 7.68210
There are 1 angular regions for computing spherical harmonics
1 lval = 15
Maximum number of processors is 64
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 80
Proc id = 1 Last grid point = 104
Proc id = 2 Last grid point = 128
Proc id = 3 Last grid point = 152
Proc id = 4 Last grid point = 168
Proc id = 5 Last grid point = 192
Proc id = 6 Last grid point = 216
Proc id = 7 Last grid point = 240
Proc id = 8 Last grid point = 264
Proc id = 9 Last grid point = 288
Proc id = 10 Last grid point = 312
Proc id = 11 Last grid point = 336
Proc id = 12 Last grid point = 360
Proc id = 13 Last grid point = 384
Proc id = 14 Last grid point = 408
Proc id = 15 Last grid point = 432
Proc id = 16 Last grid point = 456
Proc id = 17 Last grid point = 480
Proc id = 18 Last grid point = 504
Proc id = 19 Last grid point = 520
Time Now = 0.4304 Delta time = 0.0143 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -92.447865 A1G 1 at max irg = 56 r = 0.02991
2 Orig 2 Eng = -26.385593 EG 1 at max irg = 240 r = 1.56023
3 Orig 3 Eng = -26.385593 EG 2 at max irg = 240 r = 1.56023
4 Orig 4 Eng = -26.385568 T1U 1 at max irg = 240 r = 1.56023
5 Orig 5 Eng = -26.385568 T1U 2 at max irg = 240 r = 1.56023
6 Orig 6 Eng = -26.385568 T1U 3 at max irg = 240 r = 1.56023
7 Orig 7 Eng = -26.385523 A1G 1 at max irg = 240 r = 1.56023
8 Orig 8 Eng = -9.388747 A1G 1 at max irg = 88 r = 0.19112
9 Orig 9 Eng = -7.077915 T1U 1 at max irg = 88 r = 0.19112
10 Orig 10 Eng = -7.077915 T1U 2 at max irg = 88 r = 0.19112
11 Orig 11 Eng = -7.077915 T1U 3 at max irg = 88 r = 0.19112
12 Orig 12 Eng = -1.843564 A1G 1 at max irg = 160 r = 1.40083
13 Orig 13 Eng = -1.710841 T1U 1 at max irg = 232 r = 1.55937
14 Orig 14 Eng = -1.710841 T1U 2 at max irg = 232 r = 1.55937
15 Orig 15 Eng = -1.710841 T1U 3 at max irg = 232 r = 1.55937
16 Orig 16 Eng = -1.655936 EG 1 at max irg = 240 r = 1.56023
17 Orig 17 Eng = -1.655936 EG 2 at max irg = 240 r = 1.56023
18 Orig 18 Eng = -1.099954 A1G 1 at max irg = 320 r = 1.79593
19 Orig 19 Eng = -0.924335 T1U 1 at max irg = 320 r = 1.79593
20 Orig 20 Eng = -0.924335 T1U 2 at max irg = 320 r = 1.79593
21 Orig 21 Eng = -0.924335 T1U 3 at max irg = 320 r = 1.79593
22 Orig 22 Eng = -0.831327 T2G 1 at max irg = 280 r = 1.58343
23 Orig 23 Eng = -0.831327 T2G 2 at max irg = 280 r = 1.58343
24 Orig 24 Eng = -0.831327 T2G 3 at max irg = 280 r = 1.58343
25 Orig 25 Eng = -0.737660 EG 1 at max irg = 320 r = 1.79593
26 Orig 26 Eng = -0.737660 EG 2 at max irg = 320 r = 1.79593
27 Orig 27 Eng = -0.724814 T2U 1 at max irg = 280 r = 1.58343
28 Orig 28 Eng = -0.724814 T2U 2 at max irg = 280 r = 1.58343
29 Orig 29 Eng = -0.724814 T2U 3 at max irg = 280 r = 1.58343
30 Orig 30 Eng = -0.712046 T1U 1 at max irg = 296 r = 1.61888
31 Orig 31 Eng = -0.712046 T1U 2 at max irg = 296 r = 1.61888
32 Orig 32 Eng = -0.712046 T1U 3 at max irg = 296 r = 1.61888
33 Orig 33 Eng = -0.677520 T1G 1 at max irg = 280 r = 1.58343
34 Orig 34 Eng = -0.677520 T1G 2 at max irg = 280 r = 1.58343
35 Orig 35 Eng = -0.677520 T1G 3 at max irg = 280 r = 1.58343
Rotation coefficients for orbital 1 grp = 1 A1G 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 EG 1
1 -0.1769665647 2 0.9842168638
Rotation coefficients for orbital 3 grp = 2 EG 2
1 0.9842168638 2 0.1769665647
Rotation coefficients for orbital 4 grp = 3 T1U 1
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 5 grp = 3 T1U 2
1 -1.0000000000 2 -0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 6 grp = 3 T1U 3
