Execution on n0159.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:15.567 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test08
#
# Photodetachment from F2-
#
LMax 60 # maximum l to be used for wave functions
EMax 100.
PrintFlag 0 # no extra printing
FegeEng 5. # Energy correction used in the fege potential (9.89 eV from CRC)
LMaxK 12 # Maximum l in the K matirx
OrbOccInit
2 2 2 2 4 4 2 1
OrbOcc # occupation of the orbital groups of target
2 2 2 2 4 4 2 0
SpinDeg 2 # Spin degeneracy of the total scattering state (=1 singlet)
TargSym 'SG' # Symmetry of the target state
TargSpinDeg 1 # Target spin degeneracy
InitSym 'SU' # Initial state symmetry
InitSpinDeg 2 # Initial state spin degeneracy
IPot 3.1 # IPot, ionization potential, Koopmans
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test08.molden2012' 'molden'
GetBlms
#
ScatEng 1. 40.
ExpOrb
ScatSym 'SG' # Scattering symmetry of total final state
ScatContSym 'SG' # Scattering symmetry of continuum electron
GenFormPhIon
DipoleOp
GetPot
FileName 'MatrixElements' 'test08SG.dat' 'REWIND'
PhIon
GetCro
FileName 'MatrixElements' 'test08DPW.dat' 'REWIND'
CalcInt 'DipoleOp' 1 'PlaneWv' 12
FileName 'MatrixElements' 'test08PWSG.dat' 'REWIND'
PhIonPlaneWv
GetCro
ScatSym 'PG' # Scattering symmetry of total final state
ScatContSym 'PG' # Scattering symmetry of continuum electron
GenFormPhIon
DipoleOp
GetPot
FileName 'MatrixElements' 'test08PG.dat' 'REWIND'
PhIon
GetCro
FileName 'MatrixElements' 'test08DPW.dat' 'APPEND'
CalcInt 'DipoleOp' 1 'PlaneWv' 12
FileName 'MatrixElements' 'test08PWPG.dat' 'REWIND'
PhIonPlaneWv
GetCro
GetCro 'test08SG.dat' 'test08PG.dat'
GetCro 'test08PWSG.dat' 'test08PWPG.dat'
+ End of input reached
+ Data Record LMax - 60
+ Data Record EMax - 100.
+ Command PrintFlag - 0
+ Data Record FegeEng - 5.
+ Data Record LMaxK - 12
+ Data Record OrbOccInit - 2 2 2 2 4 4 2 1
+ Data Record OrbOcc - 2 2 2 2 4 4 2 0
+ Data Record SpinDeg - 2
+ Data Record TargSym - 'SG'
+ Data Record TargSpinDeg - 1
+ Data Record InitSym - 'SU'
+ Data Record InitSpinDeg - 2
+ Data Record IPot - 3.1
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test08.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 210 basis functions
Selecting orbitals
Number of orbitals selected is 10
Selecting 1 1 SymOrb = 1.1 Ene = -25.9781 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 1.5 Ene = -25.9780 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 2.1 Ene = -1.2287 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 2.5 Ene = -1.1661 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 1.2 Ene = -0.3374 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 1.3 Ene = -0.3374 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 1.7 Ene = -0.2936 Spin =Alpha Occup = 2.000000
Selecting 8 8 SymOrb = 1.6 Ene = -0.2936 Spin =Alpha Occup = 2.000000
Selecting 9 9 SymOrb = 3.1 Ene = -0.2917 Spin =Alpha Occup = 2.000000
Selecting 10 10 SymOrb = 3.5 Ene = -0.2894 Spin =Alpha Occup = 1.000000
Atoms found 2 Coordinates in Angstroms
Z = 9 ZS = 9 r = 0.0000000000 0.0000000000 -0.9525186000
Z = 9 ZS = 9 r = 0.0000000000 0.0000000000 0.9525186000
Maximum distance from expansion center is 0.9525186000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group DAh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.1016 Delta time = 0.1016 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 9 0.95252 9 0.95252
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 17
Determining angular grid in GetAxMax LMax = 60 LMaxA = 17 LMaxAb = 120
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is DAh
LMax 60
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
12 22 32 2 3 21 31
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
SG 1 1 35 1 1 1 1 1 1 1
A2G 1 2 4 1 -1 -1 1 1 -1 -1
B1G 1 3 7 -1 1 -1 1 -1 1 -1
B2G 1 4 7 -1 -1 1 1 -1 -1 1
PG 1 5 37 -1 -1 1 1 -1 -1 1
PG 2 6 37 -1 1 -1 1 -1 1 -1
DG 1 7 38 1 -1 -1 1 1 -1 -1
DG 2 8 38 1 1 1 1 1 1 1
FG 1 9 36 -1 -1 1 1 -1 -1 1
FG 2 10 36 -1 1 -1 1 -1 1 -1
GG 1 11 16 1 -1 -1 1 1 -1 -1
GG 2 12 16 1 1 1 1 1 1 1
SU 1 13 34 1 -1 -1 -1 -1 1 1
A2U 1 14 4 1 1 1 -1 -1 -1 -1
B1U 1 15 9 -1 -1 1 -1 1 1 -1
B2U 1 16 9 -1 1 -1 -1 1 -1 1
PU 1 17 39 -1 -1 1 -1 1 1 -1
PU 2 18 39 -1 1 -1 -1 1 -1 1
DU 1 19 37 1 -1 -1 -1 -1 1 1
DU 2 20 37 1 1 1 -1 -1 -1 -1
FU 1 21 39 -1 -1 1 -1 1 1 -1
FU 2 22 39 -1 1 -1 -1 1 -1 1
GU 1 23 16 1 -1 -1 -1 -1 1 1
GU 2 24 16 1 1 1 -1 -1 -1 -1
Time Now = 41.4334 Delta time = 41.3317 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG 1 0( 1) 1( 1) 2( 2) 3( 2) 4( 3) 5( 3) 6( 4) 7( 4) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9) 13( 9) 14( 11) 15( 11) 16( 13) 17( 13)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 1) 11( 1) 12( 2) 13( 2) 14( 3) 15( 3) 16( 4) 17( 4)
B1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3) 12( 4) 13( 4) 14( 5) 15( 5) 16( 7) 17( 7)
B2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3) 12( 4) 13( 4) 14( 5) 15( 5) 16( 7) 17( 7)
PG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12) 15( 12) 16( 15) 17( 15)
PG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6) 12( 9) 13( 9) 14( 12) 15( 12) 16( 15) 17( 15)
DG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 10) 13( 10) 14( 13) 15( 13) 16( 16) 17( 16)
DG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 10) 13( 10) 14( 13) 15( 13) 16( 16) 17( 16)
FG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 8) 13( 8) 14( 11) 15( 11) 16( 14) 17( 14)
FG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6) 12( 8) 13( 8) 14( 11) 15( 11) 16( 14) 17( 14)
GG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9) 13( 9) 14( 12) 15( 12) 16( 16) 17( 16)
GG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7) 12( 9) 13( 9) 14( 12) 15( 12) 16( 16) 17( 16)
SU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 5)
10( 5) 11( 7) 12( 7) 13( 9) 14( 9) 15( 11) 16( 11) 17( 13)
A2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 0) 11( 1) 12( 1) 13( 2) 14( 2) 15( 3) 16( 3) 17( 4)
B1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4) 12( 4) 13( 5) 14( 5) 15( 7) 16( 7) 17( 9)
B2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4) 12( 4) 13( 5) 14( 5) 15( 7) 16( 7) 17( 9)
PU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12) 15( 15) 16( 15) 17( 18)
PU 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9) 12( 9) 13( 12) 14( 12) 15( 15) 16( 15) 17( 18)
DU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7) 13( 10) 14( 10) 15( 13) 16( 13) 17( 16)
DU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7) 13( 10) 14( 10) 15( 13) 16( 13) 17( 16)
FU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8) 12( 8) 13( 11) 14( 11) 15( 14) 16( 14) 17( 18)
FU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8) 12( 8) 13( 11) 14( 11) 15( 14) 16( 14) 17( 18)
GU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7) 13( 9) 14( 9) 15( 12) 16( 12) 17( 16)
GU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7) 12( 7) 13( 9) 14( 9) 15( 12) 16( 12) 17( 16)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 120
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 490 1 1 1 1 1 1 1
B1G 1 2 429 1 -1 -1 1 1 -1 -1
B2G 1 3 429 -1 -1 1 1 -1 -1 1
B3G 1 4 429 -1 1 -1 1 -1 1 -1
AU 1 5 419 1 1 1 -1 -1 -1 -1
B1U 1 6 479 1 -1 -1 -1 -1 1 1
B2U 1 7 436 -1 -1 1 -1 1 1 -1
B3U 1 8 436 -1 1 -1 -1 1 -1 1
Time Now = 41.4535 Delta time = 0.0202 End SymGen
+ Data Record ScatEng - 1. 40.
