Execution on n0152.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:41.626 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test03
#
# electron scattering from N2 molden SCF, DCS calculation
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 0 # charge, formula type
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatContSym 'SG' # Scattering symmetry
LMaxK 4 # Maximum l in the K matirx
ScatEng 3.0 4.0 5.0 6.0
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test03.molden2012' 'molden'
GetBlms
ExpOrb
GetPot
GrnType 1
ScatContSym 'SG' # Scattering symmetry
Scat
ScatContSym 'SU' # Scattering symmetry
Scat
ScatContSym 'PG' # Scattering symmetry
Scat
ScatContSym 'PU' # Scattering symmetry
Scat
ScatContSym 'DG' # Scattering symmetry
Scat
ScatContSym 'DU' # Scattering symmetry
Scat
ScatContSym 'FG' # Scattering symmetry
Scat
ScatContSym 'FU' # Scattering symmetry
Scat
ScatContSym 'GG' # Scattering symmetry
Scat
ScatContSym 'GU' # Scattering symmetry
Scat
ScatContSym 'A2G' # Scattering symmetry
Scat
ScatContSym 'A2U' # Scattering symmetry
Scat
ScatContSym 'B1G' # Scattering symmetry
Scat
ScatContSym 'B1U' # Scattering symmetry
Scat
ScatContSym 'B2G' # Scattering symmetry
Scat
ScatContSym 'B2U' # Scattering symmetry
Scat
TotalCrossSection
EDCS
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm - 0 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'SG'
+ Data Record LMaxK - 4
+ Data Record ScatEng - 3.0 4.0 5.0 6.0
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test03.molden2012' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772090000000
Convert from Angstroms to Bohr radii
Found 110 basis functions
Selecting orbitals
Number of orbitals selected is 7
Selecting 1 1 SymOrb = 1.1 Ene = -15.6842 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 1.5 Ene = -15.6806 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 2.1 Ene = -1.4752 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 2.5 Ene = -0.7786 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 3.1 Ene = -0.6350 Spin =Alpha Occup = 2.000000
Selecting 6 6 SymOrb = 1.3 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Selecting 7 7 SymOrb = 1.2 Ene = -0.6161 Spin =Alpha Occup = 2.000000
Atoms found 2 Coordinates in Angstroms
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 -0.5470000000
Z = 7 ZS = 7 r = 0.0000000000 0.0000000000 0.5470000000
Maximum distance from expansion center is 0.5470000000
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group DAh
Reduce angular grid using nthd = 2 nphid = 4
Found point group for abelian subgroup D2h
Time Now = 0.0897 Delta time = 0.0897 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000 7 0.54700 7 0.54700
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
Computed default value of LMaxA = 11
Determining angular grid in GetAxMax LMax = 15 LMaxA = 11 LMaxAb = 30
MMax = 3 MMaxAbFlag = 2
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 3 3 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 14 14 14 14 6 6 6 6
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is DAh
LMax 15
The dimension of each irreducable representation is
SG ( 1) A2G ( 1) B1G ( 1) B2G ( 1) PG ( 2)
DG ( 2) FG ( 2) GG ( 2) SU ( 1) A2U ( 1)
B1U ( 1) B2U ( 1) PU ( 2) DU ( 2) FU ( 2)
GU ( 2)
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
12 22 32 2 3 21 31
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
SG 1 1 9 1 1 1 1 1 1 1
A2G 1 2 1 1 -1 -1 1 1 -1 -1
B1G 1 3 3 -1 1 -1 1 -1 1 -1
B2G 1 4 3 -1 -1 1 1 -1 -1 1
PG 1 5 8 -1 -1 1 1 -1 -1 1
PG 2 6 8 -1 1 -1 1 -1 1 -1
DG 1 7 9 1 -1 -1 1 1 -1 -1
DG 2 8 9 1 1 1 1 1 1 1
FG 1 9 8 -1 -1 1 1 -1 -1 1
FG 2 10 8 -1 1 -1 1 -1 1 -1
GG 1 11 7 1 -1 -1 1 1 -1 -1
GG 2 12 7 1 1 1 1 1 1 1
SU 1 13 9 1 -1 -1 -1 -1 1 1
A2U 1 14 1 1 1 1 -1 -1 -1 -1
B1U 1 15 4 -1 -1 1 -1 1 1 -1
B2U 1 16 4 -1 1 -1 -1 1 -1 1
PU 1 17 11 -1 -1 1 -1 1 1 -1
PU 2 18 11 -1 1 -1 -1 1 -1 1
DU 1 19 9 1 -1 -1 -1 -1 1 1
DU 2 20 9 1 1 1 -1 -1 -1 -1
FU 1 21 10 -1 -1 1 -1 1 1 -1
FU 2 22 10 -1 1 -1 -1 1 -1 1
GU 1 23 7 1 -1 -1 -1 -1 1 1
GU 2 24 7 1 1 1 -1 -1 -1 -1
Time Now = 0.3327 Delta time = 0.2430 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
SG 1 0( 1) 1( 1) 2( 2) 3( 2) 4( 3) 5( 3) 6( 4) 7( 4) 8( 5) 9( 5)
10( 7) 11( 7)
A2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 1) 11( 1)
B1G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
B2G 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 2) 9( 2)
10( 3) 11( 3)
PG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
PG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 4) 9( 4)
10( 6) 11( 6)
DG 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
DG 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 2) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
FG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
FG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 2) 7( 2) 8( 4) 9( 4)
10( 6) 11( 6)
GG 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
GG 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 1) 5( 1) 6( 3) 7( 3) 8( 5) 9( 5)
10( 7) 11( 7)
SU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 5)
10( 5) 11( 7)
A2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 0) 7( 0) 8( 0) 9( 0)
10( 0) 11( 1)
B1U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
B2U 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 2) 8( 2) 9( 3)
10( 3) 11( 4)
PU 1 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
PU 2 0( 0) 1( 1) 2( 1) 3( 2) 4( 2) 5( 3) 6( 3) 7( 4) 8( 4) 9( 6)
10( 6) 11( 9)
DU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
DU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
FU 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
FU 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 1) 5( 2) 6( 2) 7( 4) 8( 4) 9( 6)
10( 6) 11( 8)
GU 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
GU 2 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 1) 6( 1) 7( 3) 8( 3) 9( 5)
10( 5) 11( 7)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2h
LMax 30
The dimension of each irreducable representation is
AG ( 1) B1G ( 1) B2G ( 1) B3G ( 1) AU ( 1)
B1U ( 1) B2U ( 1) B3U ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
5 0.000000 0.000000 1.000000 ang = 1 2 type = 3 axis = 3
6 0.000000 0.000000 1.000000 ang = 0 1 type = 1 axis = 3
7 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
8 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
irep = 1 sym =AG 1 eigs = 1 1 1 1 1 1 1 1
irep = 2 sym =B1G 1 eigs = 1 1 -1 -1 1 1 -1 -1
irep = 3 sym =B2G 1 eigs = 1 -1 -1 1 1 -1 -1 1
irep = 4 sym =B3G 1 eigs = 1 -1 1 -1 1 -1 1 -1
irep = 5 sym =AU 1 eigs = 1 1 1 1 -1 -1 -1 -1
irep = 6 sym =B1U 1 eigs = 1 1 -1 -1 -1 -1 1 1
irep = 7 sym =B2U 1 eigs = 1 -1 -1 1 -1 1 1 -1
irep = 8 sym =B3U 1 eigs = 1 -1 1 -1 -1 1 -1 1
Number of symmetry operations in the abelian subgroup (excluding E) = 7
The operations are -
2 3 4 5 6 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
AG 1 1 102 1 1 1 1 1 1 1
B1G 1 2 86 1 -1 -1 1 1 -1 -1
B2G 1 3 86 -1 -1 1 1 -1 -1 1
B3G 1 4 86 -1 1 -1 1 -1 1 -1
AU 1 5 75 1 1 1 -1 -1 -1 -1
B1U 1 6 90 1 -1 -1 -1 -1 1 1
B2U 1 7 86 -1 -1 1 -1 1 1 -1
B3U 1 8 86 -1 1 -1 -1 1 -1 1
Time Now = 0.3369 Delta time = 0.0042 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 9.6359860816 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 9.63599 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 9.63599 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10000E+01
2 Center at = 0.54700 Angs Alpha Max = 0.14700E+05
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.18998E-02 0.01520
2 8 16 0.26749E-02 0.03660
3 8 24 0.43054E-02 0.07104
4 8 32 0.57696E-02 0.11720
5 8 40 0.67259E-02 0.17101
6 8 48 0.68378E-02 0.22571
7 8 56 0.62927E-02 0.27605
8 8 64 0.61050E-02 0.32489
9 8 72 0.67380E-02 0.37879
10 8 80 0.77685E-02 0.44094
11 8 88 0.48305E-02 0.47958
12 8 96 0.30704E-02 0.50415
13 8 104 0.19517E-02 0.51976
14 8 112 0.12406E-02 0.52969
15 8 120 0.78856E-03 0.53599
16 8 128 0.54521E-03 0.54036
17 8 136 0.45672E-03 0.54401
18 8 144 0.37374E-03 0.54700
19 8 152 0.43646E-03 0.55049
20 8 160 0.46530E-03 0.55421
