Execution on n0213.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:47.743 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test12 Using OpenMolCas molden file
#
# N2 molden SCF, (3-sigma-g)^-1 photoionization
#
LMax 22 # maximum l to be used for wave functions
LMaxI 120
EMax 50.0 # EMax, maximum asymptotic energy in eV
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatEng 10.0 # list of scattering energies
InitSym 'SG' # Initial state symmetry
InitSpinDeg 1 # Initial state spin degeneracy
OrbOccInit 2 2 2 2 2 4 # Orbital occupation of initial state
OrbOcc 2 2 2 2 1 4 # occupation of the orbital groups of target
SpinDeg 1 # Spin degeneracy of the total scattering state (=1 singlet)
TargSym 'SG' # Symmetry of the target state
TargSpinDeg 2 # Target spin degeneracy
IPot 15.581 # ionization potentail
EpsAsym 3 52.91772083
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test12.molcas' 'Molden'
GetBlms
ExpOrb
ScatSym 'SU' # Scattering symmetry of total final state
ScatContSym 'SU' # Scattering symmetry of continuum electron
FileName 'MatrixElements' 'test12SU.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
ScatSym 'PU' # Scattering symmetry of total final state
ScatContSym 'PU' # Scattering symmetry of continuum electron
FileName 'MatrixElements' 'test12PU.idy' 'REWIND'
GenFormPhIon
DipoleOp
GetPot
PhIon
GetCro
#
GetCro 'test12PU.idy' 'test12SU.idy'
#
#
+ End of input reached
+ Data Record LMax - 22
+ Data Record LMaxI - 120
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record ScatEng - 10.0
+ Data Record InitSym - 'SG'
+ Data Record InitSpinDeg - 1
+ Data Record OrbOccInit - 2 2 2 2 2 4
+ Data Record OrbOcc - 2 2 2 2 1 4
+ Data Record SpinDeg - 1
+ Data Record TargSym - 'SG'
+ Data Record TargSpinDeg - 2
+ Data Record IPot - 15.581
+ Data Record EpsAsym - 3 52.91772083
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test12.molcas' 'Molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using Molden
Conversion factor for Bohr to Angstroms is 0.5291772083000000
Found 110 basis functions
Selecting orbitals
Number of orbitals selected is 7
Selecting 1 1 SymOrb = 1ag Ene = -15.6840 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 2ag Ene = -1.4720 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 3ag Ene = -0.6343 Spin =Alpha Occup = 2.000000
Selecting 4 25 SymOrb = 1b3u Ene = -0.6142 Spin =Alpha Occup = 2.000000
Selecting 5 38 SymOrb = 1b2u Ene = -0.6142 Spin =Alpha Occup = 2.000000
Selecting 6 56 SymOrb = 1b1u Ene = -15.6810 Spin =Alpha Occup = 2.000000
Selecting 7 57 SymOrb = 2b1u Ene = -0.7793 Spin =Alpha Occup = 2.000000
Atoms found 2 Coordinates in Angstroms
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 -0.5488399993
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 0.5488399993
Maximum distance from expansion center is 0.5488399993
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group DAh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.0504 Delta time = 0.0504 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 7 0.54884 7 0.54884
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 11
Determining angular grid in GetAxMax LMax = 22 LMaxA = 11 LMaxAb = 44
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 3 3 3 3 3 3 3 3
3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 14 14 14 14 14 14 14 14 14 14 14 6 6 6 6 6 6
6 6 6 6 6
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is DAh
LMax 22
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
12 22 32 2 3 21 31
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
SG 1 1 13 1 1 1 1 1 1 1
A2G 1 2 1 1 -1 -1 1 1 -1 -1
B1G 1 3 3 -1 1 -1 1 -1 1 -1
B2G 1 4 3 -1 -1 1 1 -1 -1 1
PG 1 5 12 -1 -1 1 1 -1 -1 1
PG 2 6 12 -1 1 -1 1 -1 1 -1
DG 1 7 13 1 -1 -1 1 1 -1 -1
DG 2 8 13 1 1 1 1 1 1 1
FG 1 9 12 -1 -1 1 1 -1 -1 1
FG 2 10 12 -1 1 -1 1 -1 1 -1
GG 1 11 7 1 -1 -1 1 1 -1 -1
GG 2 12 7 1 1 1 1 1 1 1
SU 1 13 12 1 -1 -1 -1 -1 1 1
A2U 1 14 1 1 1 1 -1 -1 -1 -1
B1U 1 15 4 -1 -1 1 -1 1 1 -1
B2U 1 16 4 -1 1 -1 -1 1 -1 1
PU 1 17 14 -1 -1 1 -1 1 1 -1
PU 2 18 14 -1 1 -1 -1 1 -1 1
DU 1 19 12 1 -1 -1 -1 -1 1 1
DU 2 20 12 1 1 1 -1 -1 -1 -1
FU 1 21 13 -1 -1 1 -1 1 1 -1
FU 2 22 13 -1 1 -1 -1 1 -1 1
GU 1 23 7 1 -1 -1 -1 -1 1 1
GU 2 24 7 1 1 1 -1 -1 -1 -1