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 9.2635523402 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 9.26355 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 100.00000 eV
Maximum step size (MaxStep) = 9.26355 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.95252 Angs Alpha Max = 0.74530E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.34221E-02 0.02738
2 8 16 0.48473E-02 0.06616
3 8 24 0.77780E-02 0.12838
4 8 32 0.10362E-01 0.21128
5 8 40 0.11991E-01 0.30720
6 8 48 0.12001E-01 0.40321
7 8 56 0.10974E-01 0.49100
8 8 64 0.97022E-02 0.56862
9 8 72 0.83777E-02 0.63564
10 8 80 0.71112E-02 0.69253
11 8 88 0.59599E-02 0.74021
12 8 96 0.49472E-02 0.77979
13 8 104 0.40764E-02 0.81240
14 8 112 0.39929E-02 0.84434
15 8 120 0.41291E-02 0.87738
16 8 128 0.34252E-02 0.90478
17 8 136 0.21744E-02 0.92217
18 8 144 0.13821E-02 0.93323
19 8 152 0.87852E-03 0.94026
20 8 160 0.55842E-03 0.94473
21 8 168 0.35496E-03 0.94756
22 8 176 0.24401E-03 0.94952
23 8 184 0.20348E-03 0.95114
24 8 192 0.17174E-03 0.95252
25 8 200 0.19384E-03 0.95407
26 8 208 0.20665E-03 0.95572
27 8 216 0.25473E-03 0.95776
28 8 224 0.38649E-03 0.96085
29 8 232 0.61447E-03 0.96577
30 8 240 0.97692E-03 0.97358
31 8 248 0.15532E-02 0.98601
32 8 256 0.24693E-02 1.00576
33 8 264 0.39259E-02 1.03717
34 8 272 0.50721E-02 1.07775
35 8 280 0.52705E-02 1.11991
36 8 288 0.57485E-02 1.16590
37 8 296 0.75100E-02 1.22598
38 8 304 0.99223E-02 1.30536
39 8 312 0.13295E-01 1.41172
40 8 320 0.18131E-01 1.55677
41 8 328 0.25275E-01 1.75897
42 8 336 0.32779E-01 2.02120
43 8 344 0.36094E-01 2.30995
44 8 352 0.38899E-01 2.62115
45 8 360 0.41266E-01 2.95128
46 8 368 0.43268E-01 3.29742
47 8 376 0.44966E-01 3.65715
48 8 384 0.46416E-01 4.02848
49 8 392 0.47661E-01 4.40977
50 8 400 0.48737E-01 4.79966
51 8 408 0.49673E-01 5.19704
52 8 416 0.50492E-01 5.60098
53 8 424 0.51214E-01 6.01068
54 8 432 0.51853E-01 6.42551
55 8 440 0.52422E-01 6.84488
56 8 448 0.52931E-01 7.26833
57 8 456 0.53390E-01 7.69545
58 8 464 0.53804E-01 8.12588
59 8 472 0.54179E-01 8.55931
60 8 480 0.54521E-01 8.99548
61 8 488 0.33509E-01 9.26355
Time Now = 41.5185 Delta time = 0.0650 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 60
Maximum scattering m (mmaxs) = 60
Maximum numerical integration l (lmaxi) = 120
Maximum numerical integration m (mmaxi) = 120
Maximum l to include in the asymptotic region (lmasym) = 17
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 100.00000
Print flag (iprnfg) = 0
lmasymtyts = 16
Actual value of lmasym found = 17
Number of regions of the same l expansion (NAngReg) = 14
Angular regions
1 L = 2 from ( 1) 0.00342 to ( 7) 0.02395
2 L = 5 from ( 8) 0.02738 to ( 15) 0.06131
3 L = 7 from ( 16) 0.06616 to ( 23) 0.12060
4 L = 17 from ( 24) 0.12838 to ( 63) 0.55892
5 L = 25 from ( 64) 0.56862 to ( 71) 0.62726
6 L = 33 from ( 72) 0.63564 to ( 87) 0.73425
7 L = 41 from ( 88) 0.74021 to ( 95) 0.77484
8 L = 49 from ( 96) 0.77979 to ( 103) 0.80832
9 L = 60 from ( 104) 0.81240 to ( 280) 1.11991
10 L = 57 from ( 281) 1.12566 to ( 288) 1.16590
11 L = 41 from ( 289) 1.17341 to ( 296) 1.22598
12 L = 33 from ( 297) 1.23590 to ( 312) 1.41172
13 L = 25 from ( 313) 1.42985 to ( 320) 1.55677
14 L = 17 from ( 321) 1.58205 to ( 488) 9.26355
There are 3 angular regions for computing spherical harmonics
1 lval = 17
2 lval = 28
3 lval = 60
Maximum number of processors is 60
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 88
Proc id = 1 Last grid point = 104
Proc id = 2 Last grid point = 120
Proc id = 3 Last grid point = 128
Proc id = 4 Last grid point = 144
Proc id = 5 Last grid point = 160
Proc id = 6 Last grid point = 168
Proc id = 7 Last grid point = 184
Proc id = 8 Last grid point = 192
Proc id = 9 Last grid point = 208
Proc id = 10 Last grid point = 216
Proc id = 11 Last grid point = 232
Proc id = 12 Last grid point = 240
Proc id = 13 Last grid point = 256
Proc id = 14 Last grid point = 272
Proc id = 15 Last grid point = 280
Proc id = 16 Last grid point = 296
Proc id = 17 Last grid point = 328
Proc id = 18 Last grid point = 408
Proc id = 19 Last grid point = 488
Time Now = 41.5377 Delta time = 0.0192 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -25.978100 SG 1 at max irg = 200 r = 0.95407
2 Orig 2 Eng = -25.978000 SU 1 at max irg = 200 r = 0.95407
3 Orig 3 Eng = -1.228700 SG 1 at max irg = 208 r = 0.95572
4 Orig 4 Eng = -1.166100 SU 1 at max irg = 288 r = 1.16590
5 Orig 5 Eng = -0.337400 PU 1 at max irg = 256 r = 1.00576
6 Orig 6 Eng = -0.337400 PU 2 at max irg = 256 r = 1.00576
7 Orig 7 Eng = -0.293600 PG 1 at max irg = 256 r = 1.00576
8 Orig 8 Eng = -0.293600 PG 2 at max irg = 256 r = 1.00576
9 Orig 9 Eng = -0.291700 SG 1 at max irg = 88 r = 0.74021
10 Orig 10 Eng = -0.289400 SU 1 at max irg = 96 r = 0.77979
Rotation coefficients for orbital 1 grp = 1 SG 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 SU 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 SG 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 SU 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 PU 1
1 0.0000000000 2 1.0000000000
Rotation coefficients for orbital 6 grp = 5 PU 2
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 7 grp = 6 PG 1
1 -0.0000000000 2 1.0000000000
Rotation coefficients for orbital 8 grp = 6 PG 2
1 1.0000000000 2 0.0000000000
Rotation coefficients for orbital 9 grp = 7 SG 1
1 1.0000000000
Rotation coefficients for orbital 10 grp = 8 SU 1
1 1.0000000000
Number of orbital groups and degeneracis are 8
1 1 1 1 2 2 1 1
Number of orbital groups and number of electrons when fully occupied
8
2 2 2 2 4 4 2 2
Time Now = 44.5746 Delta time = 3.0369 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 8
Orbital 1 of SG 1 symmetry normalization integral = 0.99898240
Orbital 2 of SU 1 symmetry normalization integral = 0.99890588
Orbital 3 of SG 1 symmetry normalization integral = 0.99994579
Orbital 4 of SU 1 symmetry normalization integral = 0.99993847
Orbital 5 of PU 1 symmetry normalization integral = 0.99999975
Orbital 6 of PG 1 symmetry normalization integral = 0.99999979
Orbital 7 of SG 1 symmetry normalization integral = 0.99999970
Orbital 8 of SU 1 symmetry normalization integral = 0.99999833
Time Now = 47.4340 Delta time = 2.8594 End ExpOrb
+ Data Record ScatSym - 'SG'
+ Data Record ScatContSym - 'SG'
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 8
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - SG 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 13 name - SU 1
Set 3 has degeneracy 1
Orbital 1 is num 3 type = 1 name - SG 1
Set 4 has degeneracy 1
Orbital 1 is num 4 type = 13 name - SU 1
Set 5 has degeneracy 2
Orbital 1 is num 5 type = 17 name - PU 1
Orbital 2 is num 6 type = 18 name - PU 2
Set 6 has degeneracy 2
Orbital 1 is num 7 type = 5 name - PG 1
Orbital 2 is num 8 type = 6 name - PG 2
Set 7 has degeneracy 1
