Execution on n0151.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:35:23.436 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test06
#
# electron scattering from N2 molden SCF, polarization potential, low energy
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0 # charge, formula type
VCorr 'PZ'
AsyPol
0.15 # SwitchD, distance where switching function is down to 0.1
1 # nterm, number of terms needed to define asymptotic potential
0 # center for polarization term 1 is for C atom
0.0 0.0 0.0 # use molecular center for polarization term
2 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
8.664 8.664 17.904 0.0 0.0 0.0 # axx, ayy, azz, axy, axz, ayz
3 # icrtyp, flag to determine where r match is, 3 for second crossing
# or at nearest approach
0 # ilntyp, flag to determine what matching line is used, 0 - use
# l = 0 radial function as matching function
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatContSym 'SG' # Scattering symmetry
LMaxK 8 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test06.molden2012' 'molden'
GetBlms
ExpOrb
GetPot
Scat 0.001 0.01 0.02
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 1 / 0 / 0.0 0.0 0.0 / 2 / 8.664 8.664 17.904 0.0 0.0 0.0 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'SG'
+ Data Record LMaxK - 8
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test06.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 110 basis functions
Selecting orbitals
Number of orbitals selected is 7
Selecting 1 1 SymOrb = 1.1 Ene = -15.6842 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 1.5 Ene = -15.6806 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 2.1 Ene = -1.4752 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 2.5 Ene = -0.7786 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 3.1 Ene = -0.6350 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 1.3 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 1.2 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Atoms found 2 Coordinates in Angstroms
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 -0.5470000000
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 0.5470000000
Maximum distance from expansion center is 0.5470000000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group DAh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.1667 Delta time = 0.1667 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 7 0.54700 7 0.54700
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 11
Determining angular grid in GetAxMax LMax = 15 LMaxA = 11 LMaxAb = 30
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 3 3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 14 14 14 14 6 6 6 6
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is DAh
LMax 15
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
12 22 32 2 3 21 31
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
SG 1 1 9 1 1 1 1 1 1 1
A2G 1 2 1 1 -1 -1 1 1 -1 -1
B1G 1 3 3 -1 1 -1 1 -1 1 -1
B2G 1 4 3 -1 -1 1 1 -1 -1 1
PG 1 5 8 -1 -1 1 1 -1 -1 1
PG 2 6 8 -1 1 -1 1 -1 1 -1
DG 1 7 9 1 -1 -1 1 1 -1 -1
DG 2 8 9 1 1 1 1 1 1 1
FG 1 9 8 -1 -1 1 1 -1 -1 1
FG 2 10 8 -1 1 -1 1 -1 1 -1
GG 1 11 7 1 -1 -1 1 1 -1 -1
GG 2 12 7 1 1 1 1 1 1 1
SU 1 13 9 1 -1 -1 -1 -1 1 1
A2U 1 14 1 1 1 1 -1 -1 -1 -1
B1U 1 15 4 -1 -1 1 -1 1 1 -1
B2U 1 16 4 -1 1 -1 -1 1 -1 1
PU 1 17 11 -1 -1 1 -1 1 1 -1
PU 2 18 11 -1 1 -1 -1 1 -1 1
DU 1 19 9 1 -1 -1 -1 -1 1 1
DU 2 20 9 1 1 1 -1 -1 -1 -1
FU 1 21 10 -1 -1 1 -1 1 1 -1
FU 2 22 10 -1 1 -1 -1 1 -1 1
GU 1 23 7 1 -1 -1 -1 -1 1 1
GU 2 24 7 1 1 1 -1 -1 -1 -1
Time Now = 0.5997 Delta time = 0.4330 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG 1 0( 1) 1( 1) 2( 2) 3( 2) 4( 3) 5( 3) 6( 4) 7( 4) 8( 5) 9( 5)