21 8 168 0.57358E-03 0.55880
22 8 176 0.87025E-03 0.56576
23 8 184 0.13836E-02 0.57683
24 8 192 0.21997E-02 0.59443
25 8 200 0.34972E-02 0.62241
26 8 208 0.55601E-02 0.66689
27 8 216 0.88398E-02 0.73761
28 8 224 0.14054E-01 0.85004
29 8 232 0.17629E-01 0.99108
30 8 240 0.20554E-01 1.15551
31 8 248 0.29077E-01 1.38812
32 8 256 0.41231E-01 1.71797
33 8 264 0.46626E-01 2.09097
34 8 272 0.51232E-01 2.50083
35 8 280 0.55135E-01 2.94191
36 8 288 0.58434E-01 3.40939
37 8 296 0.61228E-01 3.89921
38 8 304 0.63602E-01 4.40802
39 8 312 0.65632E-01 4.93308
40 8 320 0.67378E-01 5.47210
41 8 328 0.68888E-01 6.02321
42 8 336 0.70204E-01 6.58485
43 8 344 0.71357E-01 7.15571
44 8 352 0.72374E-01 7.73470
45 8 360 0.73275E-01 8.32090
46 8 368 0.74079E-01 8.91353
47 8 376 0.74798E-01 9.51191
48 8 384 0.15509E-01 9.63599
Time Now = 0.3497 Delta time = 0.0128 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 11
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 10
Actual value of lmasym found = 11
Number of regions of the same l expansion (NAngReg) = 8
Angular regions
1 L = 2 from ( 1) 0.00190 to ( 7) 0.01330
2 L = 4 from ( 8) 0.01520 to ( 15) 0.03392
3 L = 6 from ( 16) 0.03660 to ( 23) 0.06674
4 L = 7 from ( 24) 0.07104 to ( 31) 0.11143
5 L = 9 from ( 32) 0.11720 to ( 39) 0.16428
6 L = 11 from ( 40) 0.17101 to ( 47) 0.21887
7 L = 15 from ( 48) 0.22571 to ( 240) 1.15551
8 L = 11 from ( 241) 1.18459 to ( 384) 9.63599
There are 2 angular regions for computing spherical harmonics
1 lval = 11
2 lval = 15
Maximum number of processors is 47
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 48
Proc id = 1 Last grid point = 64
Proc id = 2 Last grid point = 80
Proc id = 3 Last grid point = 96
Proc id = 4 Last grid point = 112
Proc id = 5 Last grid point = 128
Proc id = 6 Last grid point = 144
Proc id = 7 Last grid point = 152
Proc id = 8 Last grid point = 168
Proc id = 9 Last grid point = 184
Proc id = 10 Last grid point = 200
Proc id = 11 Last grid point = 216
Proc id = 12 Last grid point = 232
Proc id = 13 Last grid point = 248
Proc id = 14 Last grid point = 272
Proc id = 15 Last grid point = 296
Proc id = 16 Last grid point = 320
Proc id = 17 Last grid point = 344
Proc id = 18 Last grid point = 368
Proc id = 19 Last grid point = 384
Time Now = 0.3530 Delta time = 0.0033 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -15.684200 SG 1 at max irg = 152 r = 0.55049
2 Orig 2 Eng = -15.680600 SU 1 at max irg = 152 r = 0.55049
3 Orig 3 Eng = -1.475200 SG 1 at max irg = 144 r = 0.54700
4 Orig 4 Eng = -0.778600 SU 1 at max irg = 232 r = 0.99108
5 Orig 5 Eng = -0.635000 SG 1 at max irg = 232 r = 0.99108
6 Orig 6 Eng = -0.616100 PU 1 at max irg = 208 r = 0.66689
7 Orig 7 Eng = -0.616100 PU 2 at max irg = 208 r = 0.66689
Rotation coefficients for orbital 1 grp = 1 SG 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 SU 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 SG 1
1 1.0000000000
Rotation coefficients for orbital 4 grp = 4 SU 1
1 1.0000000000
Rotation coefficients for orbital 5 grp = 5 SG 1
1 1.0000000000
Rotation coefficients for orbital 6 grp = 6 PU 1
1 1.0000000000 2 -0.0000000000
Rotation coefficients for orbital 7 grp = 6 PU 2
1 0.0000000000 2 1.0000000000
Number of orbital groups and degeneracis are 6
1 1 1 1 1 2
Number of orbital groups and number of electrons when fully occupied
6
2 2 2 2 2 4
Time Now = 0.3879 Delta time = 0.0349 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 6
Orbital 1 of SG 1 symmetry normalization integral = 0.98788415
Orbital 2 of SU 1 symmetry normalization integral = 0.99051993
Orbital 3 of SG 1 symmetry normalization integral = 0.99928703
Orbital 4 of SU 1 symmetry normalization integral = 0.99958568
Orbital 5 of SG 1 symmetry normalization integral = 0.99994442
Orbital 6 of PU 1 symmetry normalization integral = 0.99999098
Time Now = 0.4791 Delta time = 0.0912 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 14.00000000
Time Now = 0.4817 Delta time = 0.0027 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.14000000E+02 facnorm = 0.10000000E+01
Time Now = 0.4873 Delta time = 0.0056 Electronic part
Time Now = 0.4877 Delta time = 0.0003 End StPot
+ Data Record GrnType - 1
+ Data Record ScatContSym - 'SG'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 0.4929 Delta time = 0.0053 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 0.4968 Delta time = 0.0039 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652392E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652390E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652385E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652377E-16
For potential 3
Number of asymptotic regions = 62
Final point in integration = 0.18302861E+03 Angstroms
Time Now = 0.9934 Delta time = 0.4966 End SolveHomo
Final T matrix
ROW 1
(-0.41623324E+00, 0.74261047E+00) (-0.64825357E-01, 0.11697951E+00)
(-0.32366722E-03, 0.18430578E-02)
ROW 2
(-0.64825357E-01, 0.11697951E+00) (-0.14872145E-01, 0.18470124E-01)
(-0.45987684E-02, 0.33810267E-03)
ROW 3
(-0.32366729E-03, 0.18430589E-02) (-0.45987685E-02, 0.33810257E-03)
(-0.58278399E-02, 0.62304764E-04)
eigenphases
-0.1060046E+01 -0.9774069E-02 -0.7135926E-03
eigenphase sum-0.107053E+01 scattering length= 3.89579
eps+pi 0.207106E+01 eps+2*pi 0.521265E+01
MaxIter = 8 c.s. = 12.14718505 rmsk= 0.00000004 Abs eps 0.10000000E-05 Rel eps 0.95328063E-05
Time Now = 4.6168 Delta time = 3.6234 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 4.6226 Delta time = 0.0058 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 4.6265 Delta time = 0.0039 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187922E-15
For potential 3
Number of asymptotic regions = 64
Final point in integration = 0.16629195E+03 Angstroms
Time Now = 5.2562 Delta time = 0.6297 End SolveHomo
Final T matrix
ROW 1
(-0.32852690E+00, 0.83028518E+00) (-0.66917980E-01, 0.16879800E+00)
(-0.34605965E-03, 0.32973100E-02)
ROW 2
(-0.66917981E-01, 0.16879800E+00) (-0.12890390E-01, 0.34340326E-01)
(-0.48614894E-02, 0.69912417E-03)
ROW 3
(-0.34605965E-03, 0.32973101E-02) (-0.48614894E-02, 0.69912417E-03)
(-0.66970818E-02, 0.84833984E-04)
eigenphases
-0.1193998E+01 -0.8969816E-02 0.2988075E-02
eigenphase sum-0.119998E+01 scattering length= 4.74352
eps+pi 0.194161E+01 eps+2*pi 0.508321E+01
MaxIter = 8 c.s. = 10.35001488 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.77313614E-06
Time Now = 9.0690 Delta time = 3.8128 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 9.0733 Delta time = 0.0043 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 9.0770 Delta time = 0.0038 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108749E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108746E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108739E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108730E-16
For potential 3
Number of asymptotic regions = 66
Final point in integration = 0.15437128E+03 Angstroms
Time Now = 9.5798 Delta time = 0.5027 End SolveHomo
Final T matrix
ROW 1
(-0.23998865E+00, 0.87528344E+00) (-0.61140773E-01, 0.21863956E+00)
(-0.27260470E-03, 0.51245799E-02)
ROW 2
(-0.61140773E-01, 0.21863956E+00) (-0.10399307E-01, 0.54661443E-01)
(-0.47224183E-02, 0.12917706E-02)
ROW 3
(-0.27260470E-03, 0.51245799E-02) (-0.47224183E-02, 0.12917706E-02)
(-0.73440765E-02, 0.11043545E-03)
eigenphases
-0.1302897E+01 -0.8825797E-02 0.6356933E-02
eigenphase sum-0.130537E+01 scattering length= 6.06813
eps+pi 0.183623E+01 eps+2*pi 0.497782E+01
MaxIter = 8 c.s. = 8.90571183 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.25197651E-06
Time Now = 13.3918 Delta time = 3.8120 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 13.3954 Delta time = 0.0036 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 13.3991 Delta time = 0.0037 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831508E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831504E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831497E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831487E-16
For potential 3
Number of asymptotic regions = 68
