Execution on n0164.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:10.490 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test07
#
# electron scattering from N2 molden SCF, polarization potential, low energy
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0 # charge, formula type
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatContSym 'PG' # Scattering symmetry
LMaxK 6 # Maximum l in the K matirx
ScatEng 3.401425 # list of scattering energies
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test07.molden2012' 'molden'
GetBlms
ExpOrb
GetPot
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'PG'
+ Data Record LMaxK - 6
+ Data Record ScatEng - 3.401425
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test07.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 110 basis functions
Selecting orbitals
Number of orbitals selected is 7
Selecting 1 1 SymOrb = 1.1 Ene = -15.6842 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 1.5 Ene = -15.6806 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 2.1 Ene = -1.4752 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 2.5 Ene = -0.7786 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 3.1 Ene = -0.6350 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 1.3 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 1.2 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Atoms found 2 Coordinates in Angstroms
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 -0.5470000000
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 0.5470000000
Maximum distance from expansion center is 0.5470000000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group DAh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.0415 Delta time = 0.0415 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 7 0.54700 7 0.54700
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 11
Determining angular grid in GetAxMax LMax = 15 LMaxA = 11 LMaxAb = 30
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 3 3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 14 14 14 14 6 6 6 6
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is DAh
LMax 15
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
12 22 32 2 3 21 31
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
SG 1 1 9 1 1 1 1 1 1 1
A2G 1 2 1 1 -1 -1 1 1 -1 -1
B1G 1 3 3 -1 1 -1 1 -1 1 -1
B2G 1 4 3 -1 -1 1 1 -1 -1 1
PG 1 5 8 -1 -1 1 1 -1 -1 1
PG 2 6 8 -1 1 -1 1 -1 1 -1
DG 1 7 9 1 -1 -1 1 1 -1 -1
DG 2 8 9 1 1 1 1 1 1 1
FG 1 9 8 -1 -1 1 1 -1 -1 1
FG 2 10 8 -1 1 -1 1 -1 1 -1
GG 1 11 7 1 -1 -1 1 1 -1 -1
GG 2 12 7 1 1 1 1 1 1 1
SU 1 13 9 1 -1 -1 -1 -1 1 1
A2U 1 14 1 1 1 1 -1 -1 -1 -1
B1U 1 15 4 -1 -1 1 -1 1 1 -1
B2U 1 16 4 -1 1 -1 -1 1 -1 1
PU 1 17 11 -1 -1 1 -1 1 1 -1
PU 2 18 11 -1 1 -1 -1 1 -1 1
DU 1 19 9 1 -1 -1 -1 -1 1 1
DU 2 20 9 1 1 1 -1 -1 -1 -1
FU 1 21 10 -1 -1 1 -1 1 1 -1
FU 2 22 10 -1 1 -1 -1 1 -1 1
GU 1 23 7 1 -1 -1 -1 -1 1 1
GU 2 24 7 1 1 1 -1 -1 -1 -1
Time Now = 0.2838 Delta time = 0.2423 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG 1 0( 1) 1( 1) 2( 2) 3( 2) 4( 3) 5( 3) 6( 4) 7( 4) 8( 5) 9( 5)
10( 7) 11( 7)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 1) 11( 1)
B1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
B2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
PG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
PG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
DG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
DG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
FG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
FG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
GG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
GG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
SU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 5)
