Execution on n0160.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:42.793 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test04
#
# electron scattering from SiH4 in A1 symmetry
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0
VCorr 'PZ'
AsyPol
0.15 # SwitchD, distance where switching function is down to 0.1
1 # nterm, number of terms needed to define asymptotic potential
1 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
30.40 # value of the spherical polarizability
3 # icrtyp, flag to determine where r match is, 3 for second crossing
# or at nearest approach
0 # ilntyp, flag to determine what matching line is used, 0 - use
# l = 0 radial function as matching function
FegeEng 13.29 # Energy correction (in eV) used in the fege potential
ScatContSym 'A1' # Scattering symmetry
LMaxK 10 # Maximum l in the K matirx
ScatEng 0.5 10.0 15.0 # list of scattering energies
GrnType 1
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test04.g09' 'gaussian'
GetBlms
ExpOrb
GetPot
Scat
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 1 / 1 / 1 / 30.40 / 3 / 0
+ Data Record FegeEng - 13.29
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 10
+ Data Record ScatEng - 0.5 10.0 15.0
+ Data Record GrnType - 1
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test04.g09' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g09
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772085899999
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line =# RHF/6-311G(2D,2P) 6D 10F SCF=TIGHT GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 9 number already selected 0
Number of orbitals selected is 9
Highest orbital read in is = 9
Time Now = 0.0124 Delta time = 0.0124 End GaussianCnv
Atoms found 5 Coordinates in Angstroms
Z = 14 ZS = 14 r = 0.0000000000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = 0.8440860000 0.8440860000 0.8440860000
Z = 1 ZS = 1 r = -0.8440860000 -0.8440860000 0.8440860000
Z = 1 ZS = 1 r = 0.8440860000 -0.8440860000 -0.8440860000
Z = 1 ZS = 1 r = -0.8440860000 0.8440860000 -0.8440860000
Maximum distance from expansion center is 1.4619998380
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Td
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup D2
Time Now = 0.0842 Delta time = 0.0719 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.57735 0.57735 0.57735 1 1.46200
3 -0.57735 -0.57735 0.57735 1 1.46200
4 0.57735 -0.57735 -0.57735 1 1.46200
5 -0.57735 0.57735 -0.57735 1 1.46200
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 0.81650 -0.40825 -0.40825
3 0.81650 -0.40825 0.40825
4 0.81650 0.40825 0.40825
5 0.81650 0.40825 -0.40825
Computed default value of LMaxA = 14
Determining angular grid in GetAxMax LMax = 15 LMaxA = 14 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Td
LMax 15
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) E ( 2) T1 ( 3) T2 ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
8 11 14
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 15 1 1 1
A2 1 2 7 1 1 1
E 1 3 21 1 1 1
E 2 4 21 1 1 1
T1 1 5 27 -1 -1 1
T1 2 6 27 -1 1 -1
T1 3 7 27 1 -1 -1
T2 1 8 36 -1 -1 1
T2 2 9 36 -1 1 -1
T2 3 10 36 1 -1 -1
Time Now = 0.2248 Delta time = 0.1406 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 1) 2( 1) 3( 2) 4( 3) 5( 3) 6( 4) 7( 5) 8( 6) 9( 7)
10( 8) 11( 9) 12( 11) 13( 12) 14( 13)
A2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 2)
10( 3) 11( 3) 12( 4) 13( 5) 14( 6)