Time Now = 1.1362 Delta time = 1.0857 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG 1 0( 1) 1( 1) 2( 2) 3( 2) 4( 3) 5( 3) 6( 4) 7( 4) 8( 5) 9( 5)
10( 7) 11( 7)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 1) 11( 1)
B1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
B2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
PG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
PG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
DG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
DG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
FG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
FG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
GG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
GG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
SU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 5)
10( 5) 11( 7)
A2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 0) 11( 1)
B1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
B2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
PU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
PU 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
DU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
DU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
FU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
FU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
GU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
GU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 44
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 142 1 1 1 1 1 1 1
B1G 1 2 119 1 -1 -1 1 1 -1 -1
B2G 1 3 119 -1 -1 1 1 -1 -1 1
B3G 1 4 119 -1 1 -1 1 -1 1 -1
AU 1 5 112 1 1 1 -1 -1 -1 -1
B1U 1 6 134 1 -1 -1 -1 -1 1 1
B2U 1 7 123 -1 -1 1 -1 1 1 -1
B3U 1 8 123 -1 1 -1 -1 1 -1 1
Time Now = 1.1430 Delta time = 0.0068 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 9.7429730852 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 9.74297 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 9.74297 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.54884 Angs Alpha Max = 0.14700E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.19062E-02 0.01525
2 8 16 0.26839E-02 0.03672
3 8 24 0.43199E-02 0.07128
4 8 32 0.57890E-02 0.11759
5 8 40 0.67485E-02 0.17158
6 8 48 0.68608E-02 0.22647
7 8 56 0.63139E-02 0.27698
8 8 64 0.56134E-02 0.32188
9 8 72 0.49594E-02 0.36156
10 8 80 0.49866E-02 0.40145
11 8 88 0.55369E-02 0.44575
12 8 96 0.46954E-02 0.48331
13 8 104 0.29845E-02 0.50719
14 8 112 0.18971E-02 0.52236
15 8 120 0.12059E-02 0.53201
16 8 128 0.76649E-03 0.53814
17 8 136 0.53675E-03 0.54244
18 8 144 0.45383E-03 0.54607
19 8 152 0.34660E-03 0.54884
20 8 160 0.43646E-03 0.55233
21 8 168 0.46530E-03 0.55605
22 8 176 0.57358E-03 0.56064
23 8 184 0.87025E-03 0.56760
24 8 192 0.13836E-02 0.57867
25 8 200 0.21997E-02 0.59627
26 8 208 0.34972E-02 0.62425
27 8 216 0.55601E-02 0.66873
28 8 224 0.88398E-02 0.73945
29 8 232 0.10199E-01 0.82104
30 8 240 0.11324E-01 0.91163
31 8 248 0.15101E-01 1.03244
32 8 256 0.21632E-01 1.20549
33 8 264 0.32074E-01 1.46208
34 8 272 0.42552E-01 1.80250
35 8 280 0.47759E-01 2.18457
36 8 288 0.52194E-01 2.60212
37 8 296 0.55948E-01 3.04970
38 8 304 0.59122E-01 3.52268
39 8 312 0.61811E-01 4.01717
40 8 320 0.64100E-01 4.52997
41 8 328 0.66059E-01 5.05844
42 8 336 0.67747E-01 5.60042
43 8 344 0.69209E-01 6.15409
44 8 352 0.70484E-01 6.71796
45 8 360 0.71604E-01 7.29079
46 8 368 0.72592E-01 7.87153
47 8 376 0.73469E-01 8.45928
48 8 384 0.74252E-01 9.05330
49 8 392 0.74954E-01 9.65293
50 8 400 0.11255E-01 9.74297
Time Now = 1.1546 Delta time = 0.0116 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 22
Maximum scattering m (mmaxs) = 22
Maximum numerical integration l (lmaxi) = 120
Maximum numerical integration m (mmaxi) = 120
Maximum l to include in the asymptotic region (lmasym) = 11
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 10
Actual value of lmasym found = 11
Number of regions of the same l expansion (NAngReg) = 10
Angular regions
1 L = 2 from ( 1) 0.00191 to ( 7) 0.01334
2 L = 4 from ( 8) 0.01525 to ( 15) 0.03404
3 L = 6 from ( 16) 0.03672 to ( 23) 0.06696
4 L = 7 from ( 24) 0.07128 to ( 31) 0.11180
5 L = 9 from ( 32) 0.11759 to ( 39) 0.16483
6 L = 11 from ( 40) 0.17158 to ( 47) 0.21961