Orbital 1 is num 9 type = 1 name - SG 1
Set 8 has degeneracy 1
Orbital 1 is num 10 type = 13 name - SU 1
Orbital occupations by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 PU occ = 4
6 PG occ = 4
7 SG occ = 2
8 SU occ = 0
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Symmetry of the continuum orbital is SG
Symmetry of the total state is SG
Spin degeneracy of the total state is = 2
Symmetry of the target state is SG
Spin degeneracy of the target state is = 1
Symmetry of the initial state is SU
Spin degeneracy of the initial state is = 2
Orbital occupations of initial state by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 PU occ = 4
6 PG occ = 4
7 SG occ = 2
8 SU occ = 1
Closed shell target
Open shell symmetry types
1 SG iele = 1
Use only configuration of type SG
Each irreducable representation is present the number of times indicated
SG ( 1)
representation SG component 1 fun 1
Symmeterized Function from AddNewShell
1: 1.00000 0.00000 1
Closed shell target
Direct product basis set
Direct product basis function
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 21
Open shell symmetry types
1 SU iele = 1
Use only configuration of type SU
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SU ( 1)
representation SU component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Time Now = 47.4350 Delta time = 0.0010 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 21
Direct product Configuration Cont sym = 1 Targ sym = 1
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 21
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 1
Symmetry of target = 1
Symmetry of total states = 1
Total symmetry component = 1
Cont Target Component
Comp 1
1 0.10000000E+01
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
One electron matrix elements between initial and final states
1: 1.000000000 0.000000000 < 19| 21>
Reduced formula list
1 8 1 0.1000000000E+01
Time Now = 47.4353 Delta time = 0.0003 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 1
Symmetry of the continuum orbital (iContSym) = 1 or SG
Symmetry of total final state (iTotalSym) = 1 or SG
Symmetry of the initial state (iInitSym) = 9 or SU
Symmetry of the ionized target state (iTargSym) = 1 or SG
List of unique symmetry types
In the product of the symmetry types SU SU
Each irreducable representation is present the number of times indicated
SG ( 1)
In the product of the symmetry types SG SG
Each irreducable representation is present the number of times indicated
SG ( 1)
Unique dipole matrix type 1 Dipole symmetry type =SU
Final state symmetry type = SG Target sym =SG
Continuum type =SG
In the product of the symmetry types SG A2G
Each irreducable representation is present the number of times indicated
A2G ( 1)
In the product of the symmetry types SG B1G
Each irreducable representation is present the number of times indicated
B1G ( 1)
In the product of the symmetry types SG B2G
Each irreducable representation is present the number of times indicated
B2G ( 1)
In the product of the symmetry types SG PG
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types SG DG
Each irreducable representation is present the number of times indicated
DG ( 1)
In the product of the symmetry types SG FG
Each irreducable representation is present the number of times indicated
FG ( 1)
In the product of the symmetry types SG GG
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types SG SU
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types SG A2U
Each irreducable representation is present the number of times indicated
A2U ( 1)
In the product of the symmetry types SG B1U
Each irreducable representation is present the number of times indicated
B1U ( 1)
In the product of the symmetry types SG B2U
Each irreducable representation is present the number of times indicated
B2U ( 1)
In the product of the symmetry types SG PU
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types SG DU
Each irreducable representation is present the number of times indicated
DU ( 1)
In the product of the symmetry types SG FU
Each irreducable representation is present the number of times indicated
FU ( 1)
In the product of the symmetry types SG GU
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PG SG
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PG A2G
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PG B1G
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PG B2G
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PG PG
Each irreducable representation is present the number of times indicated
SG ( 1)
A2G ( 1)
DG ( 1)
Unique dipole matrix type 2 Dipole symmetry type =PU
Final state symmetry type = PG Target sym =SG
Continuum type =PG
In the product of the symmetry types PG DG
Each irreducable representation is present the number of times indicated
PG ( 1)
FG ( 1)
In the product of the symmetry types PG FG
Each irreducable representation is present the number of times indicated
DG ( 1)
GG ( 1)
In the product of the symmetry types PG GG
Each irreducable representation is present the number of times indicated
B1G ( 1)
B2G ( 1)
FG ( 1)
In the product of the symmetry types PG SU
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PG A2U
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PG B1U
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PG B2U
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PG PU
Each irreducable representation is present the number of times indicated
SU ( 1)
A2U ( 1)
DU ( 1)
In the product of the symmetry types PG DU
Each irreducable representation is present the number of times indicated
PU ( 1)
FU ( 1)
In the product of the symmetry types PG FU
Each irreducable representation is present the number of times indicated
DU ( 1)
GU ( 1)
In the product of the symmetry types PG GU
Each irreducable representation is present the number of times indicated
B1U ( 1)
B2U ( 1)
FU ( 1)
In the product of the symmetry types SU SU
Each irreducable representation is present the number of times indicated
SG ( 1)
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
Irreducible representation containing the dipole operator is SU
Number of different dipole operators in this representation is 1
In the product of the symmetry types SU SU
Each irreducable representation is present the number of times indicated
SG ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 1 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 0.00000000 0.00000000 1.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 1 Orb 10 Coef = 1.0000000000
Symmetry type to write out (SymTyp) =SG
Time Now = 76.5770 Delta time = 29.1417 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 18.00000000
Time Now = 76.6579 Delta time = 0.0809 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.18000000E+02 facnorm = 0.10000000E+01