E 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16) 14( 19)
E 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16) 14( 19)
T1 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21) 14( 24)
T1 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21) 14( 24)
T1 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21) 14( 24)
T2 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28) 14( 32)
T2 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28) 14( 32)
T2 3 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28) 14( 32)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2
LMax 30
The dimension of each irreducable representation is
A ( 1) B1 ( 1) B2 ( 1) B3 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
irep = 1 sym =A 1 eigs = 1 1 1 1
irep = 2 sym =B1 1 eigs = 1 1 -1 -1
irep = 3 sym =B2 1 eigs = 1 -1 -1 1
irep = 4 sym =B3 1 eigs = 1 -1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A 1 1 241 1 1 1
B1 1 2 240 1 -1 -1
B2 1 3 240 -1 -1 1
B3 1 4 240 -1 1 -1
Time Now = 0.2289 Delta time = 0.0040 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 8.2582051861 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 8.25821 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 0.01058 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.69379E+05
2 Center at = 1.46200 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.20090E-03 0.00161
2 8 16 0.21418E-03 0.00332
3 8 24 0.26402E-03 0.00543
4 8 32 0.40058E-03 0.00864
5 8 40 0.63687E-03 0.01373
6 8 48 0.10125E-02 0.02183
7 8 56 0.16098E-02 0.03471
8 8 64 0.25593E-02 0.05519
9 8 72 0.40690E-02 0.08774
10 8 80 0.64692E-02 0.13949
11 8 88 0.10285E-01 0.22177
12 64 152 0.10584E-01 0.89912
13 32 184 0.10584E-01 1.23779
14 8 192 0.10289E-01 1.32010
15 8 200 0.64628E-02 1.37180
16 8 208 0.42286E-02 1.40563
17 8 216 0.33452E-02 1.43239
18 8 224 0.30634E-02 1.45690
19 8 232 0.63733E-03 1.46200
20 8 240 0.30552E-02 1.48644
21 8 248 0.32571E-02 1.51250
22 8 256 0.40150E-02 1.54462
23 8 264 0.60918E-02 1.59335
24 8 272 0.96851E-02 1.67083
25 64 336 0.10584E-01 2.34818
26 64 400 0.10584E-01 3.02553
27 64 464 0.10584E-01 3.70287
28 64 528 0.10584E-01 4.38022
29 64 592 0.10584E-01 5.05757
30 64 656 0.10584E-01 5.73491
31 64 720 0.10584E-01 6.41226
32 64 784 0.10584E-01 7.08961
33 64 848 0.10584E-01 7.76695
34 40 888 0.10584E-01 8.19030
35 8 896 0.84886E-02 8.25821
Time Now = 0.2391 Delta time = 0.0102 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 14
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 14
Actual value of lmasym found = 14
Number of regions of the same l expansion (NAngReg) = 11
Angular regions
1 L = 2 from ( 1) 0.00020 to ( 7) 0.00141
2 L = 5 from ( 8) 0.00161 to ( 23) 0.00517
3 L = 6 from ( 24) 0.00543 to ( 31) 0.00824
4 L = 7 from ( 32) 0.00864 to ( 47) 0.02082
5 L = 8 from ( 48) 0.02183 to ( 55) 0.03310
6 L = 9 from ( 56) 0.03471 to ( 63) 0.05263
7 L = 11 from ( 64) 0.05519 to ( 71) 0.08367
8 L = 12 from ( 72) 0.08774 to ( 79) 0.13302
9 L = 14 from ( 80) 0.13949 to ( 159) 0.97320
10 L = 15 from ( 160) 0.98379 to ( 344) 2.43285
11 L = 14 from ( 345) 2.44343 to ( 896) 8.25821
There are 2 angular regions for computing spherical harmonics
1 lval = 14
2 lval = 15
Maximum number of processors is 111
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 96
Proc id = 1 Last grid point = 136
Proc id = 2 Last grid point = 184
Proc id = 3 Last grid point = 216
Proc id = 4 Last grid point = 256
Proc id = 5 Last grid point = 296