7 L = 19 from ( 48) 0.22647 to ( 71) 0.35660
8 L = 22 from ( 72) 0.36156 to ( 240) 0.91163
9 L = 19 from ( 241) 0.92673 to ( 256) 1.20549
10 L = 11 from ( 257) 1.23757 to ( 400) 9.74297
There are 2 angular regions for computing spherical harmonics
1 lval = 11
2 lval = 22
Maximum number of processors is 49
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 56
Proc id = 1 Last grid point = 72
Proc id = 2 Last grid point = 88
Proc id = 3 Last grid point = 104
Proc id = 4 Last grid point = 112
Proc id = 5 Last grid point = 128
Proc id = 6 Last grid point = 136
Proc id = 7 Last grid point = 152
Proc id = 8 Last grid point = 168
Proc id = 9 Last grid point = 176
Proc id = 10 Last grid point = 192
Proc id = 11 Last grid point = 200
Proc id = 12 Last grid point = 216
Proc id = 13 Last grid point = 232
Proc id = 14 Last grid point = 240
Proc id = 15 Last grid point = 256
Proc id = 16 Last grid point = 296
Proc id = 17 Last grid point = 328
Proc id = 18 Last grid point = 368
Proc id = 19 Last grid point = 400
Time Now = 1.1607 Delta time = 0.0061 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
##########################################
The orbitals have been reordered by energy
##########################################
R of maximum density
1 Orig 1 Eng = -15.684000 SG 1 at max irg = 160 r = 0.55233
2 Orig 6 Eng = -15.681000 SU 1 at max irg = 160 r = 0.55233
3 Orig 2 Eng = -1.472000 SG 1 at max irg = 152 r = 0.54884
4 Orig 7 Eng = -0.779300 SU 1 at max irg = 240 r = 0.91163
5 Orig 3 Eng = -0.634300 SG 1 at max irg = 240 r = 0.91163
6 Orig 4 Eng = -0.614200 PU 1 at max irg = 216 r = 0.66873
7 Orig 5 Eng = -0.614200 PU 2 at max irg = 216 r = 0.66873
Rotation coefficients for orbital 1 grp = 1 SG 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 SU 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 SG 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 SU 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 SG 1
1 1.0000000000
Rotation coefficients for orbital 6 grp = 6 PU 1
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 7 grp = 6 PU 2
1 1.0000000000 2 0.0000000000
Number of orbital groups and degeneracis are 6
1 1 1 1 1 2
Number of orbital groups and number of electrons when fully occupied
6
2 2 2 2 2 4
Time Now = 1.5751 Delta time = 0.4144 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 6
Orbital 1 of SG 1 symmetry normalization integral = 0.99803016
Orbital 2 of SU 1 symmetry normalization integral = 0.99760077
Orbital 3 of SG 1 symmetry normalization integral = 0.99989447
Orbital 4 of SU 1 symmetry normalization integral = 0.99989714
Orbital 5 of SG 1 symmetry normalization integral = 0.99999062
Orbital 6 of PU 1 symmetry normalization integral = 0.99999969
Time Now = 2.6644 Delta time = 1.0893 End ExpOrb
+ Data Record ScatSym - 'SU'
+ Data Record ScatContSym - 'SU'
+ Command FileName
+ 'MatrixElements' 'test12SU.idy' 'REWIND'
Opening file test12SU.idy at position REWIND
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 6
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - SG 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 13 name - SU 1
Set 3 has degeneracy 1
Orbital 1 is num 3 type = 1 name - SG 1
Set 4 has degeneracy 1
Orbital 1 is num 4 type = 13 name - SU 1
Set 5 has degeneracy 1
Orbital 1 is num 5 type = 1 name - SG 1
Set 6 has degeneracy 2
Orbital 1 is num 6 type = 17 name - PU 1
Orbital 2 is num 7 type = 18 name - PU 2
Orbital occupations by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 SG occ = 1
6 PU occ = 4
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Symmetry of the continuum orbital is SU
Symmetry of the total state is SU
Spin degeneracy of the total state is = 1
Symmetry of the target state is SG
Spin degeneracy of the target state is = 2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is = 1
Orbital occupations of initial state by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 SG occ = 2
6 PU occ = 4
Open shell symmetry types
1 SG iele = 1
Use only configuration of type SG
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SG ( 1)
representation SG component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Open shell symmetry types
1 SG iele = 1
2 SU iele = 1
Use only configuration of type SU