Time Now = 76.7311 Delta time = 0.0732 Electronic part
Time Now = 76.7338 Delta time = 0.0027 End StPot
+ Command FileName
+ 'MatrixElements' 'test08SG.dat' 'REWIND'
Opening file test08SG.dat at position REWIND
+ Command PhIon
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 76.8892 Delta time = 0.1555 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 12
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 61
Number of partial waves (np) = 35
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 17
Number of partial waves in the asymptotic region (npasym) = 13
Number of orthogonality constraints (NOrthUse) = 3
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 171
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 12
Highest l used at large r (lpasym) = 17
Higest l used in the asymptotic potential (lpzb) = 34
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 20
Time Now = 76.9790 Delta time = 0.0898 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.13322676E-14 Asymp Coef = -0.26696378E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.86636740E-19 Asymp Moment = 0.51783785E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.17177632E-03 Asymp Moment = 0.10267270E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10433293E-20 Asymp Moment = 0.96325373E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25814828E-20 Asymp Moment = 0.23833539E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.16981318E-04 Asymp Moment = 0.15678002E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.16834673E-15
i = 2 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.16834673E-15
i = 3 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.16834673E-15
i = 4 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.16834674E-15
For potential 3
Number of asymptotic regions = 57
Final point in integration = 0.28569027E+03 Angstroms
Time Now = 81.5615 Delta time = 4.5825 End SolveHomo
Final Dipole matrix
ROW 1
( 0.97214221E+00, 0.41878703E+00) ( 0.32778138E+00, 0.63093646E-02)
( 0.93376696E-02,-0.82028635E-03) ( 0.42899179E-04,-0.14487723E-04)
( 0.64359745E-07,-0.73977015E-07) (-0.88868403E-21, 0.77743031E-21)
( 0.18741883E-10,-0.15033062E-09) ( 0.94171863E-22,-0.12948800E-21)
(-0.54901753E-13,-0.15246362E-12)
ROW 2
( 0.28362101E+00, 0.12233085E+00) ( 0.11070052E+00, 0.16854685E-02)
( 0.28423123E-02,-0.27023990E-03) ( 0.12930301E-04,-0.46480095E-05)
( 0.20111906E-07,-0.22971583E-07) (-0.26719282E-21, 0.23952595E-21)
( 0.79265006E-11,-0.46209964E-10) ( 0.27990031E-22,-0.39014105E-22)
(-0.13588339E-13,-0.47284211E-13)
MaxIter = 7 c.s. = 1.33568268 rmsk= 0.00000000 Abs eps 0.10057061E-05 Rel eps 0.94980237E-09
Time Now = 98.0919 Delta time = 16.5303 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.40000000E+02 eV ( 0.14699730E+01 AU)
Time Now = 98.2473 Delta time = 0.1554 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 12
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 61
Number of partial waves (np) = 35
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 17
Number of partial waves in the asymptotic region (npasym) = 13
Number of orthogonality constraints (NOrthUse) = 3
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 171
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 12
Highest l used at large r (lpasym) = 17
Higest l used in the asymptotic potential (lpzb) = 34
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 20
Time Now = 98.3367 Delta time = 0.0894 Energy independent setup
Compute solution for E = 40.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.13322676E-14 Asymp Coef = -0.26696378E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.86636740E-19 Asymp Moment = 0.51783785E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.17177632E-03 Asymp Moment = 0.10267270E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10433293E-20 Asymp Moment = 0.96325373E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25814828E-20 Asymp Moment = 0.23833539E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.16981318E-04 Asymp Moment = 0.15678002E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.17675206E-16
i = 2 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.17675207E-16
i = 3 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.17675210E-16
i = 4 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.17675215E-16
For potential 3
Number of asymptotic regions = 96
Final point in integration = 0.83577309E+02 Angstroms
Time Now = 103.3330 Delta time = 4.9963 End SolveHomo
Final Dipole matrix
ROW 1
( 0.46625965E+00,-0.19412706E+00) ( 0.17649964E+00, 0.34823331E+00)
( 0.45615437E-01,-0.35531955E+00) ( 0.17369244E-01,-0.81566086E-01)
( 0.17034049E-02,-0.57208961E-02) ( 0.41754801E-17, 0.17646770E-18)
( 0.59374081E-04,-0.19416485E-03) ( 0.55524539E-17, 0.19133901E-18)
( 0.43783844E-06,-0.36741472E-05)
ROW 2
( 0.70977790E+00,-0.31918099E+00) ( 0.26579937E+00, 0.54622614E+00)
( 0.87803657E-01,-0.53548365E+00) ( 0.31499528E-01,-0.12441565E+00)
( 0.35382074E-02,-0.87973415E-02) (-0.55006130E-18, 0.24964063E-18)
( 0.17539275E-03,-0.30299103E-03) ( 0.54538269E-18, 0.27332686E-18)
( 0.46380761E-05,-0.60069390E-05)
MaxIter = 8 c.s. = 1.82851228 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.16518780E-08
Time Now = 122.6869 Delta time = 19.3539 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 122.6873 Delta time = 0.0004 End CnvIdy
Found 2 energies :
1.00000000 40.00000000
List of matrix element types found Number = 1
1 Cont Sym SG Targ Sym SG Total Sym SG
Keeping 2 energies :
1.00000000 40.00000000
Time Now = 122.6874 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 3.1000 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
4.1000 0.31675379E+00
43.1000 0.14718812E+01
Sigma MIXED at all energies
Eng
4.1000 0.62189907E+00
43.1000 0.14295559E+01
Sigma VELOCITY at all energies
Eng
4.1000 0.12233563E+01
43.1000 0.13896162E+01
Beta LENGTH at all energies
Eng
4.1000 -0.42179411E+00
43.1000 0.48380570E+00
Beta MIXED at all energies
Eng
4.1000 -0.44450789E+00
43.1000 0.49571779E+00
Beta VELOCITY at all energies
Eng
4.1000 -0.46443940E+00
43.1000 0.50755575E+00
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 4.1000 0.3168 0.6219 1.2234 -0.4218 -0.4445 -0.4644
EPhi 43.1000 1.4719 1.4296 1.3896 0.4838 0.4957 0.5076
Time Now = 122.6977 Delta time = 0.0103 End CrossSection
+ Command FileName
+ 'MatrixElements' 'test08DPW.dat' 'REWIND'
Opening file test08DPW.dat at position REWIND
+ Command CalcInt
+ 'DipoleOp' 1 'PlaneWv' 12
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =DipoleOp
Orbital to use on the left = 1
Orbital type on the right =PlaneWv
Orbital to use on the right = 12
Charge on molecule is 0
list of energies for plane wave calculations
1.00000 40.00000
Energy of plane wave is 1.00000 eV
CalcIntL value 0 0.21753899E+01 0.00000000E+00