Proc id = 6 Last grid point = 336
Proc id = 7 Last grid point = 376
Proc id = 8 Last grid point = 424
Proc id = 9 Last grid point = 464
Proc id = 10 Last grid point = 512
Proc id = 11 Last grid point = 552
Proc id = 12 Last grid point = 592
Proc id = 13 Last grid point = 640
Proc id = 14 Last grid point = 680
Proc id = 15 Last grid point = 728
Proc id = 16 Last grid point = 768
Proc id = 17 Last grid point = 816
Proc id = 18 Last grid point = 856
Proc id = 19 Last grid point = 896
Time Now = 0.2576 Delta time = 0.0185 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -68.768638 A1 1 at max irg = 56 r = 0.03471
2 Orig 2 Eng = -6.117228 A1 1 at max irg = 88 r = 0.22177
3 Orig 3 Eng = -4.224093 T2 1 at max irg = 88 r = 0.22177
4 Orig 4 Eng = -4.224093 T2 2 at max irg = 88 r = 0.22177
5 Orig 5 Eng = -4.224093 T2 3 at max irg = 88 r = 0.22177
6 Orig 6 Eng = -0.734277 A1 1 at max irg = 176 r = 1.15312
7 Orig 7 Eng = -0.488925 T2 1 at max irg = 216 r = 1.43239
8 Orig 8 Eng = -0.488925 T2 2 at max irg = 216 r = 1.43239
9 Orig 9 Eng = -0.488925 T2 3 at max irg = 216 r = 1.43239
Rotation coefficients for orbital 1 grp = 1 A1 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A1 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 T2 1
1 1.0000000000 2 0.0000000000 3 -0.0000000000
Rotation coefficients for orbital 4 grp = 3 T2 2
1 -0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 5 grp = 3 T2 3
1 0.0000000000 2 -0.0000000000 3 1.0000000000
Rotation coefficients for orbital 6 grp = 4 A1 1
1 1.0000000000
Rotation coefficients for orbital 7 grp = 5 T2 1
1 -0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 8 grp = 5 T2 2
1 1.0000000000 2 0.0000000000 3 0.0000000000
Rotation coefficients for orbital 9 grp = 5 T2 3
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Number of orbital groups and degeneracis are 5
1 1 3 1 3
Number of orbital groups and number of electrons when fully occupied
5
2 2 6 2 6
Time Now = 0.3040 Delta time = 0.0464 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 5
Orbital 1 of A1 1 symmetry normalization integral = 0.99999997
Orbital 2 of A1 1 symmetry normalization integral = 1.00000000
Orbital 3 of T2 1 symmetry normalization integral = 1.00000000
Orbital 4 of A1 1 symmetry normalization integral = 0.99993723
Orbital 5 of T2 1 symmetry normalization integral = 0.99990632
Time Now = 0.5050 Delta time = 0.2010 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 18.00000000
Time Now = 0.5112 Delta time = 0.0062 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.18000000E+02 facnorm = 0.10000000E+01
Time Now = 0.5456 Delta time = 0.0344 Electronic part
Time Now = 0.5475 Delta time = 0.0019 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 0.5605 Delta time = 0.0130 End VcpPol
----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------
Switching distance (SwitchD) = 0.15000
Number of terms in the asymptotic polarization potential (nterm) = 1
Term = 1 At center = 1
Explicit coordinates = 0.00000000E+00 0.00000000E+00 0.00000000E+00
Type = 1
Polarizability = 0.30400000E+02 au
Last center is at (RCenterX) = 0.00000 Angs
Radial matching parameter (icrtyp) = 3
Matching line type (ilntyp) = 0
Matching point is at r = 2.5561441418 Angs
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at(RFirstWt) R = 2.09418 Angs
Last point of the switching region (RLastWt) R= 3.02553 Angs
Total asymptotic potential is 0.30400000E+02 a.u.