10( 7) 11( 7)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 1) 11( 1)
B1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
B2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
PG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
PG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
DG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
DG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
FG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
FG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
GG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
GG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
SU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 5)
10( 5) 11( 7)
A2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 0) 11( 1)
B1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
B2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
PU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
PU 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
DU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
DU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
FU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
FU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
GU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
GU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 30
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 102 1 1 1 1 1 1 1
B1G 1 2 86 1 -1 -1 1 1 -1 -1
B2G 1 3 86 -1 -1 1 1 -1 -1 1
B3G 1 4 86 -1 1 -1 1 -1 1 -1
AU 1 5 75 1 1 1 -1 -1 -1 -1
B1U 1 6 90 1 -1 -1 -1 -1 1 1
B2U 1 7 86 -1 -1 1 -1 1 1 -1
B3U 1 8 86 -1 1 -1 -1 1 -1 1
Time Now = 0.6074 Delta time = 0.0077 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 9.6359860816 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 0.01058 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.54700 Angs Alpha Max = 0.14700E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.18998E-02 0.01520
2 8 16 0.26749E-02 0.03660
3 8 24 0.43054E-02 0.07104
4 8 32 0.57696E-02 0.11720
5 8 40 0.67259E-02 0.17101
6 8 48 0.68378E-02 0.22571
7 8 56 0.62927E-02 0.27605
8 8 64 0.61050E-02 0.32489
9 8 72 0.67380E-02 0.37879
10 8 80 0.77685E-02 0.44094
11 8 88 0.48305E-02 0.47958
12 8 96 0.30704E-02 0.50415
13 8 104 0.19517E-02 0.51976
14 8 112 0.12406E-02 0.52969
15 8 120 0.78856E-03 0.53599
16 8 128 0.54521E-03 0.54036
17 8 136 0.45672E-03 0.54401
18 8 144 0.37374E-03 0.54700
19 8 152 0.43646E-03 0.55049
20 8 160 0.46530E-03 0.55421
21 8 168 0.57358E-03 0.55880
22 8 176 0.87025E-03 0.56576
23 8 184 0.13836E-02 0.57683
24 8 192 0.21997E-02 0.59443
25 8 200 0.34972E-02 0.62241
26 8 208 0.55601E-02 0.66689
27 8 216 0.88398E-02 0.73761
28 64 280 0.10584E-01 1.41496
29 64 344 0.10584E-01 2.09230
30 64 408 0.10584E-01 2.76965
31 64 472 0.10584E-01 3.44700
32 64 536 0.10584E-01 4.12434
33 64 600 0.10584E-01 4.80169
34 64 664 0.10584E-01 5.47904
35 64 728 0.10584E-01 6.15638
36 64 792 0.10584E-01 6.83373
37 64 856 0.10584E-01 7.51108
38 64 920 0.10584E-01 8.18842
39 64 984 0.10584E-01 8.86577
40 64 1048 0.10584E-01 9.54312
41 8 1056 0.10584E-01 9.62779
42 8 1064 0.10250E-02 9.63599
Time Now = 0.6305 Delta time = 0.0230 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 11
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 10
Actual value of lmasym found = 11
Number of regions of the same l expansion (NAngReg) = 8
Angular regions
1 L = 2 from ( 1) 0.00190 to ( 7) 0.01330
2 L = 4 from ( 8) 0.01520 to ( 15) 0.03392
3 L = 6 from ( 16) 0.03660 to ( 23) 0.06674
4 L = 7 from ( 24) 0.07104 to ( 31) 0.11143
5 L = 9 from ( 32) 0.11720 to ( 39) 0.16428
6 L = 11 from ( 40) 0.17101 to ( 47) 0.21887
7 L = 15 from ( 48) 0.22571 to ( 256) 1.16095