Each irreducable representation is present the number of times indicated
SU ( 1)
representation SU component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 4
2: 0.70711 0.00000 2 3
Open shell symmetry types
1 SG iele = 1
Use only configuration of type SG
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SG ( 1)
representation SG component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 16
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Closed shell target
Time Now = 2.6672 Delta time = 0.0027 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 16
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 16
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 9
Symmetry of target = 1
Symmetry of total states = 9
Total symmetry component = 1
Cont Target Component
Comp 1
1 0.10000000E+01
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14
One electron matrix elements between initial and final states
1: -1.414213562 0.000000000 < 9| 15>
Reduced formula list
1 5 1 -0.1414213562E+01
Time Now = 2.6675 Delta time = 0.0004 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 1
Symmetry of the continuum orbital (iContSym) = 9 or SU
Symmetry of total final state (iTotalSym) = 9 or SU
Symmetry of the initial state (iInitSym) = 1 or SG
Symmetry of the ionized target state (iTargSym) = 1 or SG
List of unique symmetry types
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types SU A2G
Each irreducable representation is present the number of times indicated
A2U ( 1)
In the product of the symmetry types SU B1G
Each irreducable representation is present the number of times indicated
B1U ( 1)
In the product of the symmetry types SU B2G
Each irreducable representation is present the number of times indicated
B2U ( 1)
In the product of the symmetry types SU PG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types SU DG
Each irreducable representation is present the number of times indicated
DU ( 1)
In the product of the symmetry types SU FG
Each irreducable representation is present the number of times indicated
FU ( 1)
In the product of the symmetry types SU GG
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types SU SU
Each irreducable representation is present the number of times indicated
SG ( 1)
Unique dipole matrix type 1 Dipole symmetry type =SU
Final state symmetry type = SU Target sym =SG
Continuum type =SU
In the product of the symmetry types SU A2U
Each irreducable representation is present the number of times indicated
A2G ( 1)
In the product of the symmetry types SU B1U
Each irreducable representation is present the number of times indicated
B1G ( 1)
In the product of the symmetry types SU B2U
Each irreducable representation is present the number of times indicated
B2G ( 1)
In the product of the symmetry types SU PU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types SU DU
Each irreducable representation is present the number of times indicated
DG ( 1)
In the product of the symmetry types SU FU
Each irreducable representation is present the number of times indicated
FG ( 1)
In the product of the symmetry types SU GU
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU A2G
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU B1G
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PU B2G
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PU PG
Each irreducable representation is present the number of times indicated
SU ( 1)
A2U ( 1)
DU ( 1)
In the product of the symmetry types PU DG
Each irreducable representation is present the number of times indicated
PU ( 1)
FU ( 1)
In the product of the symmetry types PU FG
Each irreducable representation is present the number of times indicated
DU ( 1)
GU ( 1)
In the product of the symmetry types PU GG
Each irreducable representation is present the number of times indicated
B1U ( 1)
B2U ( 1)
FU ( 1)
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PU A2U
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PU B1U
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PU B2U
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PU PU
Each irreducable representation is present the number of times indicated
SG ( 1)
A2G ( 1)
DG ( 1)
Unique dipole matrix type 2 Dipole symmetry type =PU