1 -0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 7 grp = 4 A1G 1
1 1.0000000000
Rotation coefficients for orbital 8 grp = 5 A1G 1
1 1.0000000000
Rotation coefficients for orbital 9 grp = 6 T1U 1
1 -0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 10 grp = 6 T1U 2
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 11 grp = 6 T1U 3
1 1.0000000000 2 0.0000000000 3 0.0000000000
Rotation coefficients for orbital 12 grp = 7 A1G 1
1 1.0000000000
Rotation coefficients for orbital 13 grp = 8 T1U 1
1 0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 14 grp = 8 T1U 2
1 -1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 15 grp = 8 T1U 3
1 -0.0000000000 2 0.0000000000 3 1.0000000000
Rotation coefficients for orbital 16 grp = 9 EG 1
1 0.5002934503 2 0.8658559139
Rotation coefficients for orbital 17 grp = 9 EG 2
1 -0.8658559139 2 0.5002934503
Rotation coefficients for orbital 18 grp = 10 A1G 1
1 1.0000000000
Rotation coefficients for orbital 19 grp = 11 T1U 1
1 -0.0000000000 2 0.0000000000 3 1.0000000000
Rotation coefficients for orbital 20 grp = 11 T1U 2
1 -0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 21 grp = 11 T1U 3
1 1.0000000000 2 0.0000000000 3 0.0000000000
Rotation coefficients for orbital 22 grp = 12 T2G 1
1 -0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 23 grp = 12 T2G 2
1 0.0000000000 2 0.0000000000 3 1.0000000000
Rotation coefficients for orbital 24 grp = 12 T2G 3
1 1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 25 grp = 13 EG 1
1 -0.1633372263 2 0.9865702968
Rotation coefficients for orbital 26 grp = 13 EG 2
1 -0.9865702968 2 -0.1633372263
Rotation coefficients for orbital 27 grp = 14 T2U 1
1 0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 28 grp = 14 T2U 2
1 0.0000000000 2 -1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 29 grp = 14 T2U 3
1 -1.0000000000 2 -0.0000000000 3 0.0000000000
Rotation coefficients for orbital 30 grp = 15 T1U 1
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 31 grp = 15 T1U 2
1 1.0000000000 2 -0.0000000000 3 0.0000000000
Rotation coefficients for orbital 32 grp = 15 T1U 3
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 33 grp = 16 T1G 1
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 34 grp = 16 T1G 2
1 -1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 35 grp = 16 T1G 3
1 0.0000000000 2 0.0000000000 3 -1.0000000000
Number of orbital groups and degeneracis are 16
1 2 3 1 1 3 1 3 2 1 3 3 2 3 3 3
Number of orbital groups and number of electrons when fully occupied
16
2 4 6 2 2 6 2 6 4 2 6 6 4 6 6 6
Time Now = 0.6951 Delta time = 0.2648 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 16
Orbital 1 of A1G 1 symmetry normalization integral = 0.99999999
Orbital 2 of EG 1 symmetry normalization integral = 0.55843502
Orbital 3 of T1U 1 symmetry normalization integral = 0.58773011
Orbital 4 of A1G 1 symmetry normalization integral = 0.53527419
Orbital 5 of A1G 1 symmetry normalization integral = 0.99999991
Orbital 6 of T1U 1 symmetry normalization integral = 0.99999985
Orbital 7 of A1G 1 symmetry normalization integral = 0.96812200
Orbital 8 of T1U 1 symmetry normalization integral = 0.96361789
Orbital 9 of EG 1 symmetry normalization integral = 0.95603090
Orbital 10 of A1G 1 symmetry normalization integral = 0.98514732
Orbital 11 of T1U 1 symmetry normalization integral = 0.99135487
Orbital 12 of T2G 1 symmetry normalization integral = 0.98380448
Orbital 13 of EG 1 symmetry normalization integral = 0.99404941
Orbital 14 of T2U 1 symmetry normalization integral = 0.98304625