CalcIntL value 2 0.57574854E+00 0.00000000E+00
CalcIntL value 4 0.11760062E-01 0.00000000E+00
CalcIntL value 6 0.54249286E-04 0.00000000E+00
CalcIntL value 8 0.10485438E-06 0.00000000E+00
CalcIntL value 10 0.80859145E-23 0.00000000E+00
CalcIntL value 10 0.10963288E-09 0.00000000E+00
CalcIntL value 12 0.49356653E-24 0.00000000E+00
CalcIntL value 12 0.70738981E-13 0.00000000E+00
Energy of plane wave is 40.00000 eV
CalcIntL value 0 -0.40619436E+00 0.00000000E+00
CalcIntL value 2 -0.52827498E-01 0.00000000E+00
CalcIntL value 4 0.82333528E+00 0.00000000E+00
CalcIntL value 6 0.18535666E+00 0.00000000E+00
CalcIntL value 8 0.15326087E-01 0.00000000E+00
CalcIntL value 10 0.32600135E-17 0.00000000E+00
CalcIntL value 10 0.66703261E-03 0.00000000E+00
CalcIntL value 12 0.81728754E-17 0.00000000E+00
CalcIntL value 12 0.17979097E-04 0.00000000E+00
Time Now = 122.6985 Delta time = 0.0008 End CalcInt
+ Command FileName
+ 'MatrixElements' 'test08PWSG.dat' 'REWIND'
Opening file test08PWSG.dat at position REWIND
+ Command PhIonPlaneWv
+
----------------------------------------------------------------------
PhIonPlaneWv - calculate dipole matrix elements assuming plane waves or Coulomb waves
----------------------------------------------------------------------
Compute plane wave dipole matrix elements for E = 1.00000 eV
No orthogonality constriants
Charge on the molecule is 0
Maximum L for scatterd wave is 12
REAL PART - Final k matrix
ROW 1
0.21753899E+01 0.57574854E+00 0.11760062E-01 0.54249286E-04 0.10485438E-06
0.80859145E-23 0.10963288E-09 0.49356653E-24 0.70738981E-13
ROW 2
-0.63467883E-01 0.54515299E-01 0.22261715E-02 0.11865179E-04 0.24484933E-07
-0.39874456E-25 0.26695758E-10 0.32797568E-25 0.17887058E-13
----------------------------------------------------------------------
PhIonPlaneWv - calculate dipole matrix elements assuming plane waves or Coulomb waves
----------------------------------------------------------------------
Compute plane wave dipole matrix elements for E = 40.00000 eV
No orthogonality constriants
Charge on the molecule is 0
Maximum L for scatterd wave is 12
REAL PART - Final k matrix
ROW 1
-0.40619436E+00-0.52827498E-01 0.82333528E+00 0.18535666E+00 0.15326087E-01
0.32600135E-17 0.66703261E-03 0.81728754E-17 0.17979097E-04
ROW 2
0.62762880E+00-0.85770870E+00 0.18244309E+00 0.10080033E+00 0.10549453E-01
-0.69791128E-18 0.51782185E-03 0.78949194E-19 0.15087649E-04
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 122.7001 Delta time = 0.0017 End CnvIdy
Found 2 energies :
1.00000000 40.00000000
List of matrix element types found Number = 1
1 Cont Sym SG Targ Sym SG Total Sym SG
Keeping 2 energies :
1.00000000 40.00000000
Time Now = 122.7002 Delta time = 0.0000 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 3.1000 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
4.1000 0.13061964E+01
43.1000 0.23868374E+01
Sigma MIXED at all energies
Eng
4.1000 -0.18258445E+00
43.1000 -0.69454409E-01
Sigma VELOCITY at all energies
Eng
4.1000 0.79590997E-01
43.1000 0.12679711E+01
Beta LENGTH at all energies
Eng
4.1000 -0.40707189E+00
43.1000 0.18686261E+00
Beta MIXED at all energies
Eng
4.1000 Infinity
43.1000 -Infinity
Beta VELOCITY at all energies
Eng
4.1000 0.10997893E+01
43.1000 0.13778280E+01
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 4.1000 1.3062 -0.1826 0.0796 -0.4071 Infinity 1.0998
EPhi 43.1000 2.3868 -0.0695 1.2680 0.1869 -Infinity 1.3778
Time Now = 122.7104 Delta time = 0.0103 End CrossSection
+ Data Record ScatSym - 'PG'
+ Data Record ScatContSym - 'PG'
+ Command GenFormPhIon
+
----------------------------------------------------------------------
SymProd - Construct products of symmetry types
----------------------------------------------------------------------
Number of sets of degenerate orbitals = 8
Set 1 has degeneracy 1
Orbital 1 is num 1 type = 1 name - SG 1
Set 2 has degeneracy 1
Orbital 1 is num 2 type = 13 name - SU 1
Set 3 has degeneracy 1
Orbital 1 is num 3 type = 1 name - SG 1
Set 4 has degeneracy 1
Orbital 1 is num 4 type = 13 name - SU 1
Set 5 has degeneracy 2
Orbital 1 is num 5 type = 17 name - PU 1
Orbital 2 is num 6 type = 18 name - PU 2
Set 6 has degeneracy 2
Orbital 1 is num 7 type = 5 name - PG 1
Orbital 2 is num 8 type = 6 name - PG 2
Set 7 has degeneracy 1
Orbital 1 is num 9 type = 1 name - SG 1
Set 8 has degeneracy 1
Orbital 1 is num 10 type = 13 name - SU 1
Orbital occupations by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 PU occ = 4
6 PG occ = 4
7 SG occ = 2
8 SU occ = 0
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Symmetry of the continuum orbital is PG
Symmetry of the total state is PG
Spin degeneracy of the total state is = 2
Symmetry of the target state is SG
Spin degeneracy of the target state is = 1
Symmetry of the initial state is SU
Spin degeneracy of the initial state is = 2
Orbital occupations of initial state by degenerate group
1 SG occ = 2
2 SU occ = 2
3 SG occ = 2
4 SU occ = 2
5 PU occ = 4
6 PG occ = 4
7 SG occ = 2
8 SU occ = 1
Closed shell target
Open shell symmetry types
1 PG iele = 1
Use only configuration of type PG
Each irreducable representation is present the number of times indicated
PG ( 1)
representation PG component 1 fun 1
Symmeterized Function from AddNewShell
1: 1.00000 0.00000 1
representation PG component 2 fun 1
Symmeterized Function from AddNewShell
1: 1.00000 0.00000 2
Closed shell target
Direct product basis set
Direct product basis function
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 21
Direct product basis function
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 22
Open shell symmetry types
1 SU iele = 1
Use only configuration of type SU
MS2 = 1 SDGN = 2
NumAlpha = 1
List of determinants found
1: 1.00000 0.00000 1
Spin adapted configurations
Configuration 1
1: 1.00000 0.00000 1
Each irreducable representation is present the number of times indicated
SU ( 1)
representation SU component 1 fun 1
Symmeterized Function
1: 1.00000 0.00000 1
Time Now = 122.7117 Delta time = 0.0012 End SymProd
----------------------------------------------------------------------
MatEle - Program to compute Matrix Elements over Determinants
----------------------------------------------------------------------
Configuration 1
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 21
Configuration 2
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 22
Direct product Configuration Cont sym = 1 Targ sym = 1
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 21
Direct product Configuration Cont sym = 2 Targ sym = 1
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 22
Overlap of Direct Product expansion and Symmeterized states
Symmetry of Continuum = 5
Symmetry of target = 1
Symmetry of total states = 5
Total symmetry component = 1
Cont Target Component
Comp 1
1 0.10000000E+01
