Execution on n0155.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:34.282 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test11
#
# electron scattering from N2 molden SCF, scattering from N2+ ground state
#
LMax 22 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
OrbOcc 2 2 2 2 1 4 # occupation of the orbital groups of target
TargSym 'SG' # Symmetry of the target state
TargSpinDeg 2 # Target spin degeneracy
SpinDeg 1 # Spin degeneracy of the total scattering state (=1 singlet)
ScatSym 'SU' # Scattering symmetry of total final state
ScatContSym 'SU' # Scattering symmetry of the continuum orbital
LMaxK 10 # Maximum l in the K matirx
ScatEng 10.0 # list of scattering energies
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test11.molden2012' 'molden'
GetBlms
ExpOrb
GenFormScat
GetPot
GrnType 1
Scat
+ End of input reached
+ Data Record LMax - 22
+ Data Record EMax - 50.0
+ Data Record FegeEng - 13.0
+ Data Record OrbOcc - 2 2 2 2 1 4
+ Data Record TargSym - 'SG'
+ Data Record TargSpinDeg - 2
+ Data Record SpinDeg - 1
+ Data Record ScatSym - 'SU'
+ Data Record ScatContSym - 'SU'
+ Data Record LMaxK - 10
+ Data Record ScatEng - 10.0
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test11.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 110 basis functions
Selecting orbitals
Number of orbitals selected is 7
Selecting 1 1 SymOrb = 1.1 Ene = -15.6842 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 1.5 Ene = -15.6806 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 2.1 Ene = -1.4752 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 2.5 Ene = -0.7786 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 3.1 Ene = -0.6350 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 1.3 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 1.2 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Atoms found 2 Coordinates in Angstroms
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 -0.5470000000
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 0.5470000000
Maximum distance from expansion center is 0.5470000000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group DAh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.1120 Delta time = 0.1120 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 7 0.54700 7 0.54700
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 12
Determining angular grid in GetAxMax LMax = 22 LMaxA = 12 LMaxAb = 44
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 3 3 3 3 3 3 3
3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 15 15 15 15 15 15 15 15 15 15 6 6 6 6 6
6 6 6 6 6
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is DAh
LMax 22
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
12 22 32 2 3 21 31
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
SG 1 1 14 1 1 1 1 1 1 1
A2G 1 2 2 1 -1 -1 1 1 -1 -1
B1G 1 3 4 -1 1 -1 1 -1 1 -1
B2G 1 4 4 -1 -1 1 1 -1 -1 1
PG 1 5 14 -1 -1 1 1 -1 -1 1
PG 2 6 14 -1 1 -1 1 -1 1 -1
DG 1 7 15 1 -1 -1 1 1 -1 -1
DG 2 8 15 1 1 1 1 1 1 1
FG 1 9 13 -1 -1 1 1 -1 -1 1
FG 2 10 13 -1 1 -1 1 -1 1 -1
GG 1 11 9 1 -1 -1 1 1 -1 -1
GG 2 12 9 1 1 1 1 1 1 1
SU 1 13 12 1 -1 -1 -1 -1 1 1
A2U 1 14 1 1 1 1 -1 -1 -1 -1
B1U 1 15 4 -1 -1 1 -1 1 1 -1
B2U 1 16 4 -1 1 -1 -1 1 -1 1
PU 1 17 14 -1 -1 1 -1 1 1 -1
PU 2 18 14 -1 1 -1 -1 1 -1 1
DU 1 19 12 1 -1 -1 -1 -1 1 1
DU 2 20 12 1 1 1 -1 -1 -1 -1
FU 1 21 13 -1 -1 1 -1 1 1 -1
FU 2 22 13 -1 1 -1 -1 1 -1 1
GU 1 23 7 1 -1 -1 -1 -1 1 1
GU 2 24 7 1 1 1 -1 -1 -1 -1
Time Now = 1.1742 Delta time = 1.0622 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG 1 0( 1) 1( 1) 2( 2) 3( 2) 4( 3) 5( 3) 6( 4) 7( 4) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 1) 11( 1) 12( 2)
B1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3) 12( 4)
B2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3) 12( 4)
PG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9)
PG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9)
DG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 10)
DG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 10)