Orbital 15 of T1U 1 symmetry normalization integral = 0.98575827
Orbital 16 of T1G 1 symmetry normalization integral = 0.97340206
Time Now = 1.3856 Delta time = 0.6905 End ExpOrb
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 16
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - A1G 1
Set 2 has degeneracy 2
Orbital 1 is num 2 type = 3 name - EG 1
Orbital 2 is num 3 type = 4 name - EG 2
Set 3 has degeneracy 3
Orbital 1 is num 4 type = 15 name - T1U 1
Orbital 2 is num 5 type = 16 name - T1U 2
Orbital 3 is num 6 type = 17 name - T1U 3
Set 4 has degeneracy 1
Orbital 1 is num 7 type = 1 name - A1G 1
Set 5 has degeneracy 1
Orbital 1 is num 8 type = 1 name - A1G 1
Set 6 has degeneracy 3
Orbital 1 is num 9 type = 15 name - T1U 1
Orbital 2 is num 10 type = 16 name - T1U 2
Orbital 3 is num 11 type = 17 name - T1U 3
Set 7 has degeneracy 1
Orbital 1 is num 12 type = 1 name - A1G 1
Set 8 has degeneracy 3
Orbital 1 is num 13 type = 15 name - T1U 1
Orbital 2 is num 14 type = 16 name - T1U 2
Orbital 3 is num 15 type = 17 name - T1U 3
Set 9 has degeneracy 2
Orbital 1 is num 16 type = 3 name - EG 1
Orbital 2 is num 17 type = 4 name - EG 2
Set 10 has degeneracy 1
Orbital 1 is num 18 type = 1 name - A1G 1
Set 11 has degeneracy 3
Orbital 1 is num 19 type = 15 name - T1U 1
Orbital 2 is num 20 type = 16 name - T1U 2
Orbital 3 is num 21 type = 17 name - T1U 3
Set 12 has degeneracy 3
Orbital 1 is num 22 type = 8 name - T2G 1
Orbital 2 is num 23 type = 9 name - T2G 2
Orbital 3 is num 24 type = 10 name - T2G 3
Set 13 has degeneracy 2
Orbital 1 is num 25 type = 3 name - EG 1
Orbital 2 is num 26 type = 4 name - EG 2
Set 14 has degeneracy 3
Orbital 1 is num 27 type = 18 name - T2U 1
Orbital 2 is num 28 type = 19 name - T2U 2
Orbital 3 is num 29 type = 20 name - T2U 3
Set 15 has degeneracy 3
Orbital 1 is num 30 type = 15 name - T1U 1
Orbital 2 is num 31 type = 16 name - T1U 2
Orbital 3 is num 32 type = 17 name - T1U 3
Set 16 has degeneracy 3
Orbital 1 is num 33 type = 5 name - T1G 1
Orbital 2 is num 34 type = 6 name - T1G 2
Orbital 3 is num 35 type = 7 name - T1G 3
Orbital occupations by degenerate group
1 A1G occ = 1
2 EG occ = 4
3 T1U occ = 6
4 A1G occ = 2
5 A1G occ = 2
6 T1U occ = 6
7 A1G occ = 2
8 T1U occ = 6
9 EG occ = 4
10 A1G occ = 2
11 T1U occ = 6
12 T2G occ = 6
13 EG occ = 4
14 T2U occ = 6
15 T1U occ = 6
16 T1G occ = 6
The dimension of each irreducable representation is
A1G ( 1) A2G ( 1) EG ( 2) T1G ( 3) T2G ( 3)
A1U ( 1) A2U ( 1) EU ( 2) T1U ( 3) T2U ( 3)
Symmetry of the continuum orbital is T1U
Symmetry of the total state is T1U
Spin degeneracy of the total state is = 1
Symmetry of the target state is A1G
Spin degeneracy of the target state is = 2
Symmetry of the initial state is A1G
Spin degeneracy of the initial state is = 1
Orbital occupations of initial state by degenerate group
1 A1G occ = 2
2 EG occ = 4
3 T1U occ = 6
4 A1G occ = 2
5 A1G occ = 2
6 T1U occ = 6
7 A1G occ = 2
8 T1U occ = 6
9 EG occ = 4
10 A1G occ = 2
11 T1U occ = 6
12 T2G occ = 6
13 EG occ = 4
14 T2U occ = 6
15 T1U occ = 6
16 T1G occ = 6
Open shell symmetry types
1 A1G iele = 1
Use only configuration of type A1G
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
A1G ( 1)
representation A1G component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Open shell symmetry types
1 A1G iele = 1
2 T1U iele = 1
Use only configuration of type T1U
Each irreducable representation is present the number of times indicated
T1U ( 1)
representation T1U component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 6