2 0.00000000E+00
Total symmetry component = 2
Cont Target Component
Comp 1
1 0.00000000E+00
2 0.10000000E+01
Initial State Configuration
1: 1.00000 0.00000 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
One electron matrix elements between initial and final states
1: 1.000000000 0.000000000 < 19| 21>
Reduced formula list
1 8 1 0.1000000000E+01
Time Now = 122.7120 Delta time = 0.0004 End MatEle
+ Command DipoleOp
+
----------------------------------------------------------------------
DipoleOp - Dipole Operator Program
----------------------------------------------------------------------
Number of orbitals in formula for the dipole operator (NOrbSel) = 1
Symmetry of the continuum orbital (iContSym) = 5 or PG
Symmetry of total final state (iTotalSym) = 5 or PG
Symmetry of the initial state (iInitSym) = 9 or SU
Symmetry of the ionized target state (iTargSym) = 1 or SG
List of unique symmetry types
In the product of the symmetry types SU SU
Each irreducable representation is present the number of times indicated
SG ( 1)
In the product of the symmetry types SG SG
Each irreducable representation is present the number of times indicated
SG ( 1)
Unique dipole matrix type 1 Dipole symmetry type =SU
Final state symmetry type = SG Target sym =SG
Continuum type =SG
In the product of the symmetry types SG A2G
Each irreducable representation is present the number of times indicated
A2G ( 1)
In the product of the symmetry types SG B1G
Each irreducable representation is present the number of times indicated
B1G ( 1)
In the product of the symmetry types SG B2G
Each irreducable representation is present the number of times indicated
B2G ( 1)
In the product of the symmetry types SG PG
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types SG DG
Each irreducable representation is present the number of times indicated
DG ( 1)
In the product of the symmetry types SG FG
Each irreducable representation is present the number of times indicated
FG ( 1)
In the product of the symmetry types SG GG
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types SG SU
Each irreducable representation is present the number of times indicated
SU ( 1)
In the product of the symmetry types SG A2U
Each irreducable representation is present the number of times indicated
A2U ( 1)
In the product of the symmetry types SG B1U
Each irreducable representation is present the number of times indicated
B1U ( 1)
In the product of the symmetry types SG B2U
Each irreducable representation is present the number of times indicated
B2U ( 1)
In the product of the symmetry types SG PU
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types SG DU
Each irreducable representation is present the number of times indicated
DU ( 1)
In the product of the symmetry types SG FU
Each irreducable representation is present the number of times indicated
FU ( 1)
In the product of the symmetry types SG GU
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PG SG
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PG A2G
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PG B1G
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PG B2G
Each irreducable representation is present the number of times indicated
GG ( 1)
In the product of the symmetry types PG PG
Each irreducable representation is present the number of times indicated
SG ( 1)
A2G ( 1)
DG ( 1)
Unique dipole matrix type 2 Dipole symmetry type =PU
Final state symmetry type = PG Target sym =SG
Continuum type =PG
In the product of the symmetry types PG DG
Each irreducable representation is present the number of times indicated
PG ( 1)
FG ( 1)
In the product of the symmetry types PG FG
Each irreducable representation is present the number of times indicated
DG ( 1)
GG ( 1)
In the product of the symmetry types PG GG
Each irreducable representation is present the number of times indicated
B1G ( 1)
B2G ( 1)
FG ( 1)
In the product of the symmetry types PG SU
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PG A2U
Each irreducable representation is present the number of times indicated
PU ( 1)
In the product of the symmetry types PG B1U
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PG B2U
Each irreducable representation is present the number of times indicated
GU ( 1)
In the product of the symmetry types PG PU
Each irreducable representation is present the number of times indicated
SU ( 1)
A2U ( 1)
DU ( 1)
In the product of the symmetry types PG DU
Each irreducable representation is present the number of times indicated
PU ( 1)
FU ( 1)
In the product of the symmetry types PG FU
Each irreducable representation is present the number of times indicated
DU ( 1)
GU ( 1)
In the product of the symmetry types PG GU
Each irreducable representation is present the number of times indicated
B1U ( 1)
B2U ( 1)
FU ( 1)
In the product of the symmetry types SU SU
Each irreducable representation is present the number of times indicated
SG ( 1)
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
Irreducible representation containing the dipole operator is PU
Number of different dipole operators in this representation is 1
In the product of the symmetry types PU SU
Each irreducable representation is present the number of times indicated
PG ( 1)
Vector of the total symmetry
ie = 1 ij = 1
1 ( -0.11657342E-15, 0.00000000E+00)
2 ( 0.10000000E+01, 0.00000000E+00)
Vector of the total symmetry
ie = 2 ij = 1
1 ( 0.10000000E+01, 0.00000000E+00)
2 ( -0.91593400E-16, 0.00000000E+00)
Component Dipole Op Sym = 1 goes to Total Sym component 2 phase = 1.0
Component Dipole Op Sym = 2 goes to Total Sym component 1 phase = 1.0
Dipole operator types by symmetry components (x=1, y=2, z=3)
sym comp = 1
coefficients = 1.00000000 0.00000000 0.00000000
sym comp = 2
coefficients = 0.00000000 1.00000000 0.00000000
Formula for dipole operator
Dipole operator sym comp 1 index = 1
1 Cont comp 1 Orb 10 Coef = 1.0000000000
Symmetry type to write out (SymTyp) =PG
Time Now = 151.9338 Delta time = 29.2218 End DipoleOp
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 18.00000000
Time Now = 152.0093 Delta time = 0.0755 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.18000000E+02 facnorm = 0.10000000E+01
Time Now = 152.0824 Delta time = 0.0731 Electronic part
Time Now = 152.0852 Delta time = 0.0027 End StPot
+ Command FileName
+ 'MatrixElements' 'test08PG.dat' 'REWIND'
Opening file test08PG.dat at position REWIND
+ Command PhIon
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.10000000E+01 eV ( 0.36749326E-01 AU)
Time Now = 152.2351 Delta time = 0.1499 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 12
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 61
Number of partial waves (np) = 37
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 17
Number of partial waves in the asymptotic region (npasym) = 15