FG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 8)
FG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 8)
GG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9)
GG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9)
SU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 5)
10( 5) 11( 7) 12( 7)
A2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 0) 11( 1) 12( 1)
B1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4) 12( 4)
B2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4) 12( 4)
PU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9)
PU 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9)
DU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7)
DU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7)
FU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8) 12( 8)
FU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8) 12( 8)
GU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7)
GU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 44
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 151 1 1 1 1 1 1 1
B1G 1 2 128 1 -1 -1 1 1 -1 -1
B2G 1 3 133 -1 -1 1 1 -1 -1 1
B3G 1 4 133 -1 1 -1 1 -1 1 -1
AU 1 5 116 1 1 1 -1 -1 -1 -1
B1U 1 6 138 1 -1 -1 -1 -1 1 1
B2U 1 7 133 -1 -1 1 -1 1 1 -1
B3U 1 8 133 -1 1 -1 -1 1 -1 1
Time Now = 1.1815 Delta time = 0.0072 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 9.6381911817 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 9.63819 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 9.63819 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.54700 Angs Alpha Max = 0.14700E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.18998E-02 0.01520
2 8 16 0.26749E-02 0.03660
3 8 24 0.43054E-02 0.07104
4 8 32 0.57696E-02 0.11720
5 8 40 0.67259E-02 0.17101
6 8 48 0.68378E-02 0.22571
7 8 56 0.62927E-02 0.27605
8 8 64 0.55946E-02 0.32081
9 8 72 0.49428E-02 0.36035
10 8 80 0.49699E-02 0.40011
11 8 88 0.55183E-02 0.44425
12 8 96 0.46796E-02 0.48169
13 8 104 0.29745E-02 0.50549
14 8 112 0.18907E-02 0.52061
15 8 120 0.12018E-02 0.53023
16 8 128 0.76392E-03 0.53634
17 8 136 0.53578E-03 0.54062
18 8 144 0.45350E-03 0.54425
19 8 152 0.34340E-03 0.54700
20 8 160 0.43646E-03 0.55049
21 8 168 0.46530E-03 0.55421
22 8 176 0.57358E-03 0.55880
23 8 184 0.87025E-03 0.56576
24 8 192 0.13836E-02 0.57683
25 8 200 0.21997E-02 0.59443
26 8 208 0.34972E-02 0.62241
27 8 216 0.55601E-02 0.66689
28 8 224 0.88398E-02 0.73761
29 8 232 0.10173E-01 0.81899
30 8 240 0.11296E-01 0.90936
31 8 248 0.15091E-01 1.03009
32 8 256 0.21623E-01 1.20307
33 8 264 0.32069E-01 1.45962
34 8 272 0.42541E-01 1.79995
35 8 280 0.47749E-01 2.18194
36 8 288 0.52186E-01 2.59943
37 8 296 0.55941E-01 3.04696
38 8 304 0.59116E-01 3.51989
39 8 312 0.61806E-01 4.01434
40 8 320 0.64096E-01 4.52711
41 8 328 0.66056E-01 5.05556
42 8 336 0.67743E-01 5.59750
43 8 344 0.69206E-01 6.15115
44 8 352 0.70482E-01 6.71501
45 8 360 0.71602E-01 7.28782
46 8 368 0.72590E-01 7.86855
47 8 376 0.73468E-01 8.45629
48 8 384 0.74251E-01 9.05029
49 8 392 0.73487E-01 9.63819
Time Now = 1.2050 Delta time = 0.0235 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 22
Maximum scattering m (mmaxs) = 22
Maximum numerical integration l (lmaxi) = 44
Maximum numerical integration m (mmaxi) = 44
Maximum l to include in the asymptotic region (lmasym) = 12
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 12
Actual value of lmasym found = 12
Number of regions of the same l expansion (NAngReg) = 11
Angular regions
1 L = 2 from ( 1) 0.00190 to ( 7) 0.01330
2 L = 4 from ( 8) 0.01520 to ( 15) 0.03392
3 L = 6 from ( 16) 0.03660 to ( 23) 0.06674
4 L = 7 from ( 24) 0.07104 to ( 31) 0.11143
5 L = 9 from ( 32) 0.11720 to ( 39) 0.16428
6 L = 11 from ( 40) 0.17101 to ( 47) 0.21887
7 L = 12 from ( 48) 0.22571 to ( 55) 0.26976
8 L = 20 from ( 56) 0.27605 to ( 71) 0.35540
9 L = 22 from ( 72) 0.36035 to ( 240) 0.90936
10 L = 20 from ( 241) 0.92445 to ( 256) 1.20307
11 L = 12 from ( 257) 1.23514 to ( 392) 9.63819
There are 2 angular regions for computing spherical harmonics
1 lval = 12
2 lval = 22