2: 0.70711 0.00000 2 3
representation T1U component 2 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 7
2: 0.70711 0.00000 2 4
representation T1U component 3 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 8
2: 0.70711 0.00000 2 5
Open shell symmetry types
1 A1G iele = 1
Use only configuration of type A1G
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
A1G ( 1)
representation A1G component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 74
2: 0.70711 0.00000 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 71
Direct product basis function
1: -0.70711 0.00000 1 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 75
2: 0.70711 0.00000 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 72
Direct product basis function
1: -0.70711 0.00000 1 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 76
2: 0.70711 0.00000 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 73
Closed shell target
Time Now = 1.3885 Delta time = 0.0028 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.70711 0.00000 1 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 74
2: 0.70711 0.00000 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 71
Configuration 2
1: -0.70711 0.00000 1 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 75
2: 0.70711 0.00000 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 72
Configuration 3
1: -0.70711 0.00000 1 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 76
2: 0.70711 0.00000 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 73
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 74
2: 0.70711 0.00000 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 71
Direct product Configuration Cont sym = 2 Targ sym = 1
1: -0.70711 0.00000 1 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 75
2: 0.70711 0.00000 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 72
Direct product Configuration Cont sym = 3 Targ sym = 1
1: -0.70711 0.00000 1 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 76
2: 0.70711 0.00000 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 73
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 9
Symmetry of target = 1
Symmetry of total states = 9
Total symmetry component = 1
Cont Target Component
Comp 1
1 0.10000000E+01
2 0.00000000E+00
3 0.00000000E+00
Total symmetry component = 2
Cont Target Component
Comp 1
1 0.00000000E+00
2 0.10000000E+01
3 0.00000000E+00
Total symmetry component = 3
Cont Target Component
Comp 1
1 0.00000000E+00
2 0.00000000E+00
3 0.10000000E+01
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
One electron matrix elements between initial and final states
1: -1.414213562 0.000000000 < 1| 71>
Reduced formula list
1 1 1 -0.1414213562E+01
Time Now = 1.3892 Delta time = 0.0007 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 1
Symmetry of the continuum orbital (iContSym) = 9 or T1U
Symmetry of total final state (iTotalSym) = 9 or T1U
Symmetry of the initial state (iInitSym) = 1 or A1G
Symmetry of the ionized target state (iTargSym) = 1 or A1G
List of unique symmetry types
In the product of the symmetry types T1U A1G
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U A1G
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U A2G
Each irreducable representation is present the number of times indicated
T2U ( 1)
In the product of the symmetry types T1U EG
Each irreducable representation is present the number of times indicated
T1U ( 1)
T2U ( 1)
In the product of the symmetry types T1U T1G
Each irreducable representation is present the number of times indicated