Final point in integration = 0.14526850E+03 Angstroms
Time Now = 13.9026 Delta time = 0.5034 End SolveHomo
Final T matrix
ROW 1
(-0.15871978E+00, 0.89061842E+00) (-0.48901351E-01, 0.26416151E+00)
(-0.92345256E-04, 0.72539880E-02)
ROW 2
(-0.48901351E-01, 0.26416151E+00) (-0.82492627E-02, 0.78411665E-01)
(-0.42332511E-02, 0.21581251E-02)
ROW 3
(-0.92345260E-04, 0.72539880E-02) (-0.42332511E-02, 0.21581251E-02)
(-0.77484322E-02, 0.14277994E-03)
eigenphases
-0.1393903E+01 -0.8818272E-02 0.7326281E-02
eigenphase sum-0.139540E+01 scattering length= 8.49702
eps+pi 0.174620E+01 eps+2*pi 0.488779E+01
MaxIter = 8 c.s. = 7.73355856 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.16287475E-06
Time Now = 17.7116 Delta time = 3.8091 End ScatStab
+ Data Record ScatContSym - 'SU'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 17.7151 Delta time = 0.0034 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 17.7187 Delta time = 0.0037 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652392E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652390E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652385E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652377E-16
For potential 3
Number of asymptotic regions = 62
Final point in integration = 0.18302861E+03 Angstroms
Time Now = 18.2171 Delta time = 0.4984 End SolveHomo
Final T matrix
ROW 1
(-0.33364455E+00, 0.12787905E+00) (-0.13401181E-01, 0.52633025E-02)
ROW 2
(-0.13401181E-01, 0.52633024E-02) (-0.87437347E-02, 0.29214088E-03)
eigenphases
-0.3660230E+00 -0.8192416E-02
eigenphase sum-0.374215E+00 scattering length= 0.83634
eps+pi 0.276738E+01 eps+2*pi 0.590897E+01
MaxIter = 7 c.s. = 2.04537854 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.39042976E-06
Time Now = 20.4568 Delta time = 2.2397 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 20.4603 Delta time = 0.0035 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 20.4641 Delta time = 0.0037 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187922E-15
For potential 3
Number of asymptotic regions = 64
Final point in integration = 0.16629195E+03 Angstroms
Time Now = 20.9632 Delta time = 0.4991 End SolveHomo
Final T matrix
ROW 1
(-0.40534744E+00, 0.20786429E+00) (-0.16585991E-01, 0.86627306E-02)
ROW 2
(-0.16585991E-01, 0.86627306E-02) (-0.81259769E-02, 0.42745908E-03)
eigenphases
-0.4738519E+00 -0.7435070E-02
eigenphase sum-0.481287E+00 scattering length= 0.96318
eps+pi 0.266031E+01 eps+2*pi 0.580190E+01
MaxIter = 7 c.s. = 2.49299597 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.45034151E-06
Time Now = 23.2032 Delta time = 2.2400 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 23.2066 Delta time = 0.0035 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 23.2103 Delta time = 0.0037 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108749E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108746E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108739E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108730E-16
For potential 3
Number of asymptotic regions = 66
Final point in integration = 0.15437128E+03 Angstroms
Time Now = 23.7129 Delta time = 0.5026 End SolveHomo
Final T matrix
ROW 1
(-0.45503159E+00, 0.29407826E+00) (-0.19496837E-01, 0.12738855E-01)
ROW 2
(-0.19496837E-01, 0.12738855E-01) (-0.57824958E-02, 0.58973135E-03)
eigenphases
-0.5737655E+00 -0.4938159E-02
eigenphase sum-0.578704E+00 scattering length= 1.07770
eps+pi 0.256289E+01 eps+2*pi 0.570448E+01
MaxIter = 7 c.s. = 2.82147122 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.14465470E-05
Time Now = 25.9522 Delta time = 2.2393 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 25.9556 Delta time = 0.0034 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = SU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 25.9593 Delta time = 0.0037 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831508E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831504E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831497E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831487E-16
For potential 3
Number of asymptotic regions = 68
Final point in integration = 0.14526850E+03 Angstroms
Time Now = 26.4614 Delta time = 0.5021 End SolveHomo
Final T matrix
ROW 1
(-0.48493969E+00, 0.38149788E+00) (-0.22089505E-01, 0.17396567E-01)
ROW 2
(-0.22089505E-01, 0.17396567E-01) (-0.14825495E-02, 0.80872196E-03)
eigenphases
-0.6665740E+00 -0.4753769E-03
eigenphase sum-0.667049E+00 scattering length= 1.18581
eps+pi 0.247454E+01 eps+2*pi 0.561614E+01
MaxIter = 7 c.s. = 3.05053324 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.26114993E-06
Time Now = 28.7002 Delta time = 2.2388 End ScatStab
+ Data Record ScatContSym - 'PG'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 28.7037 Delta time = 0.0035 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 6
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 6
Time Now = 28.7075 Delta time = 0.0038 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652392E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652390E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652385E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652377E-16
For potential 3
Number of asymptotic regions = 62
Final point in integration = 0.18302861E+03 Angstroms
Time Now = 29.1310 Delta time = 0.4235 End SolveHomo
Final T matrix
ROW 1
( 0.31729448E+00, 0.11357547E+00) ( 0.51047754E-03, 0.17997466E-03)
ROW 2
( 0.51047754E-03, 0.17997466E-03) (-0.48033553E-02, 0.26639181E-04)
eigenphases
-0.4804270E-02 0.3437393E+00
eigenphase sum 0.338935E+00 scattering length= -0.75077
eps+pi 0.348053E+01 eps+2*pi 0.662212E+01
MaxIter = 7 c.s. = 1.81294807 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.17935457E-08
Time Now = 31.0985 Delta time = 1.9675 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 31.1019 Delta time = 0.0034 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 6
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 6
Time Now = 31.1056 Delta time = 0.0037 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187922E-15
For potential 3
Number of asymptotic regions = 64
Final point in integration = 0.16629195E+03 Angstroms
Time Now = 31.5332 Delta time = 0.4276 End SolveHomo
Final T matrix
ROW 1
( 0.76220821E-01, 0.99387529E+00) ( 0.13638826E-02, 0.16604444E-01)
ROW 2
( 0.13638826E-02, 0.16604444E-01) (-0.53773511E-02, 0.31100159E-03)
eigenphases
-0.5400294E-02 0.1494254E+01
eigenphase sum 0.148885E+01 scattering length= -22.45678
eps+pi 0.463045E+01 eps+2*pi 0.777204E+01
MaxIter = 7 c.s. = 11.89977082 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.14278343E-07
Time Now = 33.6983 Delta time = 2.1650 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 33.7017 Delta time = 0.0035 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 6
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 6
Time Now = 33.7055 Delta time = 0.0038 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108749E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108746E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108739E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108730E-16
For potential 3
Number of asymptotic regions = 66
Final point in integration = 0.15437128E+03 Angstroms
Time Now = 34.1340 Delta time = 0.4285 End SolveHomo
Final T matrix
ROW 1
(-0.49244301E+00, 0.58445461E+00) (-0.12262517E-01, 0.14727758E-01)
ROW 2
(-0.12262517E-01, 0.14727758E-01) (-0.61365013E-02, 0.41070075E-03)
eigenphases
-0.8706362E+00 -0.5827688E-02
eigenphase sum-0.876464E+00 scattering length= 1.98114
eps+pi 0.226513E+01 eps+2*pi 0.540672E+01
MaxIter = 7 c.s. = 5.60034051 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.10621759E-06
Time Now = 36.1039 Delta time = 1.9699 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 36.1072 Delta time = 0.0034 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 6
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 6
Time Now = 36.1109 Delta time = 0.0037 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831508E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831504E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831497E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831487E-16