Maximum number of processors is 48
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 64
Proc id = 1 Last grid point = 80
Proc id = 2 Last grid point = 88
Proc id = 3 Last grid point = 104
Proc id = 4 Last grid point = 120
Proc id = 5 Last grid point = 128
Proc id = 6 Last grid point = 144
Proc id = 7 Last grid point = 152
Proc id = 8 Last grid point = 168
Proc id = 9 Last grid point = 184
Proc id = 10 Last grid point = 192
Proc id = 11 Last grid point = 208
Proc id = 12 Last grid point = 224
Proc id = 13 Last grid point = 232
Proc id = 14 Last grid point = 248
Proc id = 15 Last grid point = 264
Proc id = 16 Last grid point = 296
Proc id = 17 Last grid point = 328
Proc id = 18 Last grid point = 360
Proc id = 19 Last grid point = 392
Time Now = 1.2109 Delta time = 0.0059 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -15.684200 SG 1 at max irg = 160 r = 0.55049
2 Orig 2 Eng = -15.680600 SU 1 at max irg = 160 r = 0.55049
3 Orig 3 Eng = -1.475200 SG 1 at max irg = 152 r = 0.54700
4 Orig 4 Eng = -0.778600 SU 1 at max irg = 240 r = 0.90936
5 Orig 5 Eng = -0.635000 SG 1 at max irg = 240 r = 0.90936
6 Orig 6 Eng = -0.616100 PU 1 at max irg = 216 r = 0.66689
7 Orig 7 Eng = -0.616100 PU 2 at max irg = 216 r = 0.66689
Rotation coefficients for orbital 1 grp = 1 SG 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 SU 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 SG 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 SU 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 SG 1
1 1.0000000000
Rotation coefficients for orbital 6 grp = 6 PU 1
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 7 grp = 6 PU 2
1 -0.0000000000 2 1.0000000000
Number of orbital groups and degeneracis are 6
1 1 1 1 1 2
Number of orbital groups and number of electrons when fully occupied
6
2 2 2 2 2 4
Time Now = 1.3115 Delta time = 0.1007 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 6
Orbital 1 of SG 1 symmetry normalization integral = 0.99799207
Orbital 2 of SU 1 symmetry normalization integral = 0.99757112
Orbital 3 of SG 1 symmetry normalization integral = 0.99989266
Orbital 4 of SU 1 symmetry normalization integral = 0.99989730
Orbital 5 of SG 1 symmetry normalization integral = 0.99999036
Orbital 6 of PU 1 symmetry normalization integral = 0.99999969
Time Now = 1.5646 Delta time = 0.2531 End ExpOrb
+ Command GenFormScat
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 6
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - SG 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 13 name - SU 1
Set 3 has degeneracy 1
Orbital 1 is num 3 type = 1 name - SG 1
Set 4 has degeneracy 1
Orbital 1 is num 4 type = 13 name - SU 1
Set 5 has degeneracy 1
Orbital 1 is num 5 type = 1 name - SG 1
Set 6 has degeneracy 2
Orbital 1 is num 6 type = 17 name - PU 1
Orbital 2 is num 7 type = 18 name - PU 2
Orbital occupations by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 SG occ = 1
6 PU occ = 4
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Symmetry of the continuum orbital is SU
Symmetry of the total state is SU
Spin degeneracy of the total state is = 1
Symmetry of the target state is SG
Spin degeneracy of the target state is = 2
Open shell symmetry types
1 SG iele = 1
Use only configuration of type SG
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SG ( 1)
representation SG component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Open shell symmetry types
1 SG iele = 1
2 SU iele = 1
Use only configuration of type SU
Each irreducable representation is present the number of times indicated
SU ( 1)
representation SU component 1 fun 1
Symmeterized Function from AddNewShell
1: -0.70711 0.00000 1 4
2: 0.70711 0.00000 2 3
Open shell symmetry types
1 SG iele = 1
Use only configuration of type SG
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SG ( 1)
representation SG component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Direct product basis set
Direct product basis function
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 16