Time Now = 0.5733 Delta time = 0.0129 End AsyPol
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13290000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 0.5847 Delta time = 0.0114 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.30400000E+02 au
Number of integration regions used = 66
Number of partial waves (np) = 15
Number of asymptotic solutions on the right (NAsymR) = 8
Number of asymptotic solutions on the left (NAsymL) = 8
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 8
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 13
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 211
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 13
Time Now = 0.5939 Delta time = 0.0091 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.30400000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.94368957E-15 Asymp Coef = -0.11943248E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.29065648E-18 Asymp Moment = -0.12308242E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.63017075E-18 Asymp Moment = 0.26685433E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.18264481E-03 Asymp Moment = -0.89420492E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.20921665E-15
i = 2 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.20922984E-15
i = 3 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.20924264E-15
i = 4 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.20925447E-15
For potential 3
i = 1 lvals = 6 6 stpote = 0.00000000E+00 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.46444848E-19 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.47766135E-19 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.43817022E-05 second term = -0.43817022E-05
Number of asymptotic regions = 12
Final point in integration = 0.17342652E+03 Angstroms
Time Now = 2.7310 Delta time = 2.1372 End SolveHomo
Final T matrix
ROW 1
(-0.12761044E+00, 0.16559405E-01) ( 0.85723220E-03,-0.10148596E-03)
(-0.14118661E-03, 0.18488975E-04) (-0.61200921E-06, 0.15416989E-06)
(-0.22825565E-07, 0.86793535E-08) ( 0.26369476E-09,-0.20377849E-10)
(-0.19052005E-10, 0.13408821E-10) ( 0.60600724E-12,-0.22974547E-12)
ROW 2
( 0.85723220E-03,-0.10148596E-03) ( 0.11367955E-01, 0.13106370E-03)
( 0.10310468E-02, 0.16834740E-04) ( 0.87312319E-04, 0.11367575E-05)
(-0.24071847E-06,-0.57476809E-07) ( 0.23257195E-08,-0.77078592E-10)
(-0.21132500E-08,-0.18105034E-08) ( 0.59230251E-10,-0.55546522E-11)
ROW 3
(-0.14118660E-03, 0.18488976E-04) ( 0.10310468E-02, 0.16834740E-04)
( 0.50763446E-02, 0.26855282E-04) ( 0.15364017E-05, 0.10622505E-06)
(-0.40837019E-04,-0.25100485E-06) (-0.95739198E-07,-0.40050294E-08)
( 0.75253985E-09,-0.35729389E-10) (-0.63140889E-09,-0.53148483E-09)
ROW 4
(-0.61240704E-06, 0.15396958E-06) ( 0.87312328E-04, 0.11367828E-05)
( 0.15364010E-05, 0.10622366E-06) ( 0.16373772E-02, 0.27090585E-05)
(-0.14142514E-03,-0.38133393E-06) ( 0.15675336E-06,-0.11147474E-07)
(-0.20452565E-04,-0.44094661E-07) (-0.27298273E-07,-0.27569737E-08)
ROW 5
(-0.22837054E-07, 0.86714126E-08) (-0.24071820E-06,-0.57475853E-07)
(-0.40837019E-04,-0.25100491E-06) (-0.14142514E-03,-0.38133393E-06)
( 0.10584473E-02, 0.11492946E-05) ( 0.84535860E-04, 0.15061724E-06)
( 0.20388380E-06, 0.19553808E-08) ( 0.12930931E-04, 0.18645401E-07)
ROW 6
( 0.26378123E-09,-0.20266536E-10) ( 0.23257188E-08,-0.77089053E-10)
(-0.95739198E-07,-0.40050285E-08) ( 0.15675336E-06,-0.11147474E-07)
( 0.84535860E-04, 0.15061724E-06) ( 0.72349568E-03, 0.53110905E-06)
(-0.21414743E-04,-0.26545082E-07) ( 0.10689776E-06, 0.55054969E-09)