For potential 3
Number of asymptotic regions = 68
Final point in integration = 0.14526850E+03 Angstroms
Time Now = 36.5381 Delta time = 0.4271 End SolveHomo
Final T matrix
ROW 1
(-0.49119590E+00, 0.40867822E+00) (-0.15043198E-01, 0.12671958E-01)
ROW 2
(-0.15043198E-01, 0.12671958E-01) (-0.65284038E-02, 0.43646138E-03)
eigenphases
-0.6939605E+00 -0.6062170E-02
eigenphase sum-0.700023E+00 scattering length= 1.26843
eps+pi 0.244157E+01 eps+2*pi 0.558316E+01
MaxIter = 6 c.s. = 3.26452001 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.77558321E-08
Time Now = 38.3176 Delta time = 1.7796 End ScatStab
+ Data Record ScatContSym - 'PU'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 38.3211 Delta time = 0.0035 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 11
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 9
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 9
Time Now = 38.3248 Delta time = 0.0037 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652392E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652390E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652385E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652377E-16
For potential 3
Number of asymptotic regions = 62
Final point in integration = 0.18302861E+03 Angstroms
Time Now = 38.9809 Delta time = 0.6560 End SolveHomo
Final T matrix
ROW 1
(-0.18369890E+00, 0.35041424E-01) (-0.81050707E-02, 0.15927136E-02)
ROW 2
(-0.81050707E-02, 0.15927136E-02) (-0.58798215E-02, 0.10995361E-03)
eigenphases
-0.1885013E+00 -0.5511343E-02
eigenphase sum-0.194013E+00 scattering length= 0.41843
eps+pi 0.294758E+01 eps+2*pi 0.608917E+01
MaxIter = 7 c.s. = 0.56087431 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.13122553E-07
Time Now = 41.0498 Delta time = 2.0690 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 41.0531 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 11
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 9
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 9
Time Now = 41.0568 Delta time = 0.0037 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187922E-15
For potential 3
Number of asymptotic regions = 64
Final point in integration = 0.16629195E+03 Angstroms
Time Now = 41.7163 Delta time = 0.6595 End SolveHomo
Final T matrix
ROW 1
(-0.24773624E+00, 0.65819562E-01) (-0.10310399E-01, 0.27901119E-02)
ROW 2
(-0.10310399E-01, 0.27901119E-02) (-0.49938695E-02, 0.14847063E-03)
eigenphases
-0.2596928E+00 -0.4556875E-02
eigenphase sum-0.264250E+00 scattering length= 0.49902
eps+pi 0.287734E+01 eps+2*pi 0.601894E+01
MaxIter = 7 c.s. = 0.78948554 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.81923734E-08
Time Now = 43.7856 Delta time = 2.0694 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 43.7889 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 11
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 9
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 9
Time Now = 43.7926 Delta time = 0.0037 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108749E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108746E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108739E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108730E-16
For potential 3
Number of asymptotic regions = 66
Final point in integration = 0.15437128E+03 Angstroms
Time Now = 44.4549 Delta time = 0.6623 End SolveHomo
Final T matrix
ROW 1
(-0.30286601E+00, 0.10239561E+00) (-0.12801818E-01, 0.43606067E-02)
ROW 2
(-0.12801818E-01, 0.43606067E-02) (-0.27745468E-02, 0.20200544E-03)
eigenphases
-0.3260283E+00 -0.2229473E-02
eigenphase sum-0.328258E+00 scattering length= 0.56182
eps+pi 0.281333E+01 eps+2*pi 0.595493E+01
MaxIter = 7 c.s. = 0.98231729 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.66025339E-08
Time Now = 46.5311 Delta time = 2.0762 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 46.5344 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = PU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 11
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 9
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 9
Time Now = 46.5380 Delta time = 0.0037 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831508E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831504E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831497E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831487E-16
For potential 3
Number of asymptotic regions = 68
Final point in integration = 0.14526850E+03 Angstroms
Time Now = 47.1984 Delta time = 0.6603 End SolveHomo
Final T matrix
ROW 1
(-0.34921799E+00, 0.14255989E+00) (-0.15592999E-01, 0.63376374E-02)
ROW 2
(-0.15592999E-01, 0.63376374E-02) ( 0.88166941E-03, 0.29691608E-03)
eigenphases
-0.3875744E+00 0.1574832E-02
eigenphase sum-0.386000E+00 scattering length= 0.61196
eps+pi 0.275559E+01 eps+2*pi 0.589719E+01
MaxIter = 7 c.s. = 1.13983905 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.52363464E-08
Time Now = 49.2716 Delta time = 2.0733 End ScatStab
+ Data Record ScatContSym - 'DG'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 49.2750 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = DG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 49.2787 Delta time = 0.0037 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652392E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652390E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652385E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652377E-16
For potential 3
Number of asymptotic regions = 62
Final point in integration = 0.18302861E+03 Angstroms
Time Now = 49.7750 Delta time = 0.4963 End SolveHomo
Final T matrix
ROW 1
( 0.41726659E-01, 0.17481544E-02) (-0.19944330E-02,-0.79237580E-04)
ROW 2
(-0.19944330E-02,-0.79237580E-04) (-0.20556751E-02, 0.10689362E-04)
eigenphases
-0.2146358E-02 0.4186623E-01
eigenphase sum 0.397199E-01 scattering length= -0.08463
eps+pi 0.318131E+01 eps+2*pi 0.632291E+01
MaxIter = 5 c.s. = 0.02803019 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.11551540E-09
Time Now = 50.9917 Delta time = 1.2167 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 50.9950 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = DG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 50.9986 Delta time = 0.0037 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187922E-15
For potential 3
Number of asymptotic regions = 64
Final point in integration = 0.16629195E+03 Angstroms
Time Now = 51.4971 Delta time = 0.4985 End SolveHomo
Final T matrix
ROW 1
( 0.62633137E-01, 0.39410930E-02) (-0.16250709E-02,-0.98534965E-04)
ROW 2
(-0.16250709E-02,-0.98534966E-04) (-0.22186098E-02, 0.10866524E-04)
eigenphases
-0.2259328E-02 0.6283913E-01
eigenphase sum 0.605798E-01 scattering length= -0.11186
eps+pi 0.320217E+01 eps+2*pi 0.634377E+01
MaxIter = 5 c.s. = 0.04726320 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.21061930E-09
Time Now = 52.7144 Delta time = 1.2173 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 52.7178 Delta time = 0.0034 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = DG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 52.7216 Delta time = 0.0038 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108749E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108746E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108739E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108730E-16
For potential 3
Number of asymptotic regions = 66
Final point in integration = 0.15437128E+03 Angstroms
Time Now = 53.2219 Delta time = 0.5003 End SolveHomo
Final T matrix
ROW 1
( 0.87514893E-01, 0.77191969E-02) (-0.86516090E-03,-0.74326426E-04)
ROW 2
(-0.86516090E-03,-0.74326428E-04) (-0.22291171E-02, 0.98133606E-05)
eigenphases
-0.2237483E-02 0.8797648E-01
eigenphase sum 0.857390E-01 scattering length= -0.14178
eps+pi 0.322733E+01 eps+2*pi 0.636892E+01
MaxIter = 5 c.s. = 0.07397019 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.32810023E-09