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Time Now = 1.5664 Delta time = 0.0018 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 16
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Direct product Configuration Cont sym = 1 Targ sym = 1
1: -0.70711 0.00000 1 2 3 4 5 6 7 8 9 11
12 13 14 16
2: 0.70711 0.00000 1 2 3 4 5 6 7 8 10 11
12 13 14 15
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 9
Symmetry of target = 1
Symmetry of total states = 9
Total symmetry component = 1
Cont Target Component
Comp 1
1 0.10000000E+01
Time Now = 1.5666 Delta time = 0.0003 End MatEle
In the product of the symmetry types SG SG
Each irreducable representation is present the number of times indicated
SG ( 1)
In the product of the symmetry types A2G SG
Each irreducable representation is present the number of times indicated
A2G ( 1)
In the product of the symmetry types B1G SG
Each irreducable representation is present the number of times indicated
B1G ( 1)
In the product of the symmetry types B2G SG
Each irreducable representation is present the number of times indicated
B2G ( 1)
In the product of the symmetry types PG SG
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types DG SG
Each irreducable representation is present the number of times indicated
DG ( 1)
In the product of the symmetry types FG SG
Each irreducable representation is present the number of times indicated
FG ( 1)
In the product of the symmetry types GG SG
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types A2U SG
Each irreducable representation is present the number of times indicated
A2U ( 1)
In the product of the symmetry types B1U SG
Each irreducable representation is present the number of times indicated
B1U ( 1)
In the product of the symmetry types B2U SG
Each irreducable representation is present the number of times indicated
B2U ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types DU SG
Each irreducable representation is present the number of times indicated
DU ( 1)
In the product of the symmetry types FU SG
Each irreducable representation is present the number of times indicated
FU ( 1)
In the product of the symmetry types GU SG
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types SG SG
Each irreducable representation is present the number of times indicated
SG ( 1)
In the product of the symmetry types A2G SG
Each irreducable representation is present the number of times indicated
A2G ( 1)
In the product of the symmetry types B1G SG
Each irreducable representation is present the number of times indicated
B1G ( 1)
In the product of the symmetry types B2G SG
Each irreducable representation is present the number of times indicated
B2G ( 1)
In the product of the symmetry types PG SG
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types DG SG
Each irreducable representation is present the number of times indicated
DG ( 1)
In the product of the symmetry types FG SG
Each irreducable representation is present the number of times indicated
FG ( 1)
In the product of the symmetry types GG SG
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types SU SG
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types A2U SG
Each irreducable representation is present the number of times indicated
A2U ( 1)
In the product of the symmetry types B1U SG
Each irreducable representation is present the number of times indicated
B1U ( 1)
In the product of the symmetry types B2U SG
Each irreducable representation is present the number of times indicated
B2U ( 1)
In the product of the symmetry types PU SG
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types DU SG
Each irreducable representation is present the number of times indicated
DU ( 1)
In the product of the symmetry types FU SG
Each irreducable representation is present the number of times indicated
FU ( 1)
In the product of the symmetry types GU SG
Each irreducable representation is present the number of times indicated
GU ( 1)
Found 16 T Matrix types
1 Cont SG Targ SG Total SG
2 Cont A2G Targ SG Total A2G
3 Cont B1G Targ SG Total B1G
4 Cont B2G Targ SG Total B2G
5 Cont PG Targ SG Total PG