10( 5) 11( 7)
A2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 0) 11( 1)
B1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
B2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
PU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
PU 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
DU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
DU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
FU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
FU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
GU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
GU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 30
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 102 1 1 1 1 1 1 1
B1G 1 2 86 1 -1 -1 1 1 -1 -1
B2G 1 3 86 -1 -1 1 1 -1 -1 1
B3G 1 4 86 -1 1 -1 1 -1 1 -1
AU 1 5 75 1 1 1 -1 -1 -1 -1
B1U 1 6 90 1 -1 -1 -1 -1 1 1
B2U 1 7 86 -1 -1 1 -1 1 1 -1
B3U 1 8 86 -1 1 -1 -1 1 -1 1
Time Now = 0.2874 Delta time = 0.0036 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 9.6359860816 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 9.63599 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.54700 Angs Alpha Max = 0.14700E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.18998E-02 0.01520
2 8 16 0.26749E-02 0.03660
3 8 24 0.43054E-02 0.07104
4 8 32 0.57696E-02 0.11720
5 8 40 0.67259E-02 0.17101
6 8 48 0.68378E-02 0.22571
7 8 56 0.62927E-02 0.27605
8 8 64 0.61050E-02 0.32489
9 8 72 0.67380E-02 0.37879
10 8 80 0.77685E-02 0.44094
11 8 88 0.48305E-02 0.47958
12 8 96 0.30704E-02 0.50415
13 8 104 0.19517E-02 0.51976
14 8 112 0.12406E-02 0.52969
15 8 120 0.78856E-03 0.53599
16 8 128 0.54521E-03 0.54036
17 8 136 0.45672E-03 0.54401
18 8 144 0.37374E-03 0.54700
19 8 152 0.43646E-03 0.55049
20 8 160 0.46530E-03 0.55421
21 8 168 0.57358E-03 0.55880
22 8 176 0.87025E-03 0.56576
23 8 184 0.13836E-02 0.57683
24 8 192 0.21997E-02 0.59443
25 8 200 0.34972E-02 0.62241
26 8 208 0.55601E-02 0.66689
27 8 216 0.88398E-02 0.73761
28 8 224 0.14054E-01 0.85004
29 8 232 0.17629E-01 0.99108
30 8 240 0.20554E-01 1.15551
31 8 248 0.29077E-01 1.38812
32 8 256 0.41231E-01 1.71797
33 8 264 0.46626E-01 2.09097
34 8 272 0.51232E-01 2.50083
35 8 280 0.55135E-01 2.94191
36 8 288 0.58434E-01 3.40939
37 8 296 0.61228E-01 3.89921
38 8 304 0.63602E-01 4.40802
39 8 312 0.65632E-01 4.93308
40 8 320 0.67378E-01 5.47210
41 8 328 0.68888E-01 6.02321
42 8 336 0.70204E-01 6.58485
43 8 344 0.71357E-01 7.15571
44 8 352 0.72374E-01 7.73470
45 8 360 0.73275E-01 8.32090
46 8 368 0.74079E-01 8.91353
47 8 376 0.74798E-01 9.51191
48 8 384 0.15509E-01 9.63599
Time Now = 0.2988 Delta time = 0.0114 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 11
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 10
Actual value of lmasym found = 11
Number of regions of the same l expansion (NAngReg) = 8
Angular regions
1 L = 2 from ( 1) 0.00190 to ( 7) 0.01330
2 L = 4 from ( 8) 0.01520 to ( 15) 0.03392
3 L = 6 from ( 16) 0.03660 to ( 23) 0.06674
4 L = 7 from ( 24) 0.07104 to ( 31) 0.11143
5 L = 9 from ( 32) 0.11720 to ( 39) 0.16428
6 L = 11 from ( 40) 0.17101 to ( 47) 0.21887
7 L = 15 from ( 48) 0.22571 to ( 240) 1.15551
8 L = 11 from ( 241) 1.18459 to ( 384) 9.63599
There are 2 angular regions for computing spherical harmonics
1 lval = 11
2 lval = 15
Maximum number of processors is 47
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 48
Proc id = 1 Last grid point = 64
Proc id = 2 Last grid point = 80
Proc id = 3 Last grid point = 96
Proc id = 4 Last grid point = 112
Proc id = 5 Last grid point = 128
Proc id = 6 Last grid point = 144
Proc id = 7 Last grid point = 152
Proc id = 8 Last grid point = 168
Proc id = 9 Last grid point = 184
Proc id = 10 Last grid point = 200
Proc id = 11 Last grid point = 216
Proc id = 12 Last grid point = 232