Time Now = 54.4402 Delta time = 1.2183 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 54.4436 Delta time = 0.0034 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = DG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 2
Number of asymptotic solutions on the left (NAsymL) = 2
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 2
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 54.4473 Delta time = 0.0037 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831508E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831504E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831497E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831487E-16
For potential 3
Number of asymptotic regions = 68
Final point in integration = 0.14526850E+03 Angstroms
Time Now = 54.9468 Delta time = 0.4996 End SolveHomo
Final T matrix
ROW 1
( 0.11547463E+00, 0.13517190E-01) ( 0.28843008E-03, 0.33180339E-04)
ROW 2
( 0.28843007E-03, 0.33180334E-04) (-0.20651196E-02, 0.92053324E-05)
eigenphases
-0.2065853E-02 0.1165273E+00
eigenphase sum 0.114461E+00 scattering length= -0.17312
eps+pi 0.325605E+01 eps+2*pi 0.639765E+01
MaxIter = 5 c.s. = 0.10789656 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.46255757E-09
Time Now = 56.1656 Delta time = 1.2188 End ScatStab
+ Data Record ScatContSym - 'DU'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 56.1690 Delta time = 0.0034 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = DU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 56.1727 Delta time = 0.0037 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652392E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652390E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652385E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652377E-16
For potential 3
Number of asymptotic regions = 62
Final point in integration = 0.18302861E+03 Angstroms
Time Now = 56.6552 Delta time = 0.4825 End SolveHomo
Final T matrix
ROW 1
( 0.19542286E-02, 0.81654582E-05)
eigenphases
0.1954251E-02
eigenphase sum 0.195425E-02 scattering length= -0.00416
eps+pi 0.314355E+01 eps+2*pi 0.628514E+01
MaxIter = 4 c.s. = 0.00006095 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.28207723E-11
Time Now = 57.1424 Delta time = 0.4871 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 57.1457 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = DU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 57.1494 Delta time = 0.0037 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187922E-15
For potential 3
Number of asymptotic regions = 64
Final point in integration = 0.16629195E+03 Angstroms
Time Now = 57.6334 Delta time = 0.4840 End SolveHomo
Final T matrix
ROW 1
( 0.38411316E-02, 0.20242813E-04)
eigenphases
0.3841212E-02
eigenphase sum 0.384121E-02 scattering length= -0.00708
eps+pi 0.314543E+01 eps+2*pi 0.628703E+01
MaxIter = 4 c.s. = 0.00017661 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.67427848E-11
Time Now = 58.1205 Delta time = 0.4871 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 58.1238 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = DU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 58.1275 Delta time = 0.0037 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108749E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108746E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108739E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108730E-16
For potential 3
Number of asymptotic regions = 66
Final point in integration = 0.15437128E+03 Angstroms
Time Now = 58.6152 Delta time = 0.4877 End SolveHomo
Final T matrix
ROW 1
( 0.65841444E-02, 0.49699241E-04)
eigenphases
0.6584418E-02
eigenphase sum 0.658442E-02 scattering length= -0.01086
eps+pi 0.314818E+01 eps+2*pi 0.628977E+01
MaxIter = 4 c.s. = 0.00041513 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.12947279E-10
Time Now = 59.1032 Delta time = 0.4880 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 59.1065 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = DU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 9
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 59.1102 Delta time = 0.0037 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831508E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831504E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831497E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831487E-16
For potential 3
Number of asymptotic regions = 68
Final point in integration = 0.14526850E+03 Angstroms
Time Now = 59.5973 Delta time = 0.4871 End SolveHomo
Final T matrix
ROW 1
( 0.10252522E-01, 0.11195546E-03)
eigenphases
0.1025338E-01
eigenphase sum 0.102534E-01 scattering length= -0.01544
eps+pi 0.315185E+01 eps+2*pi 0.629344E+01
MaxIter = 4 c.s. = 0.00083887 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.21665919E-10
Time Now = 60.0854 Delta time = 0.4881 End ScatStab
+ Data Record ScatContSym - 'FG'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 60.0888 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = FG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 6
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 6
Time Now = 60.0925 Delta time = 0.0037 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652392E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652390E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652385E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652377E-16
For potential 3
Number of asymptotic regions = 62
Final point in integration = 0.18302861E+03 Angstroms
Time Now = 60.4982 Delta time = 0.4058 End SolveHomo
Final T matrix
ROW 1
( 0.22820237E-02, 0.66614158E-05)
eigenphases
0.2282038E-02
eigenphase sum 0.228204E-02 scattering length= -0.00486
eps+pi 0.314387E+01 eps+2*pi 0.628547E+01
MaxIter = 4 c.s. = 0.00008311 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.39618229E-13
Time Now = 60.9670 Delta time = 0.4688 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 60.9704 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = FG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 6
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 6
Time Now = 60.9740 Delta time = 0.0037 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187922E-15
For potential 3
Number of asymptotic regions = 64
Final point in integration = 0.16629195E+03 Angstroms
Time Now = 61.3830 Delta time = 0.4090 End SolveHomo
Final T matrix
ROW 1
( 0.27976576E-02, 0.96998552E-05)
eigenphases
0.2797683E-02
eigenphase sum 0.279768E-02 scattering length= -0.00516
eps+pi 0.314439E+01 eps+2*pi 0.628598E+01
MaxIter = 4 c.s. = 0.00009368 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.12107735E-12
Time Now = 61.8527 Delta time = 0.4696 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 61.8559 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = FG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 6
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 6
Time Now = 61.8596 Delta time = 0.0037 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108749E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108746E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108739E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108730E-16
For potential 3
Number of asymptotic regions = 66
Final point in integration = 0.15437128E+03 Angstroms
Time Now = 62.2685 Delta time = 0.4089 End SolveHomo
Final T matrix
ROW 1
( 0.33559300E-02, 0.13518033E-04)
eigenphases
0.3355970E-02
eigenphase sum 0.335597E-02 scattering length= -0.00554
eps+pi 0.314495E+01 eps+2*pi 0.628654E+01
MaxIter = 4 c.s. = 0.00010784 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.28266676E-12
Time Now = 62.7376 Delta time = 0.4691 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 62.7411 Delta time = 0.0034 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = FG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 8
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 6
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 14
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 6