ROW 7
(-0.19063183E-10, 0.13404896E-10) (-0.21132495E-08,-0.18105024E-08)
( 0.75253983E-09,-0.35729443E-10) (-0.20452565E-04,-0.44094661E-07)
( 0.20388380E-06, 0.19553808E-08) (-0.21414743E-04,-0.26545082E-07)
( 0.51692395E-03, 0.26997021E-06) ( 0.42689113E-04, 0.38363474E-07)
ROW 8
( 0.60630666E-12,-0.22949924E-12) ( 0.59230238E-10,-0.55546825E-11)
(-0.63140890E-09,-0.53148482E-09) (-0.27298273E-07,-0.27569737E-08)
( 0.12930931E-04, 0.18645401E-07) ( 0.10689776E-06, 0.55054969E-09)
( 0.42689113E-04, 0.38363474E-07) ( 0.38175220E-03, 0.14886714E-06)
eigenphases
-0.1290437E+00 0.3690656E-03 0.5265746E-03 0.7044404E-03 0.1046645E-02
0.1670058E-02 0.4912794E-02 0.1153928E-01
eigenphase sum-0.108275E+00 scattering length= 0.56703
eps+pi 0.303332E+01 eps+2*pi 0.617491E+01
MaxIter = 7 c.s. = 1.60123237 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.48731749E-08
Time Now = 19.8494 Delta time = 17.1183 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13290000E+02 eV
Do E = 0.10000000E+02 eV ( 0.36749326E+00 AU)
Time Now = 19.8634 Delta time = 0.0140 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.30400000E+02 au
Number of integration regions used = 66
Number of partial waves (np) = 15
Number of asymptotic solutions on the right (NAsymR) = 8
Number of asymptotic solutions on the left (NAsymL) = 8
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 8
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 13
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 211
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 13
Time Now = 19.8718 Delta time = 0.0084 Energy independent setup
Compute solution for E = 10.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.30400000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.94368957E-15 Asymp Coef = -0.11943248E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.29065648E-18 Asymp Moment = -0.12308242E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.63017075E-18 Asymp Moment = 0.26685433E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.18264481E-03 Asymp Moment = -0.89420492E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.12304843E-15
i = 2 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.12307148E-15
i = 3 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.12309369E-15
i = 4 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.12311411E-15
For potential 3
i = 1 lvals = 6 6 stpote = 0.00000000E+00 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.46444848E-19 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.47766135E-19 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.43817022E-05 second term = -0.43817022E-05
Number of asymptotic regions = 24
Final point in integration = 0.82011193E+02 Angstroms
Time Now = 22.4116 Delta time = 2.5398 End SolveHomo
Final T matrix
ROW 1
( 0.12809558E+00, 0.80288040E+00) ( 0.35376923E+00,-0.10258096E+00)
(-0.69570499E-01, 0.36177584E-01) (-0.51587056E-02, 0.18059899E-02)
(-0.81090418E-03, 0.24225408E-03) ( 0.41239354E-04,-0.78173039E-05)
(-0.13153753E-04, 0.27162404E-05) ( 0.18922667E-05,-0.84258093E-07)
ROW 2
( 0.35376923E+00,-0.10258096E+00) ( 0.64074792E-01, 0.79254754E+00)
( 0.18087613E-01,-0.15547185E+00) ( 0.47917641E-04,-0.11527641E-01)
(-0.88062460E-04,-0.18091250E-02) (-0.69534785E-05, 0.84780742E-04)
(-0.41898974E-05,-0.28708385E-04) ( 0.21281804E-06, 0.38325571E-05)
ROW 3
(-0.69570499E-01, 0.36177584E-01) ( 0.18087613E-01,-0.15547185E+00)
( 0.11441447E+00, 0.45849347E-01) ( 0.15004841E-02, 0.25603386E-02)