A1U ( 1)
EU ( 1)
T1U ( 1)
T2U ( 1)
In the product of the symmetry types T1U T2G
Each irreducable representation is present the number of times indicated
A2U ( 1)
EU ( 1)
T1U ( 1)
T2U ( 1)
In the product of the symmetry types T1U A1U
Each irreducable representation is present the number of times indicated
T1G ( 1)
In the product of the symmetry types T1U A2U
Each irreducable representation is present the number of times indicated
T2G ( 1)
In the product of the symmetry types T1U EU
Each irreducable representation is present the number of times indicated
T1G ( 1)
T2G ( 1)
In the product of the symmetry types T1U T1U
Each irreducable representation is present the number of times indicated
A1G ( 1)
EG ( 1)
T1G ( 1)
T2G ( 1)
Unique dipole matrix type 1 Dipole symmetry type =T1U
Final state symmetry type = T1U Target sym =A1G
Continuum type =T1U
In the product of the symmetry types T1U T2U
Each irreducable representation is present the number of times indicated
A2G ( 1)
EG ( 1)
T1G ( 1)
T2G ( 1)
In the product of the symmetry types T1U A1G
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U A1G
Each irreducable representation is present the number of times indicated
T1U ( 1)
In the product of the symmetry types T1U A1G
Each irreducable representation is present the number of times indicated
T1U ( 1)
Irreducible representation containing the dipole operator is T1U
Number of different dipole operators in this representation is 1
In the product of the symmetry types T1U A1G
Each irreducable representation is present the number of times indicated
T1U ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
2 ( 0.00000000E+00, 0.00000000E+00)
3 ( 0.00000000E+00, 0.00000000E+00)
Vector of the total symmetry
ie = 2 ij = 1
1 ( 0.00000000E+00, 0.00000000E+00)
2 ( 0.10000000E+01, 0.00000000E+00)
3 ( 0.00000000E+00, 0.00000000E+00)
Vector of the total symmetry
ie = 3 ij = 1
1 ( 0.00000000E+00, 0.00000000E+00)
2 ( 0.00000000E+00, 0.00000000E+00)
3 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Component Dipole Op Sym = 2 goes to Total Sym component 2 phase = 1.0
Component Dipole Op Sym = 3 goes to Total Sym component 3 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 0.00000000 0.00000000 1.00000000
sym comp = 2
coefficients = 1.00000000 0.00000000 0.00000000
sym comp = 3
coefficients = 0.00000000 1.00000000 0.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 1 Orb 1 Coef = -1.4142135620
Symmetry type to write out (SymTyp) =T1U
Time Now = 9.1826 Delta time = 7.7934 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 69.00000000
Time Now = 9.1933 Delta time = 0.0107 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.69000000E+02 facnorm = 0.10000000E+01
Time Now = 9.2056 Delta time = 0.0123 Electronic part
Time Now = 9.2073 Delta time = 0.0017 End StPot
+ Command PhIon
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.24900000E+04 eV
Do E = 0.10000000E+00 eV ( 0.36749326E-02 AU)
Time Now = 9.2173 Delta time = 0.0100 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1U 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 13
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 65
Number of partial waves (np) = 20
Number of asymptotic solutions on the right (NAsymR) = 16
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 15
Number of partial waves in the asymptotic region (npasym) = 20
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 136
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 13