Final state symmetry type = PU Target sym =SG
Continuum type =PU
In the product of the symmetry types PU DU
Each irreducable representation is present the number of times indicated
PG ( 1)
FG ( 1)
In the product of the symmetry types PU FU
Each irreducable representation is present the number of times indicated
DG ( 1)
GG ( 1)
In the product of the symmetry types PU GU
Each irreducable representation is present the number of times indicated
B1G ( 1)
B2G ( 1)
FG ( 1)
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
Irreducible representation containing the dipole operator is SU
Number of different dipole operators in this representation is 1
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 0.00000000 0.00000000 1.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 1 Orb 5 Coef = -1.4142135620
Symmetry type to write out (SymTyp) =SU
Time Now = 15.8208 Delta time = 13.1532 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 13.00000000
Time Now = 15.8273 Delta time = 0.0066 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.13000000E+02 facnorm = 0.10000000E+01
Time Now = 15.8384 Delta time = 0.0110 Electronic part
Time Now = 15.8389 Delta time = 0.0006 End StPot
+ Command PhIon
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 15.8778 Delta time = 0.0389 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SU 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 9
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.52917721E+02 Angs
Asymptotic cutoff type (iAsymCond) = 3
Number of integration regions used = 50
Number of partial waves (np) = 12
Number of asymptotic solutions on the right (NAsymR) = 5
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 2
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 22
Maximum m used in usual function (LMax) = 22
Maxamum l used in expanding static potential (lpotct) = 44
Maximum l used in exapnding the exchange potential (lmaxab) = 44
Higest l included in the expansion of the wave function (lnp) = 21
Higest l included in the K matrix (lna) = 9
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 15.8877 Delta time = 0.0099 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.58286709E-15 Asymp Coef = -0.14291775E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.36788985E-18 Asymp Moment = -0.25582992E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.49030621E-03 Asymp Moment = 0.34095802E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13163229E-20 Asymp Moment = 0.15640530E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27066851E-20 Asymp Moment = -0.32160794E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.87751540E-07 Asymp Moment = -0.10426626E-01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.73646203E+02 -0.20000000E+01 stpote = -0.79834866E-16
i = 2 exps = -0.73646203E+02 -0.20000000E+01 stpote = -0.79834868E-16
i = 3 exps = -0.73646203E+02 -0.20000000E+01 stpote = -0.79834872E-16
i = 4 exps = -0.73646203E+02 -0.20000000E+01 stpote = -0.79834877E-16
For potential 3
Number of asymptotic regions = 28
Final point in integration = 0.52917721E+02 Angstroms
Time Now = 16.6079 Delta time = 0.7202 End SolveHomo
Final Dipole matrix
ROW 1
(-0.29879717E+00, 0.11561475E+01) ( 0.13308302E+01,-0.66676135E+00)
( 0.21607319E-01,-0.22409125E-01) ( 0.15062364E-03,-0.15781470E-03)
( 0.64497256E-06,-0.62230700E-06)
ROW 2
(-0.26121864E+00, 0.10110991E+01) ( 0.11647736E+01,-0.58350313E+00)
( 0.19996671E-01,-0.19634555E-01) ( 0.14883925E-03,-0.14349865E-03)
( 0.70733148E-06,-0.59291921E-06)
MaxIter = 7 c.s. = 6.43112068 rmsk= 0.00000003 Abs eps 0.25625503E-05 Rel eps 0.25819619E-04
Time Now = 20.4900 Delta time = 3.8821 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 20.4903 Delta time = 0.0003 End CnvIdy
Found 1 energies :
10.00000000
List of matrix element types found Number = 1
1 Cont Sym SU Targ Sym SG Total Sym SU
Keeping 1 energies :
10.00000000
Time Now = 20.4904 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 15.5810 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
25.5810 0.58622619E+01
Sigma MIXED at all energies
Eng
25.5810 0.54560538E+01
Sigma VELOCITY at all energies
Eng
25.5810 0.50779957E+01
Beta LENGTH at all energies
Eng
25.5810 0.48032768E+00
Beta MIXED at all energies
