Execution on n0207.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:49.259 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test09
#
# Expand HOMO and LUMO of SF6
#
LMax 15 # maximum l to be used for wave functions
LMaxI 40 # maximum l value used to determine numerical angular grids
EMax 50.0 # EMax, maximum asymptotic energy in eV
CnvOrbSel 33 36
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test09.g03' 'gaussian'
GetBlms
ExpOrb
FileName 'ViewOrb' 'test09ViewOrb.dat' 'REWIND'
FileName 'ViewOrbGeom' 'test09ViewOrbGeom.dat' 'REWIND'
ViewOrbGrid
0.0 0.0 0.0
0.0 0.0 1.0
1.0 0.0 0.0
-2.5 2.5 0.1
-2.5 2.5 0.1
0.0 0.0 0.1
ViewOrb 'ExpOrb' 1 3
ViewOrb 'ExpOrb' 2
+ End of input reached
+ Data Record LMax - 15
+ Data Record LMaxI - 40
+ Data Record EMax - 50.0
+ Data Record CnvOrbSel - 33 36
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test09.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Use orbitals 33 through 36
Command line = # RHF/6-311G(2D,2P) 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 33 to 36 number already selected 0
Number of orbitals selected is 4
Highest orbital read in is = 36
Time Now = 0.0055 Delta time = 0.0055 End GaussianCnv
Atoms found 7 Coordinates in Angstroms
Z = 16 ZS = 16 r = 0.0000000000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 0.0000000000 0.0000000000 1.5602260000
Z = 9 ZS = 9 r = 0.0000000000 1.5602260000 0.0000000000
Z = 9 ZS = 9 r = -1.5602260000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 1.5602260000 0.0000000000 0.0000000000
Z = 9 ZS = 9 r = 0.0000000000 -1.5602260000 0.0000000000
Z = 9 ZS = 9 r = 0.0000000000 0.0000000000 -1.5602260000
Maximum distance from expansion center is 1.5602260000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Oh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.0390 Delta time = 0.0335 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 9 1.56023 9 1.56023
2 0.00000 1.00000 0.00000 9 1.56023 9 1.56023
3 -1.00000 0.00000 0.00000 9 1.56023 9 1.56023
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 1.00000 0.00000 0.00000
3 0.00000 1.00000 0.00000
Computed default value of LMaxA = 14
Determining angular grid in GetAxMax LMax = 15 LMaxA = 14 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Oh
LMax 15
The dimension of each irreducable representation is
A1G ( 1) A2G ( 1) EG ( 2) T1G ( 3) T2G ( 3)
A1U ( 1) A2U ( 1) EU ( 2) T1U ( 3) T2U ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
16 19 24 2 4 3 5
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1G 1 1 8 1 1 1 1 1 1 1
A2G 1 2 4 1 1 1 1 1 1 1
EG 1 3 12 1 1 1 1 1 1 1
EG 2 4 12 1 1 1 1 1 1 1
T1G 1 5 12 -1 -1 1 1 -1 -1 1
T1G 2 6 12 -1 1 -1 1 -1 1 -1
T1G 3 7 12 1 -1 -1 1 1 -1 -1
T2G 1 8 16 -1 -1 1 1 -1 -1 1
T2G 2 9 16 -1 1 -1 1 -1 1 -1
T2G 3 10 16 1 -1 -1 1 1 -1 -1
A1U 1 11 2 1 1 1 -1 -1 -1 -1
A2U 1 12 6 1 1 1 -1 -1 -1 -1
EU 1 13 8 1 1 1 -1 -1 -1 -1
EU 2 14 8 1 1 1 -1 -1 -1 -1
T1U 1 15 19 -1 -1 1 -1 1 1 -1
T1U 2 16 19 -1 1 -1 -1 1 -1 1
T1U 3 17 19 1 -1 -1 -1 -1 1 1
T2U 1 18 15 -1 -1 1 -1 1 1 -1
T2U 2 19 15 -1 1 -1 -1 1 -1 1
T2U 3 20 15 1 -1 -1 -1 -1 1 1
Time Now = 0.3112 Delta time = 0.2722 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1G 1 0( 1) 1( 1) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 5) 11( 5) 12( 7) 13( 7) 14( 8)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 1)
10( 2) 11( 2) 12( 3) 13( 3) 14( 4)
EG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9) 13( 9) 14( 12)
EG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9) 13( 9) 14( 12)
T1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12)
T1G 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12)
T1G 3 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12)
T2G 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 6) 9( 6)
10( 9) 11( 9) 12( 12) 13( 12) 14( 16)
T2G 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 6) 9( 6)
10( 9) 11( 9) 12( 12) 13( 12) 14( 16)
T2G 3 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 4) 7( 4) 8( 6) 9( 6)
10( 9) 11( 9) 12( 12) 13( 12) 14( 16)
A1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 1)
10( 1) 11( 1) 12( 1) 13( 2) 14( 2)