8 L = 11 from ( 257) 1.17153 to ( 1064) 9.63599
There are 2 angular regions for computing spherical harmonics
1 lval = 11
2 lval = 15
Maximum number of processors is 132
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 72
Proc id = 1 Last grid point = 112
Proc id = 2 Last grid point = 144
Proc id = 3 Last grid point = 184
Proc id = 4 Last grid point = 216
Proc id = 5 Last grid point = 256
Proc id = 6 Last grid point = 312
Proc id = 7 Last grid point = 368
Proc id = 8 Last grid point = 424
Proc id = 9 Last grid point = 488
Proc id = 10 Last grid point = 544
Proc id = 11 Last grid point = 600
Proc id = 12 Last grid point = 656
Proc id = 13 Last grid point = 720
Proc id = 14 Last grid point = 776
Proc id = 15 Last grid point = 832
Proc id = 16 Last grid point = 896
Proc id = 17 Last grid point = 952
Proc id = 18 Last grid point = 1008
Proc id = 19 Last grid point = 1064
Time Now = 0.6454 Delta time = 0.0149 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -15.684200 SG 1 at max irg = 152 r = 0.55049
2 Orig 2 Eng = -15.680600 SU 1 at max irg = 152 r = 0.55049
3 Orig 3 Eng = -1.475200 SG 1 at max irg = 144 r = 0.54700
4 Orig 4 Eng = -0.778600 SU 1 at max irg = 232 r = 0.90695
5 Orig 5 Eng = -0.635000 SG 1 at max irg = 240 r = 0.99161
6 Orig 6 Eng = -0.616100 PU 1 at max irg = 208 r = 0.66689
7 Orig 7 Eng = -0.616100 PU 2 at max irg = 208 r = 0.66689
Rotation coefficients for orbital 1 grp = 1 SG 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 SU 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 SG 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 SU 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 SG 1
1 1.0000000000
Rotation coefficients for orbital 6 grp = 6 PU 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 7 grp = 6 PU 2
1 0.0000000000 2 1.0000000000
Number of orbital groups and degeneracis are 6
1 1 1 1 1 2
Number of orbital groups and number of electrons when fully occupied
6
2 2 2 2 2 4
Time Now = 0.7253 Delta time = 0.0799 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 6
Orbital 1 of SG 1 symmetry normalization integral = 0.98788414
Orbital 2 of SU 1 symmetry normalization integral = 0.99051993
Orbital 3 of SG 1 symmetry normalization integral = 0.99928701
Orbital 4 of SU 1 symmetry normalization integral = 0.99958568
Orbital 5 of SG 1 symmetry normalization integral = 0.99994440
Orbital 6 of PU 1 symmetry normalization integral = 0.99999098
Time Now = 1.0377 Delta time = 0.3124 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 14.00000000
Time Now = 1.0429 Delta time = 0.0052 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.14000000E+02 facnorm = 0.10000000E+01
Time Now = 1.0653 Delta time = 0.0224 Electronic part
Time Now = 1.0661 Delta time = 0.0008 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 1.0768 Delta time = 0.0108 End VcpPol
----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------
Switching distance (SwitchD) = 0.15000
Number of terms in the asymptotic polarization potential (nterm) = 1
Term = 1 At center = 0
Explicit coordinates = 0.00000000E+00 0.00000000E+00 0.00000000E+00
Type = 2
Polarizability tensor in atomic units
0.86640000E+01 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.86640000E+01 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.17904000E+02
Last center is at (RCenterX) = 0.00000 Angs
Radial matching parameter (icrtyp) = 3
Matching line type (ilntyp) = 0
Matching point is at r = 1.9411700138 Angs
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at(RFirstWt) R = 1.49962 Angs
Last point of the switching region (RLastWt) R= 2.43098 Angs
Total asymptotic potential is 0.11744000E+02 a.u.