Time Now = 62.7448 Delta time = 0.0037 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831508E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831504E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831497E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831487E-16
For potential 3
Number of asymptotic regions = 68
Final point in integration = 0.14526850E+03 Angstroms
Time Now = 63.1556 Delta time = 0.4109 End SolveHomo
Final T matrix
ROW 1
( 0.39863164E-02, 0.18488199E-04)
eigenphases
0.3986379E-02
eigenphase sum 0.398638E-02 scattering length= -0.00600
eps+pi 0.314558E+01 eps+2*pi 0.628717E+01
MaxIter = 4 c.s. = 0.00012680 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.55767298E-12
Time Now = 63.6270 Delta time = 0.4713 End ScatStab
+ Data Record ScatContSym - 'FU'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 63.6304 Delta time = 0.0034 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = FU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 10
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 8
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 63.6341 Delta time = 0.0037 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652392E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652390E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652385E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652377E-16
For potential 3
Number of asymptotic regions = 62
Final point in integration = 0.18302861E+03 Angstroms
Time Now = 64.1882 Delta time = 0.5541 End SolveHomo
Final T matrix
ROW 1
( 0.12314631E-01, 0.15320176E-03)
eigenphases
0.1231591E-01
eigenphase sum 0.123159E-01 scattering length= -0.02623
eps+pi 0.315391E+01 eps+2*pi 0.629550E+01
MaxIter = 4 c.s. = 0.00242059 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.16599762E-11
Time Now = 64.6786 Delta time = 0.4904 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 64.6819 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = FU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 10
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 8
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 64.6855 Delta time = 0.0037 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187922E-15
For potential 3
Number of asymptotic regions = 64
Final point in integration = 0.16629195E+03 Angstroms
Time Now = 65.2397 Delta time = 0.5542 End SolveHomo
Final T matrix
ROW 1
( 0.14789102E-01, 0.22055265E-03)
eigenphases
0.1479131E-01
eigenphase sum 0.147913E-01 scattering length= -0.02728
eps+pi 0.315638E+01 eps+2*pi 0.629798E+01
MaxIter = 4 c.s. = 0.00261850 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.38749154E-11
Time Now = 65.7300 Delta time = 0.4903 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 65.7333 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = FU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 10
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 8
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 65.7370 Delta time = 0.0037 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108749E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108746E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108739E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108730E-16
For potential 3
Number of asymptotic regions = 66
Final point in integration = 0.15437128E+03 Angstroms
Time Now = 66.2928 Delta time = 0.5558 End SolveHomo
Final T matrix
ROW 1
( 0.17450467E-01, 0.30652408E-03)
eigenphases
0.1745408E-01
eigenphase sum 0.174541E-01 scattering length= -0.02879
eps+pi 0.315905E+01 eps+2*pi 0.630064E+01
MaxIter = 4 c.s. = 0.00291683 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.72944718E-11
Time Now = 66.7840 Delta time = 0.4912 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 66.7873 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = FU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 10
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 8
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 3
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 8
Time Now = 66.7909 Delta time = 0.0037 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831508E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831504E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831497E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831487E-16
For potential 3
Number of asymptotic regions = 68
Final point in integration = 0.14526850E+03 Angstroms
Time Now = 67.3478 Delta time = 0.5568 End SolveHomo
Final T matrix
ROW 1
( 0.20395412E-01, 0.41804680E-03)
eigenphases
0.2040115E-01
eigenphase sum 0.204011E-01 scattering length= -0.03073
eps+pi 0.316199E+01 eps+2*pi 0.630359E+01
MaxIter = 4 c.s. = 0.00332069 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.12000821E-10
Time Now = 67.8379 Delta time = 0.4901 End ScatStab
+ Data Record ScatContSym - 'GG'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 67.8412 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = GG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 7
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 10
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 67.8449 Delta time = 0.0037 Energy independent setup
Compute solution for E = 3.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652392E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652390E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652385E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.97652377E-16
For potential 3
Number of asymptotic regions = 62
Final point in integration = 0.18302861E+03 Angstroms
Time Now = 68.3187 Delta time = 0.4738 End SolveHomo
Final T matrix
ROW 1
( 0.77451058E-02, 0.60521953E-04)
eigenphases
0.7745424E-02
eigenphase sum 0.774542E-02 scattering length= -0.01650
eps+pi 0.314934E+01 eps+2*pi 0.629093E+01
MaxIter = 4 c.s. = 0.00095740 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.32076038E-13
Time Now = 68.7946 Delta time = 0.4760 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 68.7979 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = GG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 7
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 10
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 68.8016 Delta time = 0.0037 Energy independent setup
Compute solution for E = 4.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187923E-15
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.10187922E-15
For potential 3
Number of asymptotic regions = 64
Final point in integration = 0.16629195E+03 Angstroms
Time Now = 69.2781 Delta time = 0.4764 End SolveHomo
Final T matrix
ROW 1
( 0.89179138E-02, 0.80190648E-04)
eigenphases
0.8918398E-02
eigenphase sum 0.891840E-02 scattering length= -0.01645
eps+pi 0.315051E+01 eps+2*pi 0.629210E+01
MaxIter = 4 c.s. = 0.00095199 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.92774152E-13
Time Now = 69.7539 Delta time = 0.4759 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 69.7572 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = GG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 7
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 10
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 69.7609 Delta time = 0.0037 Energy independent setup
Compute solution for E = 5.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108749E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108746E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108739E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.99108730E-16
For potential 3
Number of asymptotic regions = 66
Final point in integration = 0.15437128E+03 Angstroms
Time Now = 70.2373 Delta time = 0.4765 End SolveHomo
Final T matrix
ROW 1
( 0.99729674E-02, 0.10022386E-03)
eigenphases
0.9973644E-02
eigenphase sum 0.997364E-02 scattering length= -0.01645
eps+pi 0.315157E+01 eps+2*pi 0.629316E+01
MaxIter = 4 c.s. = 0.00095248 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.20679415E-12
Time Now = 70.7137 Delta time = 0.4763 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 70.7169 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = GG 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