Highest l used at large r (lpasym) = 15
Higest l used in the asymptotic potential (lpzb) = 30
Maximum L used in the homogeneous solution (LMaxHomo) = 15
Number of partial waves in the homogeneous solution (npHomo) = 20
Time Now = 9.2249 Delta time = 0.0076 Energy independent setup
Compute solution for E = 0.1000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.32196468E-14 Asymp Coef = -0.30512588E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.27755576E-16 Asymp Moment = -0.94612690E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.62450045E-16 Asymp Moment = -0.21287855E-13 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10353285E-03 Asymp Moment = 0.37489523E+01 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.32526065E-18 Asymp Moment = 0.11777776E-13 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.12250172E-03 Asymp Moment = 0.44358201E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.58287333E-16
i = 2 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.58287609E-16
i = 3 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.58288118E-16
i = 4 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.58288784E-16
For potential 3
Number of asymptotic regions = 7
Final point in integration = 0.94081469E+02 Angstroms
Time Now = 10.8642 Delta time = 1.6393 End SolveHomo
Final Dipole matrix
ROW 1
(-0.24221381E-02, 0.36165119E-02) (-0.25567912E-02, 0.12728070E-03)
( 0.34835986E-04, 0.35330631E-05) (-0.32366629E-04, 0.12027731E-04)
(-0.89723881E-07,-0.10177004E-07) (-0.28676268E-06, 0.77554085E-08)
( 0.39621342E-10,-0.35422289E-11) ( 0.69791026E-10, 0.53366529E-11)
(-0.15954008E-09, 0.22391011E-10) (-0.11338151E-13,-0.27162338E-15)
(-0.19218862E-13, 0.54828612E-14) (-0.84016926E-13, 0.15298023E-13)
( 0.46049642E-18,-0.57551983E-18) ( 0.60962600E-18,-0.99284241E-19)
( 0.24463114E-18, 0.64136045E-18) (-0.10572032E-16, 0.10906372E-17)
ROW 2
(-0.21896063E+00, 0.32682296E+00) (-0.23031357E+00, 0.11567924E-01)
( 0.31992633E-02, 0.31951852E-03) (-0.27900309E-02, 0.10861722E-02)
(-0.84346727E-05,-0.90512626E-06) (-0.25642562E-04, 0.69159488E-06)
( 0.38788474E-08,-0.32092053E-09) ( 0.66807078E-08, 0.47311098E-09)
(-0.13511503E-07, 0.20005305E-08) (-0.11876206E-11,-0.13223649E-13)
(-0.19212178E-11, 0.50630970E-12) (-0.74151971E-11, 0.13648626E-11)
( 0.73525938E-16,-0.52604682E-16) ( 0.89891974E-16,-0.78706700E-17)
( 0.71569940E-16, 0.55062647E-16) (-0.84676477E-15, 0.95211404E-16)
MaxIter = 6 c.s. = 0.20797997 rmsk= 0.00000047 Abs eps 0.22891784E-05 Rel eps 0.40300965E-03
Time Now = 19.6787 Delta time = 8.8145 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.24900000E+04 eV
Do E = 0.60000000E+02 eV ( 0.22049596E+01 AU)
Time Now = 19.6887 Delta time = 0.0100 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1U 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 13
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 65
Number of partial waves (np) = 20
Number of asymptotic solutions on the right (NAsymR) = 16
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 15
Number of partial waves in the asymptotic region (npasym) = 20
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 136
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 13
Highest l used at large r (lpasym) = 15
Higest l used in the asymptotic potential (lpzb) = 30
Maximum L used in the homogeneous solution (LMaxHomo) = 15
Number of partial waves in the homogeneous solution (npHomo) = 20
Time Now = 19.6947 Delta time = 0.0060 Energy independent setup