Time Now = 1.0865 Delta time = 0.0096 End AsyPol
+ Command Scat
+ 0.001 0.01 0.02
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E-02 eV ( 0.36749326E-04 AU)
Time Now = 1.0933 Delta time = 0.0068 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SG 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.11744000E+02 au
Number of integration regions used = 59
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 5
Number of asymptotic solutions on the left (NAsymL) = 5
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 5
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 1.1072 Delta time = 0.0140 Energy independent setup
Compute solution for E = 0.0010000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.11744000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.34819939E-18 Asymp Moment = -0.23424779E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254342E-03 Asymp Moment = -0.16316875E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.14273497E-20 Asymp Moment = 0.16048806E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36024677E-20 Asymp Moment = -0.40505353E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248854E-05 Asymp Moment = -0.49752438E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.12478385E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.12478385E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.12478384E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.12478384E-15
For potential 3
i = 1 lvals = 6 6 stpote = 0.27105054E-19 second term = 0.00000000E+00
i = 2 lvals = 4 4 stpote = -0.14494636E-19 second term = 0.00000000E+00
i = 3 lvals = 4 6 stpote = -0.43512022E-04 second term = -0.45309970E-04
i = 4 lvals = 6 6 stpote = 0.17175634E-19 second term = 0.00000000E+00
i = 5 lvals = 6 6 stpote = -0.92142883E-20 second term = 0.00000000E+00
i = 6 lvals = 6 8 stpote = -0.34834637E-07 second term = -0.34834637E-07
Number of asymptotic regions = 8
Final point in integration = 0.26414523E+04 Angstroms
Time Now = 2.4829 Delta time = 1.3757 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.45361063E-02-0.57106906E-03-0.40082322E-08-0.54377715E-12-0.22095581E-17
ROW 2
-0.57107551E-03-0.34725875E-03-0.84277820E-04-0.20729006E-09-0.17602326E-13
ROW 3
-0.40090510E-08-0.84277820E-04-0.97864819E-04-0.33859599E-04-0.40707412E-10
ROW 4
-0.54377621E-12-0.20729005E-09-0.33859599E-04-0.46026491E-04-0.18454729E-04
ROW 5
-0.22092036E-17-0.17602326E-13-0.40707412E-10-0.18454729E-04-0.26613156E-04
eigenphases
-0.4612560E-02 -0.3051880E-03 -0.8948800E-04 -0.3791121E-04 -0.8689517E-05
eigenphase sum-0.505384E-02 scattering length= 0.58950
eps+pi 0.313654E+01 eps+2*pi 0.627813E+01
MaxIter = 8 c.s. = 1.02353912 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.20295414E-07
Time Now = 7.2963 Delta time = 4.8134 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E-01 eV ( 0.36749326E-03 AU)
Time Now = 7.3054 Delta time = 0.0091 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SG 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.11744000E+02 au
Number of integration regions used = 59
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 5
Number of asymptotic solutions on the left (NAsymL) = 5
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 5
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 7.3201 Delta time = 0.0147 Energy independent setup
Compute solution for E = 0.0100000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.11744000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.34819939E-18 Asymp Moment = -0.23424779E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254342E-03 Asymp Moment = -0.16316875E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.14273497E-20 Asymp Moment = 0.16048806E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36024677E-20 Asymp Moment = -0.40505353E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248854E-05 Asymp Moment = -0.49752438E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11922334E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11922333E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11922333E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11922332E-15
For potential 3
i = 1 lvals = 6 6 stpote = 0.27105054E-19 second term = 0.00000000E+00
i = 2 lvals = 4 4 stpote = -0.14494636E-19 second term = 0.00000000E+00