6 Cont DG Targ SG Total DG
7 Cont FG Targ SG Total FG
8 Cont GG Targ SG Total GG
9 Cont SU Targ SG Total SU
10 Cont A2U Targ SG Total A2U
11 Cont B1U Targ SG Total B1U
12 Cont B2U Targ SG Total B2U
13 Cont PU Targ SG Total PU
14 Cont DU Targ SG Total DU
15 Cont FU Targ SG Total FU
16 Cont GU Targ SG Total GU
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 13.00000000
Time Now = 1.5755 Delta time = 0.0089 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.13000000E+02 facnorm = 0.10000000E+01
Time Now = 1.5896 Delta time = 0.0140 Electronic part
Time Now = 1.5903 Delta time = 0.0007 End StPot
+ Data Record GrnType - 1
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 1.6033 Delta time = 0.0130 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 49
Number of partial waves (np) = 12
Number of asymptotic solutions on the right (NAsymR) = 5
Number of asymptotic solutions on the left (NAsymL) = 5
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 5
Maximum in the asymptotic region (lpasym) = 12
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 2
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 91
Maximum l used in usual function (lmax) = 22
Maximum m used in usual function (LMax) = 22
Maxamum l used in expanding static potential (lpotct) = 44
Maximum l used in exapnding the exchange potential (lmaxab) = 44
Higest l included in the expansion of the wave function (lnp) = 21
Higest l included in the K matrix (lna) = 9
Highest l used at large r (lpasym) = 12
Higest l used in the asymptotic potential (lpzb) = 24
Maximum L used in the homogeneous solution (LMaxHomo) = 12
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 1.6146 Delta time = 0.0113 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 1.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.38857806E-15 Asymp Coef = -0.91245413E-10 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.30083057E-18 Asymp Moment = -0.20251984E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.50327973E-03 Asymp Moment = 0.33880909E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.11843223E-20 Asymp Moment = 0.13331503E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.26735292E-20 Asymp Moment = -0.30094984E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.25934842E-06 Asymp Moment = -0.29193946E-01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72854167E+02 -0.20000000E+01 stpote = -0.74319926E-16
i = 2 exps = -0.72854167E+02 -0.20000000E+01 stpote = -0.74319922E-16
i = 3 exps = -0.72854167E+02 -0.20000000E+01 stpote = -0.74319915E-16
i = 4 exps = -0.72854167E+02 -0.20000000E+01 stpote = -0.74319905E-16
For potential 3
Number of asymptotic regions = 121
Final point in integration = 0.19721978E+03 Angstroms
Time Now = 2.8111 Delta time = 1.1965 End SolveHomo
Final T matrix
ROW 1
( 0.32608059E+00, 0.87004627E+00) ( 0.21737207E-02,-0.82041648E-01)
( 0.94322050E-03,-0.86153298E-03) ( 0.31968299E-05,-0.53155645E-05)
( 0.54789183E-08,-0.57751529E-07)
ROW 2
( 0.21735875E-02,-0.82041612E-01) ( 0.34501265E+00, 0.14782416E+00)
( 0.13056067E-01, 0.56856055E-02) ( 0.10879648E-05, 0.74477212E-04)
(-0.30047982E-07, 0.55072777E-07)
ROW 3
( 0.94321178E-03,-0.86152277E-03) ( 0.13056073E-01, 0.56856066E-02)
( 0.20240108E-01, 0.63693297E-03) ( 0.47356203E-02, 0.14088736E-03)
(-0.21976898E-05, 0.13232503E-04)
ROW 4
( 0.31965146E-05,-0.53154479E-05) ( 0.10879058E-05, 0.74476421E-04)
( 0.47356203E-02, 0.14088737E-03) ( 0.93951400E-02, 0.11859337E-03)
( 0.28030928E-02, 0.41880641E-04)
ROW 5
( 0.64476190E-08,-0.53233533E-07) (-0.31583469E-07, 0.53229688E-07)
(-0.21976886E-05, 0.13232487E-04) ( 0.28030928E-02, 0.41880641E-04)
( 0.55467952E-02, 0.42047195E-04)
eigenphases
0.3711893E-02 0.9323282E-02 0.2162771E-01 0.3818297E+00 0.1215904E+01
eigenphase sum 0.163240E+01 scattering length= 18.91155
eps+pi 0.477399E+01 eps+2*pi 0.791558E+01
MaxIter = 8 c.s. = 4.87712517 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.74746406E-05
Time Now = 13.7934 Delta time = 10.9823 End ScatStab
Time Now = 13.7938 Delta time = 0.0004 Finalize