Eng
25.5810 0.48001400E+00
Beta VELOCITY at all energies
Eng
25.5810 0.47970021E+00
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 25.5810 5.8623 5.4561 5.0780 0.4803 0.4800 0.4797
Time Now = 20.4931 Delta time = 0.0027 End CrossSection
+ Data Record ScatSym - 'PU'
+ Data Record ScatContSym - 'PU'
+ Command FileName
+ 'MatrixElements' 'test12PU.idy' 'REWIND'
Opening file test12PU.idy at position REWIND
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 6
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - SG 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 13 name - SU 1
Set 3 has degeneracy 1
Orbital 1 is num 3 type = 1 name - SG 1
Set 4 has degeneracy 1
Orbital 1 is num 4 type = 13 name - SU 1
Set 5 has degeneracy 1
Orbital 1 is num 5 type = 1 name - SG 1
Set 6 has degeneracy 2
Orbital 1 is num 6 type = 17 name - PU 1
Orbital 2 is num 7 type = 18 name - PU 2
Orbital occupations by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 SG occ = 1
6 PU occ = 4
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Symmetry of the continuum orbital is PU
Symmetry of the total state is PU
Spin degeneracy of the total state is = 1
Symmetry of the target state is SG
Spin degeneracy of the target state is = 2
Symmetry of the initial state is SG
Spin degeneracy of the initial state is = 1
Orbital occupations of initial state by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 SG occ = 2
6 PU occ = 4
Open shell symmetry types
1 SG iele = 1
Use only configuration of type SG
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SG ( 1)
representation SG component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Open shell symmetry types
1 SG iele = 1
2 PU iele = 1
Use only configuration of type PU
Each irreducable representation is present the number of times indicated
PU ( 1)
representation PU component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 5
2: 0.70711 0.00000 2 3
representation PU component 2 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 6
2: 0.70711 0.00000 2 4
Open shell symmetry types
1 SG iele = 1
Use only configuration of type SG
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SG ( 1)
representation SG component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 17
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 18
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 16
Closed shell target
Time Now = 20.4957 Delta time = 0.0025 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 17
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Configuration 2
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 18
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 16
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 17
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Direct product Configuration Cont sym = 2 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 18
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 16
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 13
Symmetry of target = 1
Symmetry of total states = 13
Total symmetry component = 1
Cont Target Component
Comp 1
1 0.10000000E+01
2 0.00000000E+00
Total symmetry component = 2
Cont Target Component
Comp 1
1 0.00000000E+00
2 0.10000000E+01
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14
One electron matrix elements between initial and final states
1: -1.414213562 0.000000000 < 9| 15>
Reduced formula list
1 5 1 -0.1414213562E+01
Time Now = 20.4961 Delta time = 0.0005 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 1
Symmetry of the continuum orbital (iContSym) = 13 or PU
Symmetry of total final state (iTotalSym) = 13 or PU
Symmetry of the initial state (iInitSym) = 1 or SG
Symmetry of the ionized target state (iTargSym) = 1 or SG
List of unique symmetry types
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types SU A2G
Each irreducable representation is present the number of times indicated
A2U ( 1)
In the product of the symmetry types SU B1G
Each irreducable representation is present the number of times indicated
B1U ( 1)
In the product of the symmetry types SU B2G
Each irreducable representation is present the number of times indicated
B2U ( 1)
In the product of the symmetry types SU PG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types SU DG