A2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4) 12( 4) 13( 5) 14( 5)
EU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 5) 12( 5) 13( 7) 14( 7)
EU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 5) 12( 5) 13( 7) 14( 7)
T1U 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 6) 8( 6) 9( 9)
10( 9) 11( 12) 12( 12) 13( 16) 14( 16)
T1U 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 6) 8( 6) 9( 9)
10( 9) 11( 12) 12( 12) 13( 16) 14( 16)
T1U 3 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 4) 6( 4) 7( 6) 8( 6) 9( 9)
10( 9) 11( 12) 12( 12) 13( 16) 14( 16)
T2U 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12)
T2U 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12)
T2U 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 30
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 3 sym =B2G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 7 sym =B2U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 136 1 1 1 1 1 1 1
B1G 1 2 120 -1 -1 1 1 -1 -1 1
B2G 1 3 120 1 -1 -1 1 1 -1 -1
B3G 1 4 120 -1 1 -1 1 -1 1 -1
AU 1 5 105 1 1 1 -1 -1 -1 -1
B1U 1 6 120 -1 -1 1 -1 1 1 -1
B2U 1 7 120 1 -1 -1 -1 -1 1 1
B3U 1 8 120 -1 1 -1 -1 1 -1 1
Time Now = 0.3158 Delta time = 0.0046 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 5.8721300277 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 5.87213 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 5.87213 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.93413E+05
2 Center at = 1.56023 Angs Alpha Max = 0.24300E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.17314E-03 0.00139
2 8 16 0.18458E-03 0.00286
3 8 24 0.22753E-03 0.00468
4 8 32 0.34522E-03 0.00744
5 8 40 0.54886E-03 0.01183
6 8 48 0.87261E-03 0.01882
7 8 56 0.13873E-02 0.02991
8 8 64 0.22057E-02 0.04756
9 8 72 0.35067E-02 0.07561
10 8 80 0.55752E-02 0.12021
11 8 88 0.88638E-02 0.19112
12 8 96 0.14092E-01 0.30386
13 8 104 0.19060E-01 0.45635
14 8 112 0.20002E-01 0.61636
15 8 120 0.18519E-01 0.76451
16 8 128 0.17538E-01 0.90481
17 8 136 0.17168E-01 1.04216
18 8 144 0.17168E-01 1.17950
19 8 152 0.17233E-01 1.31737
20 8 160 0.11061E-01 1.40586
21 8 168 0.70308E-02 1.46210
22 8 176 0.44691E-02 1.49785
23 8 184 0.28407E-02 1.52058
24 8 192 0.18057E-02 1.53503
25 8 200 0.11477E-02 1.54421
26 8 208 0.72955E-03 1.55004
27 8 216 0.47544E-03 1.55385
28 8 224 0.37375E-03 1.55684
29 8 232 0.34071E-03 1.55956
30 8 240 0.82832E-04 1.56023
31 8 248 0.33947E-03 1.56294
32 8 256 0.36190E-03 1.56584
33 8 264 0.44612E-03 1.56941
34 8 272 0.67686E-03 1.57482
35 8 280 0.10761E-02 1.58343
36 8 288 0.17109E-02 1.59712
37 8 296 0.27201E-02 1.61888
38 8 304 0.43245E-02 1.65347
39 8 312 0.68754E-02 1.70848
40 8 320 0.10931E-01 1.79593
41 8 328 0.17379E-01 1.93496
42 8 336 0.17431E-01 2.07441
43 8 344 0.17453E-01 2.21403
44 8 352 0.19257E-01 2.36808
45 8 360 0.21220E-01 2.53784
46 8 368 0.23133E-01 2.72290
47 8 376 0.24995E-01 2.92286
48 8 384 0.26804E-01 3.13729
49 8 392 0.28559E-01 3.36577
50 8 400 0.30261E-01 3.60786
51 8 408 0.31909E-01 3.86313
52 8 416 0.33504E-01 4.13117
53 8 424 0.35046E-01 4.41154
54 8 432 0.36536E-01 4.70383
55 8 440 0.37975E-01 5.00763
56 8 448 0.39363E-01 5.32253
57 8 456 0.40702E-01 5.64815
58 8 464 0.27998E-01 5.87213
Time Now = 0.3307 Delta time = 0.0148 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 40
Maximum numerical integration m (mmaxi) = 40
Maximum l to include in the asymptotic region (lmasym) = 14
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 14
Actual value of lmasym found = 14
Number of regions of the same l expansion (NAngReg) = 11
Angular regions
1 L = 2 from ( 1) 0.00017 to ( 7) 0.00121
2 L = 5 from ( 8) 0.00139 to ( 23) 0.00445
3 L = 6 from ( 24) 0.00468 to ( 31) 0.00710
4 L = 7 from ( 32) 0.00744 to ( 47) 0.01794
5 L = 8 from ( 48) 0.01882 to ( 55) 0.02853
6 L = 10 from ( 56) 0.02991 to ( 63) 0.04535
7 L = 11 from ( 64) 0.04756 to ( 71) 0.07211
8 L = 13 from ( 72) 0.07561 to ( 79) 0.11464
9 L = 14 from ( 80) 0.12021 to ( 127) 0.88727
10 L = 15 from ( 128) 0.90481 to ( 368) 2.72290
11 L = 14 from ( 369) 2.74790 to ( 464) 5.87213
There are 2 angular regions for computing spherical harmonics
1 lval = 14
2 lval = 15