i = 3 lvals = 4 6 stpote = -0.43512022E-04 second term = -0.45309970E-04
i = 4 lvals = 6 6 stpote = 0.17175634E-19 second term = 0.00000000E+00
i = 5 lvals = 6 6 stpote = -0.92142883E-20 second term = 0.00000000E+00
i = 6 lvals = 6 8 stpote = -0.34834637E-07 second term = -0.34834637E-07
Number of asymptotic regions = 10
Final point in integration = 0.12269511E+04 Angstroms
Time Now = 8.7235 Delta time = 1.4034 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.19579037E-01-0.17082303E-02-0.12758395E-06-0.16747650E-10-0.68385446E-15
ROW 2
-0.17082320E-02-0.89996539E-03-0.25938114E-03-0.67707757E-08-0.54488707E-12
ROW 3
-0.12760117E-06-0.25938114E-03-0.28009101E-03-0.10436670E-03-0.14040994E-08
ROW 4
-0.16746914E-10-0.67707756E-08-0.10436670E-03-0.13665910E-03-0.56544998E-04
ROW 5
-0.68511773E-15-0.54488707E-12-0.14040994E-08-0.56544998E-04-0.80729514E-04
eigenphases
-0.1973144E-01 -0.8626133E-03 -0.2541275E-03 -0.1060920E-03 -0.1964813E-04
eigenphase sum-0.209739E-01 scattering length= 0.77376
eps+pi 0.312062E+01 eps+2*pi 0.626221E+01
MaxIter = 8 c.s. = 1.86770449 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.63281540E-07
Time Now = 13.8857 Delta time = 5.1621 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.20000000E-01 eV ( 0.73498652E-03 AU)
Time Now = 13.8945 Delta time = 0.0089 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SG 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 8
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.11744000E+02 au
Number of integration regions used = 59
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 5
Number of asymptotic solutions on the left (NAsymL) = 5
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 5
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 8
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 13.9084 Delta time = 0.0138 Energy independent setup
Compute solution for E = 0.0200000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.11744000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.34819939E-18 Asymp Moment = -0.23424779E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254342E-03 Asymp Moment = -0.16316875E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.14273497E-20 Asymp Moment = 0.16048806E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36024677E-20 Asymp Moment = -0.40505353E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248854E-05 Asymp Moment = -0.49752438E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11255870E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11255870E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11255869E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.11255869E-15
For potential 3
i = 1 lvals = 6 6 stpote = 0.27105054E-19 second term = 0.00000000E+00
i = 2 lvals = 4 4 stpote = -0.14494636E-19 second term = 0.00000000E+00
i = 3 lvals = 4 6 stpote = -0.43512022E-04 second term = -0.45309970E-04
i = 4 lvals = 6 6 stpote = 0.17175634E-19 second term = 0.00000000E+00
i = 5 lvals = 6 6 stpote = -0.92142883E-20 second term = 0.00000000E+00
i = 6 lvals = 6 8 stpote = -0.34834637E-07 second term = -0.34834637E-07
Number of asymptotic regions = 11
Final point in integration = 0.97417644E+03 Angstroms
Time Now = 15.3098 Delta time = 1.4014 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.31612975E-01-0.23714911E-02-0.36296595E-06-0.49826289E-10-0.38393501E-14
ROW 2
-0.23714957E-02-0.11030932E-02-0.36156098E-03-0.19196127E-07-0.16000584E-11
ROW 3
-0.36299226E-06-0.36156098E-03-0.37043396E-03-0.14602789E-03-0.39967707E-08
ROW 4
-0.49820861E-10-0.19196127E-07-0.14602789E-03-0.18514459E-03-0.79123545E-04
ROW 5
-0.38389835E-14-0.16000584E-11-0.39967707E-08-0.79123545E-04-0.11072358E-03
eigenphases
-0.3178552E-01 -0.1103056E-02 -0.3311026E-03 -0.1351652E-03 -0.1681345E-04
eigenphase sum-0.333717E-01 scattering length= 0.87073
eps+pi 0.310822E+01 eps+2*pi 0.624981E+01
MaxIter = 8 c.s. = 2.42099110 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.88500996E-07
Time Now = 20.8226 Delta time = 5.5129 End ScatStab
+ Command TotalCrossSection
+
Using LMaxK 8
Continuum Symmetry SG -
E (eV) XS(angs^2) EPS(radians)
0.001000 1.023539 -0.005054
0.010000 1.867704 -0.020974
0.020000 2.420991 -0.033372
Largest value of LMaxK found 8
Total Cross Sections
Energy Total Cross Section
0.00100 1.02354
0.01000 1.86770
0.02000 2.42099
Time Now = 20.8242 Delta time = 0.0015 Finalize