Each irreducable representation is present the number of times indicated
DU ( 1)
In the product of the symmetry types SU FG
Each irreducable representation is present the number of times indicated
FU ( 1)
In the product of the symmetry types SU GG
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types SU SU
Each irreducable representation is present the number of times indicated
SG ( 1)
Unique dipole matrix type 1 Dipole symmetry type =SU
Final state symmetry type = SU Target sym =SG
Continuum type =SU
In the product of the symmetry types SU A2U
Each irreducable representation is present the number of times indicated
A2G ( 1)
In the product of the symmetry types SU B1U
Each irreducable representation is present the number of times indicated
B1G ( 1)
In the product of the symmetry types SU B2U
Each irreducable representation is present the number of times indicated
B2G ( 1)
In the product of the symmetry types SU PU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types SU DU
Each irreducable representation is present the number of times indicated
DG ( 1)
In the product of the symmetry types SU FU
Each irreducable representation is present the number of times indicated
FG ( 1)
In the product of the symmetry types SU GU
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU A2G
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU B1G
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PU B2G
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PU PG
Each irreducable representation is present the number of times indicated
SU ( 1)
A2U ( 1)
DU ( 1)
In the product of the symmetry types PU DG
Each irreducable representation is present the number of times indicated
PU ( 1)
FU ( 1)
In the product of the symmetry types PU FG
Each irreducable representation is present the number of times indicated
DU ( 1)
GU ( 1)
In the product of the symmetry types PU GG
Each irreducable representation is present the number of times indicated
B1U ( 1)
B2U ( 1)
FU ( 1)
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PU A2U
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PU B1U
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PU B2U
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PU PU
Each irreducable representation is present the number of times indicated
SG ( 1)
A2G ( 1)
DG ( 1)
Unique dipole matrix type 2 Dipole symmetry type =PU
Final state symmetry type = PU Target sym =SG
Continuum type =PU
In the product of the symmetry types PU DU
Each irreducable representation is present the number of times indicated
PG ( 1)
FG ( 1)
In the product of the symmetry types PU FU
Each irreducable representation is present the number of times indicated
DG ( 1)
GG ( 1)
In the product of the symmetry types PU GU
Each irreducable representation is present the number of times indicated
B1G ( 1)
B2G ( 1)
FG ( 1)
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
Irreducible representation containing the dipole operator is PU
Number of different dipole operators in this representation is 1
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
2 ( 0.99920072E-16, 0.00000000E+00)
Vector of the total symmetry
ie = 2 ij = 1
1 ( 0.99920072E-16, 0.00000000E+00)
2 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Component Dipole Op Sym = 2 goes to Total Sym component 2 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 0.00000000 1.00000000 0.00000000
sym comp = 2
coefficients = 1.00000000 0.00000000 0.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 1 Orb 5 Coef = -1.4142135620
Symmetry type to write out (SymTyp) =PU
Time Now = 33.6456 Delta time = 13.1495 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 13.00000000
Time Now = 33.6508 Delta time = 0.0051 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.13000000E+02 facnorm = 0.10000000E+01
Time Now = 33.6616 Delta time = 0.0108 Electronic part
Time Now = 33.6622 Delta time = 0.0006 End StPot
+ Command PhIon
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 33.6964 Delta time = 0.0342 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PU 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 9
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.52917721E+02 Angs