( 0.15715151E-03, 0.37998942E-03) (-0.85270420E-04,-0.28545931E-04)
( 0.11191888E-04, 0.66751576E-05) (-0.28113974E-05,-0.11009976E-05)
ROW 4
(-0.51587056E-02, 0.18059899E-02) ( 0.47917640E-04,-0.11527641E-01)
( 0.15004841E-02, 0.25603386E-02) ( 0.33950336E-01, 0.13312915E-02)
(-0.22866890E-02,-0.10026428E-03) (-0.15252823E-04,-0.55672542E-05)
(-0.29118208E-03,-0.12592194E-04) (-0.13721836E-04,-0.13551028E-05)
ROW 5
(-0.81090418E-03, 0.24225408E-03) (-0.88062460E-04,-0.18091250E-02)
( 0.15715151E-03, 0.37998942E-03) (-0.22866890E-02,-0.10026428E-03)
( 0.21468131E-01, 0.47293743E-03) ( 0.15423077E-02, 0.55348191E-04)
( 0.41144688E-04, 0.15908268E-05) ( 0.21108932E-03, 0.62386244E-05)
ROW 6
( 0.41239356E-04,-0.78173044E-05) (-0.69534800E-05, 0.84780741E-04)
(-0.85270419E-04,-0.28545931E-04) (-0.15252823E-04,-0.55672542E-05)
( 0.15423077E-02, 0.55348191E-04) ( 0.14516736E-01, 0.21336419E-03)
(-0.40701743E-03,-0.10065308E-04) ( 0.16341086E-04, 0.44370319E-06)
ROW 7
(-0.13153747E-04, 0.27162321E-05) (-0.41898485E-05,-0.28708409E-04)
( 0.11191881E-04, 0.66751647E-05) (-0.29118208E-03,-0.12592194E-04)
( 0.41144688E-04, 0.15908268E-05) (-0.40701743E-03,-0.10065308E-04)
( 0.10393748E-01, 0.10898097E-03) ( 0.81571290E-03, 0.14744348E-04)
ROW 8
( 0.18922664E-05,-0.84257279E-07) ( 0.21281177E-06, 0.38325612E-05)
(-0.28113967E-05,-0.11009988E-05) (-0.13721836E-04,-0.13551029E-05)
( 0.21108932E-03, 0.62386244E-05) ( 0.16341086E-04, 0.44370319E-06)
( 0.81571290E-03, 0.14744348E-04) ( 0.76711720E-02, 0.59989434E-04)
eigenphases
-0.1287117E+01 0.7441247E-02 0.1057380E-01 0.1422414E-01 0.2140411E-01
0.3436184E-01 0.1205879E+00 0.9969793E+00
eigenphase sum-0.815444E-01 scattering length= 0.09533
eps+pi 0.306005E+01 eps+2*pi 0.620164E+01
MaxIter = 7 c.s. = 7.86851517 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.73124967E-08
Time Now = 48.5009 Delta time = 26.0893 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13290000E+02 eV
Do E = 0.15000000E+02 eV ( 0.55123989E+00 AU)
Time Now = 48.5147 Delta time = 0.0138 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 10
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.30400000E+02 au
Number of integration regions used = 66
Number of partial waves (np) = 15
Number of asymptotic solutions on the right (NAsymR) = 8
Number of asymptotic solutions on the left (NAsymL) = 8
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 8
Maximum in the asymptotic region (lpasym) = 14
Number of partial waves in the asymptotic region (npasym) = 13
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 211
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 10
Highest l used at large r (lpasym) = 14
Higest l used in the asymptotic potential (lpzb) = 28
Maximum L used in the homogeneous solution (LMaxHomo) = 14
Number of partial waves in the homogeneous solution (npHomo) = 13
Time Now = 48.5231 Delta time = 0.0084 Energy independent setup
Compute solution for E = 15.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.30400000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.94368957E-15 Asymp Coef = -0.11943248E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.29065648E-18 Asymp Moment = -0.12308242E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.63017075E-18 Asymp Moment = 0.26685433E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = 0.18264481E-03 Asymp Moment = -0.89420492E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.99623125E-16
i = 2 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.99609935E-16