Compute solution for E = 60.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.32196468E-14 Asymp Coef = -0.30512588E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.27755576E-16 Asymp Moment = -0.94612690E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.62450045E-16 Asymp Moment = -0.21287855E-13 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10353285E-03 Asymp Moment = 0.37489523E+01 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.32526065E-18 Asymp Moment = 0.11777776E-13 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.12250172E-03 Asymp Moment = 0.44358201E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.13361632E-15
i = 2 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.13361659E-15
i = 3 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.13361710E-15
i = 4 exps = -0.58068273E+02 -0.20000000E+01 stpote = -0.13361777E-15
For potential 3
Number of asymptotic regions = 30
Final point in integration = 0.26186127E+02 Angstroms
Time Now = 21.5806 Delta time = 1.8859 End SolveHomo
Final Dipole matrix
ROW 1
( 0.63376092E-02,-0.75850407E-02) ( 0.89512976E-03, 0.10969373E-02)
(-0.39337279E-02, 0.12592341E-02) (-0.23633757E-02,-0.21929424E-02)
( 0.46417842E-02,-0.18993867E-02) ( 0.55044485E-03, 0.10950090E-01)
(-0.81161132E-03, 0.64619632E-03) (-0.13114147E-02, 0.77890800E-03)
(-0.18168351E-02, 0.52305771E-02) ( 0.12626203E-03,-0.13110277E-03)
( 0.16724449E-03,-0.16018864E-03) ( 0.10492088E-03, 0.65613472E-03)
(-0.62876554E-05, 0.96662502E-05) (-0.93951480E-05, 0.14559527E-04)
(-0.12032858E-04, 0.16637728E-04) (-0.18667245E-05, 0.85166062E-04)
ROW 2
( 0.59236065E+00,-0.71287172E+00) ( 0.84216012E-01, 0.10080281E+00)
(-0.36976571E+00, 0.11585056E+00) (-0.22201638E+00,-0.20620624E+00)
( 0.43401796E+00,-0.17567207E+00) ( 0.50785450E-01, 0.10252644E+01)
(-0.75666763E-01, 0.60079900E-01) (-0.12233044E+00, 0.72335826E-01)
(-0.16948933E+00, 0.48856777E+00) ( 0.11748742E-01,-0.12200018E-01)
( 0.15578132E-01,-0.14907265E-01) ( 0.98419031E-02, 0.61371338E-01)
(-0.58249826E-03, 0.89973965E-03) (-0.87192968E-03, 0.13557599E-02)
(-0.11178489E-02, 0.15492914E-02) (-0.15887693E-03, 0.79542800E-02)
MaxIter = 8 c.s. = 2.69321989 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.90358199E-08
Time Now = 32.2094 Delta time = 10.6288 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.24900000E+04 eV
Do E = 0.90000000E+02 eV ( 0.33074393E+01 AU)
Time Now = 32.2196 Delta time = 0.0101 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T1U 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 13
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 65
Number of partial waves (np) = 20
Number of asymptotic solutions on the right (NAsymR) = 16
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 15
Number of partial waves in the asymptotic region (npasym) = 20
Number of orthogonality constraints (NOrthUse) = 5
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 136
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 13
Highest l used at large r (lpasym) = 15
Higest l used in the asymptotic potential (lpzb) = 30
Maximum L used in the homogeneous solution (LMaxHomo) = 15
Number of partial waves in the homogeneous solution (npHomo) = 20
Time Now = 32.2256 Delta time = 0.0060 Energy independent setup