Asymptotic cutoff type (iAsymCond) = 3
Number of integration regions used = 50
Number of partial waves (np) = 14
Number of asymptotic solutions on the right (NAsymR) = 6
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 9
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 22
Maximum m used in usual function (LMax) = 22
Maxamum l used in expanding static potential (lpotct) = 44
Maximum l used in exapnding the exchange potential (lmaxab) = 44
Higest l included in the expansion of the wave function (lnp) = 21
Higest l included in the K matrix (lna) = 9
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 9
Time Now = 33.7054 Delta time = 0.0090 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.58286709E-15 Asymp Coef = -0.14291775E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.36788985E-18 Asymp Moment = -0.25582992E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.49030621E-03 Asymp Moment = 0.34095802E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13163229E-20 Asymp Moment = 0.15640530E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.27066851E-20 Asymp Moment = -0.32160794E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.87751540E-07 Asymp Moment = -0.10426626E-01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.73646203E+02 -0.20000000E+01 stpote = -0.79834866E-16
i = 2 exps = -0.73646203E+02 -0.20000000E+01 stpote = -0.79834868E-16
i = 3 exps = -0.73646203E+02 -0.20000000E+01 stpote = -0.79834872E-16
i = 4 exps = -0.73646203E+02 -0.20000000E+01 stpote = -0.79834877E-16
For potential 3
Number of asymptotic regions = 28
Final point in integration = 0.52917721E+02 Angstroms
Time Now = 34.5668 Delta time = 0.8614 End SolveHomo
Final Dipole matrix
ROW 1
(-0.57226124E-02, 0.51633129E+00) ( 0.81002936E+00,-0.10250330E+00)
( 0.17802248E-01,-0.89326639E-02) ( 0.12269022E-03,-0.81612979E-04)
(-0.17083581E-16,-0.59165841E-16) ( 0.45808986E-06,-0.30411112E-06)
ROW 2
( 0.30272379E-02, 0.48644471E+00) ( 0.67631916E+00,-0.80221881E-01)
( 0.15080977E-01,-0.73466552E-02) ( 0.10874359E-03,-0.68365269E-04)
(-0.95657824E-17,-0.53264015E-16) ( 0.44985876E-06,-0.26838784E-06)
MaxIter = 7 c.s. = 1.63444418 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.17171516E-08
Time Now = 38.5155 Delta time = 3.9487 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 38.5158 Delta time = 0.0003 End CnvIdy
Found 1 energies :
10.00000000
List of matrix element types found Number = 1
1 Cont Sym PU Targ Sym SG Total Sym PU
Keeping 1 energies :
10.00000000
Time Now = 38.5158 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 15.5810 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
25.5810 0.30052601E+01
Sigma MIXED at all energies
Eng
25.5810 0.27649216E+01
Sigma VELOCITY at all energies
Eng
25.5810 0.25522309E+01
Beta LENGTH at all energies
Eng
25.5810 0.12530156E+01
Beta MIXED at all energies
Eng
25.5810 0.12888066E+01
Beta VELOCITY at all energies
Eng
25.5810 0.13227977E+01
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 25.5810 3.0053 2.7649 2.5522 1.2530 1.2888 1.3228
Time Now = 38.5186 Delta time = 0.0027 End CrossSection
+ Command GetCro
+ 'test12PU.idy' 'test12SU.idy'
Taking dipole matrix from file test12PU.idy
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 38.5188 Delta time = 0.0002 End CnvIdy
Taking dipole matrix from file test12SU.idy
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 38.5190 Delta time = 0.0002 End CnvIdy
Found 1 energies :
10.00000000
List of matrix element types found Number = 2
1 Cont Sym PU Targ Sym SG Total Sym PU
2 Cont Sym SU Targ Sym SG Total Sym SU
Keeping 1 energies :
10.00000000
Time Now = 38.5190 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 15.5810 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
25.5810 0.88675220E+01
Sigma MIXED at all energies
Eng
25.5810 0.82209754E+01
Sigma VELOCITY at all energies
Eng
25.5810 0.76302265E+01
Beta LENGTH at all energies
Eng
25.5810 0.10007537E+01
Beta MIXED at all energies
Eng
25.5810 0.10269925E+01
Beta VELOCITY at all energies
Eng
25.5810 0.10528459E+01
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 25.5810 8.8675 8.2210 7.6302 1.0008 1.0270 1.0528
Time Now = 38.5217 Delta time = 0.0027 End CrossSection
Time Now = 38.5221 Delta time = 0.0004 Finalize