Number of partial waves (np) = 7
Number of asymptotic solutions on the right (NAsymR) = 1
Number of asymptotic solutions on the left (NAsymL) = 1
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 1
Maximum in the asymptotic region (lpasym) = 11
Number of partial waves in the asymptotic region (npasym) = 7
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 78
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 10
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 11
Higest l used in the asymptotic potential (lpzb) = 22
Maximum L used in the homogeneous solution (LMaxHomo) = 11
Number of partial waves in the homogeneous solution (npHomo) = 7
Time Now = 70.7206 Delta time = 0.0037 Energy independent setup
Compute solution for E = 6.0000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.44408921E-15 Asymp Coef = -0.10418507E-09 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.33692038E-18 Asymp Moment = -0.22665995E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.24254356E-03 Asymp Moment = -0.16316885E+00 (e Angs^(n-1))
i = 4 lval = 4 1/r^n n = 5 StPot(RMax) = -0.13868901E-20 Asymp Moment = 0.15593887E-15 (e Angs^(n-1))
i = 5 lval = 4 1/r^n n = 5 StPot(RMax) = 0.36070458E-20 Asymp Moment = -0.40556828E-15 (e Angs^(n-1))
i = 6 lval = 4 1/r^n n = 5 StPot(RMax) = 0.44248900E-05 Asymp Moment = -0.49752489E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831508E-16
i = 2 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831504E-16
i = 3 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831497E-16
i = 4 exps = -0.72837499E+02 -0.20000000E+01 stpote = -0.61831487E-16
For potential 3
Number of asymptotic regions = 68
Final point in integration = 0.14526850E+03 Angstroms
Time Now = 71.1984 Delta time = 0.4778 End SolveHomo
Final T matrix
ROW 1
( 0.10967062E-01, 0.12111943E-03)
eigenphases
0.1096796E-01
eigenphase sum 0.109680E-01 scattering length= -0.01652
eps+pi 0.315256E+01 eps+2*pi 0.629415E+01
MaxIter = 4 c.s. = 0.00095988 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.39313241E-12
Time Now = 71.6755 Delta time = 0.4771 End ScatStab
+ Data Record ScatContSym - 'GU'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 71.6788 Delta time = 0.0033 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = GU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 71.6829 Delta time = 0.0041 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = GU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 71.6869 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = GU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 71.6910 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = GU 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'A2G'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 71.6950 Delta time = 0.0041 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 71.6990 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 71.7031 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 71.7071 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'A2U'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 71.7112 Delta time = 0.0041 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 71.7152 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 71.7192 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 71.7232 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1G'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 71.7273 Delta time = 0.0041 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 71.7313 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 71.7353 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 71.7393 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B1U'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 71.7433 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 71.7474 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 71.7514 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 71.7554 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B1U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B2G'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 71.7595 Delta time = 0.0041 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 71.7635 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 71.7675 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 71.7715 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2G 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
+ Data Record ScatContSym - 'B2U'
+ Command Scat
+
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.30000000E+01 eV ( 0.11024798E+00 AU)
Time Now = 71.7755 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.40000000E+01 eV ( 0.14699730E+00 AU)
Time Now = 71.7795 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+01 eV ( 0.18374663E+00 AU)
Time Now = 71.7836 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.60000000E+01 eV ( 0.22049596E+00 AU)
Time Now = 71.7876 Delta time = 0.0040 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = B2U 1
Form of the Green's operator used (iGrnType) = 1
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 48
No asymptotic partial waves with this value of LMaxK
+ Command TotalCrossSection
+
Using LMaxK 4
Continuum Symmetry SG -
E (eV) XS(angs^2) EPS(radians)
3.000000 12.147185 -1.070534
4.000000 10.350015 -1.199980
5.000000 8.905712 -1.305366
6.000000 7.733559 -1.395395
Continuum Symmetry SU -
E (eV) XS(angs^2) EPS(radians)
3.000000 2.045379 -0.374215
4.000000 2.492996 -0.481287
5.000000 2.821471 -0.578704
6.000000 3.050533 -0.667049
Continuum Symmetry PG -
E (eV) XS(angs^2) EPS(radians)
3.000000 1.812948 0.338935
4.000000 11.899771 1.488854
5.000000 5.600341 2.265129
6.000000 3.264520 2.441570
Continuum Symmetry PU -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.560874 -0.194013
4.000000 0.789486 -0.264250
5.000000 0.982317 -0.328258
6.000000 1.139839 -0.386000
Continuum Symmetry DG -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.028030 0.039720
4.000000 0.047263 0.060580
5.000000 0.073970 0.085739
6.000000 0.107897 0.114461
Continuum Symmetry DU -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000061 0.001954
4.000000 0.000177 0.003841
5.000000 0.000415 0.006584
6.000000 0.000839 0.010253
Continuum Symmetry FG -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000083 0.002282
4.000000 0.000094 0.002798
5.000000 0.000108 0.003356
6.000000 0.000127 0.003986
Continuum Symmetry FU -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.002421 0.012316
4.000000 0.002619 0.014791
5.000000 0.002917 0.017454
6.000000 0.003321 0.020401
Continuum Symmetry GG -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000957 0.007745
4.000000 0.000952 0.008918
5.000000 0.000952 0.009974
6.000000 0.000960 0.010968
Continuum Symmetry GU -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000000 0.000000
4.000000 0.000000 0.000000
5.000000 0.000000 0.000000
6.000000 0.000000 0.000000
Continuum Symmetry A2G -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000000 0.000000
4.000000 0.000000 0.000000
5.000000 0.000000 0.000000
6.000000 0.000000 0.000000
Continuum Symmetry A2U -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000000 0.000000
4.000000 0.000000 0.000000
5.000000 0.000000 0.000000
6.000000 0.000000 0.000000
Continuum Symmetry B1G -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000000 0.000000
4.000000 0.000000 0.000000
5.000000 0.000000 0.000000
6.000000 0.000000 0.000000
Continuum Symmetry B1U -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000000 0.000000
4.000000 0.000000 0.000000
5.000000 0.000000 0.000000
6.000000 0.000000 0.000000
Continuum Symmetry B2G -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000000 0.000000
4.000000 0.000000 0.000000
5.000000 0.000000 0.000000
6.000000 0.000000 0.000000
Continuum Symmetry B2U -
E (eV) XS(angs^2) EPS(radians)
3.000000 0.000000 0.000000
4.000000 0.000000 0.000000
5.000000 0.000000 0.000000
6.000000 0.000000 0.000000
Largest value of LMaxK found 4
Total Cross Sections