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 171
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 12
Highest l used at large r (lpasym) = 17
Higest l used in the asymptotic potential (lpzb) = 34
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 22
Time Now = 152.3248 Delta time = 0.0897 Energy independent setup
Compute solution for E = 1.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.13322676E-14 Asymp Coef = -0.26696378E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.86636740E-19 Asymp Moment = 0.51783785E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.17177632E-03 Asymp Moment = 0.10267270E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10433293E-20 Asymp Moment = 0.96325373E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25814828E-20 Asymp Moment = 0.23833539E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.16981318E-04 Asymp Moment = 0.15678002E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.16834673E-15
i = 2 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.16834673E-15
i = 3 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.16834673E-15
i = 4 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.16834674E-15
For potential 3
Number of asymptotic regions = 57
Final point in integration = 0.28569027E+03 Angstroms
Time Now = 157.1426 Delta time = 4.8178 End SolveHomo
Final Dipole matrix
ROW 1
( 0.21025108E+00,-0.77040053E-03) ( 0.69070356E-02,-0.35571959E-03)
( 0.32304105E-04,-0.86175585E-05) ( 0.50529812E-07,-0.49292546E-07)
( 0.16961721E-22, 0.35364943E-22) ( 0.20804862E-10,-0.10477722E-09)
( 0.28709584E-22,-0.59498247E-23) (-0.10401900E-22, 0.45640560E-23)
(-0.31704484E-13,-0.10936418E-12)
ROW 2
( 0.58637551E-01,-0.21489404E-03) ( 0.19476005E-02,-0.99246411E-04)
( 0.93380292E-05,-0.24178994E-05) ( 0.15552316E-07,-0.13956295E-07)
( 0.73921837E-23, 0.98673093E-23) ( 0.86086582E-11,-0.30138343E-10)
( 0.79218222E-23,-0.16636813E-23) (-0.28517033E-23, 0.12728624E-23)
(-0.59837850E-14,-0.32329886E-13)
MaxIter = 6 c.s. = 0.04769615 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.19084964E-10
Time Now = 169.5145 Delta time = 12.3719 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.50000000E+01 eV
Do E = 0.40000000E+02 eV ( 0.14699730E+01 AU)
Time Now = 169.6579 Delta time = 0.1434 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PG 1
Form of the Green's operator used (iGrnType) = -1
Flag for dipole operator (DipoleFlag) = T
Maximum l for computed scattering solutions (LMaxK) = 12
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 61
Number of partial waves (np) = 37
Number of asymptotic solutions on the right (NAsymR) = 9
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 17
Number of partial waves in the asymptotic region (npasym) = 15
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 171
Maximum l used in usual function (lmax) = 60
Maximum m used in usual function (LMax) = 60
Maxamum l used in expanding static potential (lpotct) = 120
Maximum l used in exapnding the exchange potential (lmaxab) = 120
Higest l included in the expansion of the wave function (lnp) = 60
Higest l included in the K matrix (lna) = 12
Highest l used at large r (lpasym) = 17
Higest l used in the asymptotic potential (lpzb) = 34
Maximum L used in the homogeneous solution (LMaxHomo) = 30
Number of partial waves in the homogeneous solution (npHomo) = 22
Time Now = 169.7466 Delta time = 0.0887 Energy independent setup
Compute solution for E = 40.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.13322676E-14 Asymp Coef = -0.26696378E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = -0.86636740E-19 Asymp Moment = 0.51783785E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.17177632E-03 Asymp Moment = 0.10267270E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.10433293E-20 Asymp Moment = 0.96325373E-16 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = -0.25814828E-20 Asymp Moment = 0.23833539E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = -0.16981318E-04 Asymp Moment = 0.15678002E+01 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.17675206E-16
i = 2 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.17675207E-16
i = 3 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.17675210E-16
i = 4 exps = -0.70022308E+02 -0.20000000E+01 stpote = -0.17675215E-16
For potential 3
Number of asymptotic regions = 96
Final point in integration = 0.83577309E+02 Angstroms
Time Now = 175.0507 Delta time = 5.3041 End SolveHomo
Final Dipole matrix
ROW 1
(-0.18297581E+00, 0.80043578E-01) ( 0.35339307E+00,-0.16589376E+00)
( 0.88233869E-01,-0.47308559E-01) ( 0.67201692E-02,-0.41359548E-02)
(-0.31652847E-18, 0.25784393E-19) ( 0.22829920E-03,-0.17586398E-03)
( 0.48409486E-17, 0.26317363E-20) (-0.47658591E-19, 0.22410960E-19)
( 0.35379946E-05,-0.42942210E-05)
ROW 2
(-0.28221331E+00, 0.11904930E+00) ( 0.53757207E+00,-0.25462012E+00)
( 0.13488360E+00,-0.72394369E-01) ( 0.10619798E-01,-0.63289106E-02)
(-0.20117471E-18, 0.40758163E-19) ( 0.39441240E-03,-0.27022739E-03)
( 0.67664382E-18,-0.72113801E-20) (-0.13996735E-18, 0.34855212E-19)
( 0.78399385E-05,-0.67182301E-05)
MaxIter = 6 c.s. = 0.67360001 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.47188444E-09
Time Now = 188.8256 Delta time = 13.7749 End ScatStab
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 188.8261 Delta time = 0.0004 End CnvIdy
Found 2 energies :
1.00000000 40.00000000
List of matrix element types found Number = 1
1 Cont Sym PG Targ Sym SG Total Sym PG
Keeping 2 energies :
1.00000000 40.00000000
Time Now = 188.8261 Delta time = 0.0000 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 3.1000 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
4.1000 0.22829763E-01
43.1000 0.10975159E+01
Sigma MIXED at all energies
Eng
4.1000 0.42258194E-01
43.1000 0.10573067E+01
Sigma VELOCITY at all energies
Eng
4.1000 0.78220488E-01
43.1000 0.10186221E+01
Beta LENGTH at all energies
Eng
4.1000 0.76006542E+00
43.1000 0.33618095E+00
Beta MIXED at all energies
Eng
4.1000 0.76031685E+00
43.1000 0.33569136E+00
Beta VELOCITY at all energies
Eng
4.1000 0.76056826E+00
43.1000 0.33524773E+00
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 4.1000 0.0228 0.0423 0.0782 0.7601 0.7603 0.7606
EPhi 43.1000 1.0975 1.0573 1.0186 0.3362 0.3357 0.3352
Time Now = 188.8364 Delta time = 0.0103 End CrossSection
+ Command FileName
+ 'MatrixElements' 'test08DPW.dat' 'APPEND'
Opening file test08DPW.dat at position APPEND
+ Command CalcInt
+ 'DipoleOp' 1 'PlaneWv' 12
----------------------------------------------------------------------
CalcInt - calculate matrix elements
----------------------------------------------------------------------
Orbital type on the left =DipoleOp
Orbital to use on the left = 1
Orbital type on the right =PlaneWv
Orbital to use on the right = 12
Charge on molecule is 0