i = 3 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.99598047E-16
i = 4 exps = -0.62422985E+02 -0.20000000E+01 stpote = -0.99587774E-16
For potential 3
i = 1 lvals = 6 6 stpote = 0.00000000E+00 second term = 0.00000000E+00
i = 2 lvals = 6 6 stpote = -0.46444848E-19 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = 0.47766135E-19 second term = 0.00000000E+00
i = 4 lvals = 7 9 stpote = -0.43817022E-05 second term = -0.43817022E-05
Number of asymptotic regions = 26
Final point in integration = 0.74105983E+02 Angstroms
Time Now = 51.0671 Delta time = 2.5440 End SolveHomo
Final T matrix
ROW 1
( 0.35177215E+00, 0.62379957E+00) ( 0.29973627E+00,-0.11793425E+00)
(-0.69191096E-01, 0.48239606E-01) (-0.73807625E-02, 0.29038325E-02)
(-0.14533349E-02, 0.45606294E-03) ( 0.94429435E-04,-0.16585368E-04)
(-0.35541822E-04, 0.53732767E-05) ( 0.62112497E-05, 0.29876684E-07)
ROW 2
( 0.29973627E+00,-0.11793425E+00) (-0.13869835E+00, 0.78644370E+00)
( 0.88800048E-01,-0.19151683E+00) ( 0.59274873E-02,-0.18704174E-01)
( 0.11634655E-02,-0.34532668E-02) (-0.11070908E-03, 0.18459492E-03)
( 0.20763506E-04,-0.76927673E-04) (-0.50784095E-05, 0.11384949E-04)
ROW 3
(-0.69191096E-01, 0.48239606E-01) ( 0.88800048E-01,-0.19151683E+00)
( 0.15438957E+00, 0.82340737E-01) ( 0.28119010E-02, 0.58404466E-02)
( 0.15017572E-02, 0.12663858E-02) (-0.31179744E-03,-0.11392022E-03)
( 0.42103939E-04, 0.28494261E-04) (-0.12949784E-04,-0.54123343E-05)
ROW 4
(-0.73807625E-02, 0.29038326E-02) ( 0.59274873E-02,-0.18704174E-01)
( 0.28119010E-02, 0.58404466E-02) ( 0.53383380E-01, 0.33563308E-02)
(-0.23047305E-02,-0.10420984E-03) (-0.40987419E-04,-0.14132145E-04)
(-0.21559841E-03,-0.13139267E-04) (-0.51586964E-04,-0.45298639E-05)
ROW 5
(-0.14533349E-02, 0.45606294E-03) ( 0.11634655E-02,-0.34532668E-02)
( 0.15017572E-02, 0.12663858E-02) (-0.23047305E-02,-0.10420984E-03)
( 0.32863478E-01, 0.11102853E-02) ( 0.20436420E-02, 0.11051440E-03)
( 0.12890959E-03, 0.62957125E-05) ( 0.24096757E-03, 0.11002906E-04)
ROW 6
( 0.94429435E-04,-0.16585369E-04) (-0.11070908E-03, 0.18459492E-03)
(-0.31179744E-03,-0.11392022E-03) (-0.40987419E-04,-0.14132145E-04)
( 0.20436420E-02, 0.11051440E-03) ( 0.21856425E-01, 0.48266311E-03)
(-0.58069312E-03,-0.21506633E-04) ( 0.42256568E-04, 0.14019970E-05)
ROW 7
(-0.35541822E-04, 0.53732763E-05) ( 0.20763506E-04,-0.76927672E-04)
( 0.42103939E-04, 0.28494261E-04) (-0.21559841E-03,-0.13139268E-04)
( 0.12890959E-03, 0.62957125E-05) (-0.58069312E-03,-0.21506633E-04)
( 0.15644394E-01, 0.24662302E-03) ( 0.11684824E-02, 0.31783920E-04)
ROW 8
( 0.62112498E-05, 0.29876653E-07) (-0.50784096E-05, 0.11384949E-04)
(-0.12949784E-04,-0.54123343E-05) (-0.51586964E-04,-0.45298639E-05)
( 0.24096757E-03, 0.11002906E-04) ( 0.42256568E-04, 0.14019970E-05)
( 0.11684824E-02, 0.31783920E-04) ( 0.11530536E-01, 0.13530824E-03)
eigenphases
-0.1240088E+01 0.1121812E-01 0.1589556E-01 0.2154954E-01 0.3297991E-01
0.5372058E-01 0.1829901E+00 0.8510128E+00
eigenphase sum-0.707213E-01 scattering length= 0.06747
eps+pi 0.307087E+01 eps+2*pi 0.621246E+01
MaxIter = 6 c.s. = 4.78110675 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.43454262E-08
Time Now = 77.1408 Delta time = 26.0737 End ScatStab
+ Command TotalCrossSection
+
Using LMaxK 10
Continuum Symmetry A1 -
E (eV) XS(angs^2) EPS(radians)
0.500000 1.601232 -0.108275
10.000000 7.868515 -0.081544
15.000000 4.781107 -0.070721
Largest value of LMaxK found 10
Total Cross Sections
Energy Total Cross Section
0.50000 1.60123
10.00000 7.86852
15.00000 4.78111
Time Now = 77.1419 Delta time = 0.0012 Finalize