Compute solution for E = 90.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.32196468E-14 Asymp Coef = -0.30512588E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.27755576E-16 Asymp Moment = -0.94612690E-14 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.62450045E-16 Asymp Moment = -0.21287855E-13 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10353285E-03 Asymp Moment = 0.37489523E+01 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.32526065E-18 Asymp Moment = 0.11777776E-13 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.12250172E-03 Asymp Moment = 0.44358201E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.58068273E+02 -0.20000000E+01 stpote = 0.89632625E-16
i = 2 exps = -0.58068273E+02 -0.20000000E+01 stpote = 0.89632350E-16
i = 3 exps = -0.58068273E+02 -0.20000000E+01 stpote = 0.89631841E-16
i = 4 exps = -0.58068273E+02 -0.20000000E+01 stpote = 0.89631176E-16
For potential 3
Number of asymptotic regions = 32
Final point in integration = 0.24148589E+02 Angstroms
Time Now = 34.1192 Delta time = 1.8936 End SolveHomo
Final Dipole matrix
ROW 1
( 0.63938253E-02,-0.10442145E-01) ( 0.42042133E-02,-0.12029741E-02)
( 0.29366597E-03,-0.64046632E-03) (-0.34530188E-02,-0.22876431E-02)
( 0.56803925E-04,-0.40050293E-03) ( 0.29841884E-02, 0.22100533E-02)
( 0.60759392E-04, 0.23030977E-03) ( 0.22580127E-03, 0.38863759E-03)
( 0.34819599E-02, 0.17100032E-02) (-0.64484050E-04,-0.60250866E-04)
(-0.10331215E-03,-0.63749091E-04) ( 0.90677861E-03, 0.12302886E-03)
( 0.76762683E-05, 0.52720307E-05) ( 0.13345944E-04, 0.44207514E-05)
( 0.17446091E-04, 0.21809156E-05) ( 0.16823817E-03,-0.53076794E-05)
ROW 2
( 0.60688477E+00,-0.99052527E+00) ( 0.39864408E+00,-0.11391067E+00)
( 0.27882788E-01,-0.60908204E-01) (-0.32721803E+00,-0.21741574E+00)
( 0.53897326E-02,-0.37712599E-01) ( 0.28426512E+00, 0.20973138E+00)
( 0.59601229E-02, 0.21692471E-01) ( 0.21698698E-01, 0.36667151E-01)
( 0.33168279E+00, 0.16173558E+00) (-0.62031867E-02,-0.56624448E-02)
(-0.99008164E-02,-0.59857300E-02) ( 0.86316711E-01, 0.11562087E-01)
( 0.74011967E-03, 0.49285057E-03) ( 0.12816865E-02, 0.40929619E-03)
( 0.16718704E-02, 0.19491373E-03) ( 0.16033205E-01,-0.54554770E-03)
MaxIter = 7 c.s. = 1.95317745 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.33391302E-08
Time Now = 43.8434 Delta time = 9.7242 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 43.8445 Delta time = 0.0011 End CnvIdy
Found 3 energies :
0.10000000 60.00000000 90.00000000
List of matrix element types found Number = 1
1 Cont Sym T1U Targ Sym A1G Total Sym T1U
Keeping 3 energies :
0.10000000 60.00000000 90.00000000
Time Now = 43.8446 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 2490.0000 eV
Label -SF6 core ionization
Cross section by partial wave F
Cross Sections for SF6 core ionization
Sigma LENGTH at all energies
Eng
2490.1000 0.11985135E-01
2550.0000 0.14780918E+00
2580.0000 0.10559034E+00
Sigma MIXED at all energies
Eng
2490.1000 0.11827031E-01
2550.0000 0.14769593E+00
2580.0000 0.10568846E+00
Sigma VELOCITY at all energies
Eng
2490.1000 0.11671039E-01
2550.0000 0.14758431E+00
2580.0000 0.10578689E+00
Beta LENGTH at all energies
Eng
2490.1000 0.15722557E+01
2550.0000 0.91059350E+00
2580.0000 0.14902669E+01
Beta MIXED at all energies
Eng
2490.1000 0.15731235E+01
2550.0000 0.91092243E+00
2580.0000 0.14893912E+01
Beta VELOCITY at all energies
Eng
2490.1000 0.15739901E+01
2550.0000 0.91125287E+00
2580.0000 0.14885119E+01
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 2490.1000 0.0120 0.0118 0.0117 1.5723 1.5731 1.5740
EPhi 2550.0000 0.1478 0.1477 0.1476 0.9106 0.9109 0.9113
EPhi 2580.0000 0.1056 0.1057 0.1058 1.4903 1.4894 1.4885
Time Now = 43.8608 Delta time = 0.0162 End CrossSection
Time Now = 43.8611 Delta time = 0.0003 Finalize