list of energies for plane wave calculations
1.00000 40.00000
Energy of plane wave is 1.00000 eV
CalcIntL value 2 0.20359258E+00 0.00000000E+00
CalcIntL value 4 0.68310515E-02 0.00000000E+00
CalcIntL value 6 0.34467925E-04 0.00000000E+00
CalcIntL value 8 0.68976272E-07 0.00000000E+00
CalcIntL value 10 -0.18731198E-22 0.00000000E+00
CalcIntL value 10 0.73414331E-10 0.00000000E+00
CalcIntL value 12 0.64734631E-24 0.00000000E+00
CalcIntL value 12 -0.34876004E-24 0.00000000E+00
CalcIntL value 12 0.47857023E-13 0.00000000E+00
Energy of plane wave is 40.00000 eV
CalcIntL value 2 -0.27192183E+00 0.00000000E+00
CalcIntL value 4 0.25552301E+00 0.00000000E+00
CalcIntL value 6 0.78972230E-01 0.00000000E+00
CalcIntL value 8 0.74079826E-02 0.00000000E+00
CalcIntL value 10 -0.28627650E-18 0.00000000E+00
CalcIntL value 10 0.34623291E-03 0.00000000E+00
CalcIntL value 12 0.49124178E-17 0.00000000E+00
CalcIntL value 12 -0.10436597E-19 0.00000000E+00
CalcIntL value 12 0.97686382E-05 0.00000000E+00
Time Now = 188.8371 Delta time = 0.0007 End CalcInt
+ Command FileName
+ 'MatrixElements' 'test08PWPG.dat' 'REWIND'
Opening file test08PWPG.dat at position REWIND
+ Command PhIonPlaneWv
+
----------------------------------------------------------------------
PhIonPlaneWv - calculate dipole matrix elements assuming plane waves or Coulomb waves
----------------------------------------------------------------------
Compute plane wave dipole matrix elements for E = 1.00000 eV
No orthogonality constriants
Charge on the molecule is 0
Maximum L for scatterd wave is 12
REAL PART - Final k matrix
ROW 1
0.20359258E+00 0.68310515E-02 0.34467925E-04 0.68976272E-07-0.18731198E-22
0.73414331E-10 0.64734631E-24-0.34876004E-24 0.47857023E-13
ROW 2
0.50462238E-01 0.17768991E-02 0.90972070E-05 0.18403182E-07-0.24156989E-23
0.19827860E-10 0.84834038E-25-0.45368903E-25 0.13181570E-13
----------------------------------------------------------------------
PhIonPlaneWv - calculate dipole matrix elements assuming plane waves or Coulomb waves
----------------------------------------------------------------------
Compute plane wave dipole matrix elements for E = 40.00000 eV
No orthogonality constriants
Charge on the molecule is 0
Maximum L for scatterd wave is 12
REAL PART - Final k matrix
ROW 1
-0.27192183E+00 0.25552301E+00 0.78972230E-01 0.74079826E-02-0.28627650E-18
0.34623291E-03 0.49124178E-17-0.10436597E-19 0.97686382E-05
ROW 2
-0.31506694E+00 0.30370146E+00 0.92717020E-01 0.86676929E-02-0.14694220E-18
0.40581398E-03 0.68946028E-18-0.88329157E-19 0.11526086E-04
+ Command GetCro
+
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 188.8390 Delta time = 0.0019 End CnvIdy
Found 2 energies :
1.00000000 40.00000000
List of matrix element types found Number = 1
1 Cont Sym PG Targ Sym SG Total Sym PG
Keeping 2 energies :
1.00000000 40.00000000
Time Now = 188.8391 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 3.1000 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
4.1000 0.21407304E-01
43.1000 0.78918850E+00
Sigma MIXED at all energies
Eng
4.1000 0.35217414E-01
43.1000 0.58432549E+00
Sigma VELOCITY at all energies
Eng
4.1000 0.57936752E-01
43.1000 0.43270918E+00
Beta LENGTH at all energies
Eng
4.1000 0.76102974E+00
43.1000 0.17660702E+00
Beta MIXED at all energies
Eng
4.1000 0.76217925E+00
43.1000 0.17663512E+00
Beta VELOCITY at all energies
Eng
4.1000 0.76332811E+00
43.1000 0.17684481E+00
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 4.1000 0.0214 0.0352 0.0579 0.7610 0.7622 0.7633
EPhi 43.1000 0.7892 0.5843 0.4327 0.1766 0.1766 0.1768
Time Now = 188.8493 Delta time = 0.0103 End CrossSection
+ Command GetCro
+ 'test08SG.dat' 'test08PG.dat'
Taking dipole matrix from file test08SG.dat
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 188.8496 Delta time = 0.0003 End CnvIdy
Taking dipole matrix from file test08PG.dat
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 188.8500 Delta time = 0.0003 End CnvIdy
Found 2 energies :
1.00000000 40.00000000
List of matrix element types found Number = 2
1 Cont Sym SG Targ Sym SG Total Sym SG
2 Cont Sym PG Targ Sym SG Total Sym PG
Keeping 2 energies :
1.00000000 40.00000000
Time Now = 188.8500 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 3.1000 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
4.1000 0.33958355E+00
43.1000 0.25693971E+01
Sigma MIXED at all energies
Eng
4.1000 0.66415726E+00
43.1000 0.24868626E+01
Sigma VELOCITY at all energies
Eng
4.1000 0.13015768E+01
43.1000 0.24082383E+01
Beta LENGTH at all energies
Eng
4.1000 -0.77230753E+00
43.1000 0.69503158E+00
Beta MIXED at all energies
Eng
4.1000 -0.78040171E+00
43.1000 0.70709751E+00
Beta VELOCITY at all energies
Eng
4.1000 -0.78580227E+00
43.1000 0.71883546E+00
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 4.1000 0.3396 0.6642 1.3016 -0.7723 -0.7804 -0.7858
EPhi 43.1000 2.5694 2.4869 2.4082 0.6950 0.7071 0.7188
Time Now = 188.8603 Delta time = 0.0102 End CrossSection
+ Command GetCro
+ 'test08PWSG.dat' 'test08PWPG.dat'
Taking dipole matrix from file test08PWSG.dat
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 188.8606 Delta time = 0.0003 End CnvIdy
Taking dipole matrix from file test08PWPG.dat
----------------------------------------------------------------------
CnvIdy - read in and convert dynamical matrix elements and convert to raw form
----------------------------------------------------------------------
Time Now = 188.8609 Delta time = 0.0003 End CnvIdy
Found 2 energies :
1.00000000 40.00000000
List of matrix element types found Number = 2
1 Cont Sym SG Targ Sym SG Total Sym SG
2 Cont Sym PG Targ Sym SG Total Sym PG
Keeping 2 energies :
1.00000000 40.00000000
Time Now = 188.8609 Delta time = 0.0001 End SelIdy
----------------------------------------------------------------------
CrossSection - compute photoionization cross section
----------------------------------------------------------------------
Ionization potential (IPot) = 3.1000 eV
Label -
Cross section by partial wave F
Cross Sections for
Sigma LENGTH at all energies
Eng
4.1000 0.13276037E+01
43.1000 0.31760259E+01
Sigma MIXED at all energies
Eng
4.1000 -0.14736703E+00
43.1000 0.51487108E+00
Sigma VELOCITY at all energies
Eng
4.1000 0.13752775E+00
43.1000 0.17006802E+01
Beta LENGTH at all energies
Eng
4.1000 -0.63333272E+00
43.1000 -0.36500352E+00
Beta MIXED at all energies
Eng
4.1000 Infinity
43.1000 0.20000005E+01
Beta VELOCITY at all energies
Eng
4.1000 0.20000000E+01
43.1000 0.20000000E+01
COMPOSITE CROSS SECTIONS AT ALL ENERGIES
Energy SIGMA LEN SIGMA MIX SIGMA VEL BETA LEN BETA MIX BETA VEL
EPhi 4.1000 1.3276 -0.1474 0.1375 -0.6333 Infinity 2.0000
EPhi 43.1000 3.1760 0.5149 1.7007 -0.3650 2.0000 2.0000
Time Now = 188.8712 Delta time = 0.0102 End CrossSection
Time Now = 188.8722 Delta time = 0.0010 Finalize