Maximum number of processors is 57
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 72
Proc id = 1 Last grid point = 96
Proc id = 2 Last grid point = 120
Proc id = 3 Last grid point = 136
Proc id = 4 Last grid point = 160
Proc id = 5 Last grid point = 176
Proc id = 6 Last grid point = 200
Proc id = 7 Last grid point = 216
Proc id = 8 Last grid point = 240
Proc id = 9 Last grid point = 256
Proc id = 10 Last grid point = 280
Proc id = 11 Last grid point = 296
Proc id = 12 Last grid point = 320
Proc id = 13 Last grid point = 336
Proc id = 14 Last grid point = 360
Proc id = 15 Last grid point = 376
Proc id = 16 Last grid point = 400
Proc id = 17 Last grid point = 424
Proc id = 18 Last grid point = 448
Proc id = 19 Last grid point = 464
Time Now = 0.3427 Delta time = 0.0120 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -0.677520 T1G 1 at max irg = 280 r = 1.58343
2 Orig 2 Eng = -0.677520 T1G 2 at max irg = 280 r = 1.58343
3 Orig 3 Eng = -0.677520 T1G 3 at max irg = 280 r = 1.58343
4 Orig 4 Eng = 0.157879 A1G 1 at max irg = 160 r = 1.40586
Rotation coefficients for orbital 1 grp = 1 T1G 1
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 2 grp = 1 T1G 2
1 -1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 3 grp = 1 T1G 3
1 0.0000000000 2 0.0000000000 3 -1.0000000000
Rotation coefficients for orbital 4 grp = 2 A1G 1
1 1.0000000000
Number of orbital groups and degeneracis are 2
3 1
Number of orbital groups and number of electrons when fully occupied
2
6 2
Time Now = 0.3944 Delta time = 0.0517 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 2
Orbital 1 of T1G 1 symmetry normalization integral = 0.97340206
Orbital 2 of A1G 1 symmetry normalization integral = 0.98573137
Time Now = 0.6931 Delta time = 0.2987 End ExpOrb
+ Command FileName
+ 'ViewOrb' 'test09ViewOrb.dat' 'REWIND'
Opening file test09ViewOrb.dat at position REWIND
+ Command FileName
+ 'ViewOrbGeom' 'test09ViewOrbGeom.dat' 'REWIND'
Opening file test09ViewOrbGeom.dat at position REWIND
+ Data Record ViewOrbGrid
+ 0.0 0.0 0.0 / 0.0 0.0 1.0 / 1.0 0.0 0.0 / -2.5 2.5 0.1 / -2.5 2.5 0.1 / 0.0 0.0 0.1
+ Command ViewOrb
+ 'ExpOrb' 1 3
----------------------------------------------------------------------
vieworb - Orbital viewing program
----------------------------------------------------------------------
Unit for output of orbitals on cartesian grid (iuvorb) = 64
Unit for output of flux on cartesian grid (iujorb) = 0
Unit for output of geometry information (iugeom) = 66
Output will be in cartesian coordinates
Origin of coordinate system in angstroms
0.000000 0.000000 0.000000
Directional vectors as inputed
1 0.000000 0.000000 1.000000
2 1.000000 0.000000 0.000000
Directional vectors as computed
1 0.000000 0.000000 1.000000
2 1.000000 0.000000 0.000000
3 0.000000 1.000000 0.000000
In direction 1
(in Angstroms) cmin = -2.500000 cmax = 2.500000 cstep = 0.100000
In direction 2
(in Angstroms) cmin = -2.500000 cmax = 2.500000 cstep = 0.100000
In direction 3
(in Angstroms) cmin = 0.000000 cmax = 0.000000 cstep = 0.100000
Use 1 orbitals
Time Now = 0.7012 Delta time = 0.0081 End ViewOrb
+ Command ViewOrb
+ 'ExpOrb' 2
----------------------------------------------------------------------
vieworb - Orbital viewing program
----------------------------------------------------------------------
Unit for output of orbitals on cartesian grid (iuvorb) = 64
Unit for output of flux on cartesian grid (iujorb) = 0
Unit for output of geometry information (iugeom) = 66
Output will be in cartesian coordinates
Origin of coordinate system in angstroms
0.000000 0.000000 0.000000
Directional vectors as inputed
1 0.000000 0.000000 1.000000
2 1.000000 0.000000 0.000000
Directional vectors as computed
1 0.000000 0.000000 1.000000
2 1.000000 0.000000 0.000000
3 0.000000 1.000000 0.000000
In direction 1
(in Angstroms) cmin = -2.500000 cmax = 2.500000 cstep = 0.100000
In direction 2
(in Angstroms) cmin = -2.500000 cmax = 2.500000 cstep = 0.100000
In direction 3
(in Angstroms) cmin = 0.000000 cmax = 0.000000 cstep = 0.100000
Use 2 orbitals
Time Now = 0.7068 Delta time = 0.0056 End ViewOrb
Time Now = 0.7070 Delta time = 0.0002 Finalize