Proc id = 13 Last grid point = 248
Proc id = 14 Last grid point = 272
Proc id = 15 Last grid point = 296
Proc id = 16 Last grid point = 320
Proc id = 17 Last grid point = 344
Proc id = 18 Last grid point = 368
Proc id = 19 Last grid point = 384
Time Now = 0.3017 Delta time = 0.0029 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -15.684200 SG 1 at max irg = 152 r = 0.55049
2 Orig 2 Eng = -15.680600 SU 1 at max irg = 152 r = 0.55049
3 Orig 3 Eng = -1.475200 SG 1 at max irg = 144 r = 0.54700
4 Orig 4 Eng = -0.778600 SU 1 at max irg = 232 r = 0.99108
5 Orig 5 Eng = -0.635000 SG 1 at max irg = 232 r = 0.99108
6 Orig 6 Eng = -0.616100 PU 1 at max irg = 208 r = 0.66689
7 Orig 7 Eng = -0.616100 PU 2 at max irg = 208 r = 0.66689
Rotation coefficients for orbital 1 grp = 1 SG 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 SU 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 SG 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 SU 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 SG 1
1 1.0000000000
Rotation coefficients for orbital 6 grp = 6 PU 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 7 grp = 6 PU 2
1 0.0000000000 2 1.0000000000
Number of orbital groups and degeneracis are 6
1 1 1 1 1 2
Number of orbital groups and number of electrons when fully occupied
6
2 2 2 2 2 4
Time Now = 0.3313 Delta time = 0.0296 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 6
Orbital 1 of SG 1 symmetry normalization integral = 0.98788415
Orbital 2 of SU 1 symmetry normalization integral = 0.99051993
Orbital 3 of SG 1 symmetry normalization integral = 0.99928703
Orbital 4 of SU 1 symmetry normalization integral = 0.99958568
Orbital 5 of SG 1 symmetry normalization integral = 0.99994442
Orbital 6 of PU 1 symmetry normalization integral = 0.99999098
Time Now = 0.4091 Delta time = 0.0778 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 14.00000000
Time Now = 0.4115 Delta time = 0.0023 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.14000000E+02 facnorm = 0.10000000E+01
Time Now = 0.4162 Delta time = 0.0048 Electronic part
Time Now = 0.4165 Delta time = 0.0003 End StPot
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.34014250E+01 eV ( 0.12500008E+00 AU)
Time Now = 0.4210 Delta time = 0.0045 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PG 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 6
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 6
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 6
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 6
Time Now = 0.4243 Delta time = 0.0034 Energy independent setup
Compute solution for E = 3.4014250000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11514164E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11514164E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11514163E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11514162E-15
For potential 3
Number of asymptotic regions = 63
Final point in integration = 0.17552479E+03 Angstroms
Time Now = 0.7901 Delta time = 0.3658 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.76318088E+00 0.68888007E-02 0.26609868E-04
ROW 2
0.68888007E-02-0.50005502E-02-0.19317231E-02
ROW 3
0.26609873E-04-0.19317231E-02-0.26433907E-02
eigenphases
-0.6132030E-02 -0.1573605E-02 0.6519227E+00
eigenphase sum 0.644217E+00 scattering length= -1.50224
eps+pi 0.378581E+01 eps+2*pi 0.692740E+01
MaxIter = 7 c.s. = 5.18191022 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.11337485E-07
Time Now = 2.0075 Delta time = 1.2174 End ScatStab
+ Command TotalCrossSection
+
Using LMaxK 6
Continuum Symmetry PG -
E (eV) XS(angs^2) EPS(radians)
3.401425 5.181910 0.644217
Largest value of LMaxK found 6
Total Cross Sections
Energy Total Cross Section
3.40143 10.36382
Time Now = 2.0080 Delta time = 0.0005 Finalize