Energy Total Cross Section
3.00000 19.00331
4.00000 38.32373
5.00000 25.04922
6.00000 19.81910
+ Command EDCS
+
Using 4 energies from T-matrices
All symmetries found for E = 3.000000 eV
----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------
Title -
Maximum l to use from k matrices (lmax) = 4
Minimum l to compute in the expansion of the DCS (lbigl) = 0
Maximum l to use in the expansion of the DCS (lbig) = 8
Unit to write DCS in plot format (iuplt) = 0
Number of angles at which to compute the DCS (nang) = 181
Print flag (iprint) = 0
Energy to compute the EDCS at (eV) = 3.00000000
Energy (eV)= 3.0000 Energy (ryd)= 0.2204960 xk= 0.4695700
AL coefficients
-1 0.30000000000000E+01
0 0.54002913438223E+01
1 0.19931414138368E+01
2 0.16076031775174E+01
3 -0.23965935112208E+01
4 0.13515841739418E+01
5 0.44259440913313E-02
6 -0.15565819257394E-01
7 0.42375699108501E-02
8 0.17305096918619E-02
For comparison
-1 3.00000 alcoef
0 5.40029 alcoef
1 1.99314 alcoef
2 1.60760 alcoef
3 -2.39659 alcoef
4 1.35158 alcoef
5 0.00443 alcoef
6 -0.01557 alcoef
7 0.00424 alcoef
8 0.00173 alcoef
Total Cross Section (Angstrom^2) = 0.1900331281E+02
Momentum Transfer Cross Section (Angstrom^2) = 0.1666539637E+02
Differential Cross Section
Ang Cross Section (Angstrom^2)
0.0 0.2226466091E+01
1.0 0.2226215719E+01
2.0 0.2225465830E+01
3.0 0.2224220099E+01
4.0 0.2222484624E+01
5.0 0.2220267882E+01
6.0 0.2217580670E+01
7.0 0.2214436032E+01
8.0 0.2210849168E+01
9.0 0.2206837330E+01
10.0 0.2202419699E+01
11.0 0.2197617257E+01
12.0 0.2192452640E+01
13.0 0.2186949979E+01
14.0 0.2181134738E+01
15.0 0.2175033536E+01
16.0 0.2168673963E+01
17.0 0.2162084388E+01
18.0 0.2155293766E+01
19.0 0.2148331435E+01
20.0 0.2141226914E+01
21.0 0.2134009697E+01
22.0 0.2126709050E+01
23.0 0.2119353803E+01
24.0 0.2111972153E+01
25.0 0.2104591460E+01
26.0 0.2097238057E+01
27.0 0.2089937060E+01
28.0 0.2082712186E+01
29.0 0.2075585584E+01
30.0 0.2068577663E+01
31.0 0.2061706946E+01
32.0 0.2054989919E+01
33.0 0.2048440902E+01
34.0 0.2042071930E+01
35.0 0.2035892643E+01
36.0 0.2029910192E+01
37.0 0.2024129163E+01
38.0 0.2018551507E+01
39.0 0.2013176494E+01
40.0 0.2008000673E+01
41.0 0.2003017854E+01
42.0 0.1998219107E+01
43.0 0.1993592766E+01
44.0 0.1989124463E+01
45.0 0.1984797167E+01
46.0 0.1980591241E+01
47.0 0.1976484522E+01
48.0 0.1972452406E+01
49.0 0.1968467950E+01
50.0 0.1964502001E+01
51.0 0.1960523320E+01
52.0 0.1956498735E+01
53.0 0.1952393306E+01
54.0 0.1948170492E+01
55.0 0.1943792348E+01
56.0 0.1939219719E+01
57.0 0.1934412452E+01
58.0 0.1929329619E+01
59.0 0.1923929751E+01
60.0 0.1918171070E+01
61.0 0.1912011745E+01
62.0 0.1905410147E+01
63.0 0.1898325103E+01
64.0 0.1890716169E+01
65.0 0.1882543896E+01
66.0 0.1873770099E+01
67.0 0.1864358136E+01
68.0 0.1854273173E+01
69.0 0.1843482458E+01
70.0 0.1831955585E+01
71.0 0.1819664763E+01
72.0 0.1806585061E+01
73.0 0.1792694666E+01
74.0 0.1777975117E+01
75.0 0.1762411533E+01
76.0 0.1745992833E+01
77.0 0.1728711931E+01
78.0 0.1710565928E+01
79.0 0.1691556280E+01
80.0 0.1671688946E+01
81.0 0.1650974527E+01
82.0 0.1629428368E+01
83.0 0.1607070656E+01
84.0 0.1583926479E+01
85.0 0.1560025871E+01
86.0 0.1535403827E+01
87.0 0.1510100297E+01
88.0 0.1484160149E+01
89.0 0.1457633106E+01
90.0 0.1430573663E+01
91.0 0.1403040963E+01
92.0 0.1375098663E+01
93.0 0.1346814757E+01
94.0 0.1318261384E+01
95.0 0.1289514607E+01
96.0 0.1260654160E+01
97.0 0.1231763184E+01
98.0 0.1202927926E+01
99.0 0.1174237424E+01
100.0 0.1145783172E+01
101.0 0.1117658758E+01
102.0 0.1089959491E+01
103.0 0.1062782013E+01
104.0 0.1036223892E+01
105.0 0.1010383203E+01
106.0 0.9853581072E+00
107.0 0.9612464129E+00
108.0 0.9381451370E+00
109.0 0.9161500616E+00
110.0 0.8953552895E+00
111.0 0.8758528009E+00
112.0 0.8577320135E+00
113.0 0.8410793491E+00
114.0 0.8259778073E+00
115.0 0.8125065504E+00
116.0 0.8007405004E+00
117.0 0.7907499507E+00
118.0 0.7826001939E+00
119.0 0.7763511696E+00
120.0 0.7720571304E+00
121.0 0.7697663322E+00
122.0 0.7695207465E+00
123.0 0.7713557984E+00
124.0 0.7753001318E+00
125.0 0.7813754006E+00
126.0 0.7895960900E+00
127.0 0.7999693669E+00
128.0 0.8124949602E+00
129.0 0.8271650723E+00
130.0 0.8439643218E+00
131.0 0.8628697181E+00
132.0 0.8838506667E+00
133.0 0.9068690075E+00
134.0 0.9318790832E+00
135.0 0.9588278399E+00
136.0 0.9876549581E+00
137.0 0.1018293013E+01
138.0 0.1050667666E+01
139.0 0.1084697883E+01
140.0 0.1120296182E+01
141.0 0.1157368904E+01
142.0 0.1195816515E+01
143.0 0.1235533926E+01
144.0 0.1276410840E+01
145.0 0.1318332121E+01
146.0 0.1361178175E+01
147.0 0.1404825364E+01
148.0 0.1449146421E+01
149.0 0.1494010891E+01
150.0 0.1539285581E+01
151.0 0.1584835020E+01
152.0 0.1630521935E+01
153.0 0.1676207729E+01
154.0 0.1721752966E+01
155.0 0.1767017863E+01
156.0 0.1811862783E+01
157.0 0.1856148730E+01
158.0 0.1899737836E+01
159.0 0.1942493857E+01
160.0 0.1984282650E+01
161.0 0.2024972658E+01
162.0 0.2064435373E+01
163.0 0.2102545795E+01
164.0 0.2139182883E+01
165.0 0.2174229981E+01
166.0 0.2207575243E+01
167.0 0.2239112026E+01
168.0 0.2268739279E+01
169.0 0.2296361902E+01
170.0 0.2321891086E+01
171.0 0.2345244637E+01
172.0 0.2366347268E+01
173.0 0.2385130869E+01
174.0 0.2401534754E+01
175.0 0.2415505880E+01
176.0 0.2426999037E+01
177.0 0.2435977008E+01
178.0 0.2442410711E+01
179.0 0.2446279293E+01
180.0 0.2447570216E+01
Time Now = 71.7938 Delta time = 0.0062 End EDCS
All symmetries found for E = 4.000000 eV
----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------
Title -
Maximum l to use from k matrices (lmax) = 4
Minimum l to compute in the expansion of the DCS (lbigl) = 0
Maximum l to use in the expansion of the DCS (lbig) = 8
Unit to write DCS in plot format (iuplt) = 0
Number of angles at which to compute the DCS (nang) = 181
Print flag (iprint) = 0
Energy to compute the EDCS at (eV) = 4.00000000
Energy (eV)= 4.0000 Energy (ryd)= 0.2939946 xk= 0.5422127
AL coefficients
-1 0.40000000000000E+01
0 0.10890696669709E+02
1 0.52726615590013E+01
2 0.16569611477516E+02
3 0.18875819925437E+01
4 0.79712541042382E+01
5 0.30151976882809E-01
6 0.17447451821058E-01
7 0.40270587747124E-02
8 0.17037954995614E-02
For comparison
-1 4.00000 alcoef
0 10.89070 alcoef
1 5.27266 alcoef
2 16.56961 alcoef
3 1.88758 alcoef
4 7.97125 alcoef
5 0.03015 alcoef
6 0.01745 alcoef
7 0.00403 alcoef
8 0.00170 alcoef
Total Cross Section (Angstrom^2) = 0.3832373151E+02
Momentum Transfer Cross Section (Angstrom^2) = 0.3213900119E+02
Differential Cross Section
Ang Cross Section (Angstrom^2)
0.0 0.1194185428E+02
1.0 0.1193558570E+02
2.0 0.1191679924E+02
3.0 0.1188555268E+02
4.0 0.1184194204E+02
5.0 0.1178610118E+02
6.0 0.1171820122E+02
7.0 0.1163844985E+02
8.0 0.1154709040E+02
9.0 0.1144440085E+02
10.0 0.1133069267E+02
11.0 0.1120630946E+02
12.0 0.1107162554E+02
13.0 0.1092704441E+02
14.0 0.1077299700E+02
15.0 0.1060993993E+02
16.0 0.1043835361E+02
17.0 0.1025874022E+02
18.0 0.1007162170E+02
19.0 0.9877537561E+01
20.0 0.9677042717E+01
21.0 0.9470705227E+01
22.0 0.9259104003E+01
23.0 0.9042826493E+01
24.0 0.8822466344E+01
25.0 0.8598621053E+01
26.0 0.8371889628E+01
27.0 0.8142870260E+01
28.0 0.7912158014E+01
29.0 0.7680342564E+01
30.0 0.7448005969E+01
31.0 0.7215720501E+01
32.0 0.6984046541E+01
33.0 0.6753530548E+01
34.0 0.6524703113E+01
35.0 0.6298077093E+01
36.0 0.6074145860E+01
37.0 0.5853381641E+01
38.0 0.5636233977E+01
39.0 0.5423128302E+01
40.0 0.5214464640E+01
41.0 0.5010616438E+01
42.0 0.4811929528E+01
43.0 0.4618721224E+01
44.0 0.4431279567E+01
45.0 0.4249862701E+01
46.0 0.4074698403E+01
47.0 0.3905983750E+01
48.0 0.3743884938E+01
49.0 0.3588537237E+01
50.0 0.3440045099E+01
51.0 0.3298482401E+01
52.0 0.3163892830E+01
53.0 0.3036290405E+01
54.0 0.2915660130E+01
55.0 0.2801958781E+01
56.0 0.2695115807E+01
57.0 0.2595034362E+01
58.0 0.2501592442E+01
59.0 0.2414644128E+01
60.0 0.2334020935E+01
61.0 0.2259533249E+01
62.0 0.2190971852E+01
63.0 0.2128109520E+01
64.0 0.2070702692E+01
65.0 0.2018493206E+01
66.0 0.1971210071E+01
67.0 0.1928571299E+01
68.0 0.1890285756E+01
69.0 0.1856055047E+01
70.0 0.1825575409E+01
71.0 0.1798539611E+01
72.0 0.1774638850E+01
73.0 0.1753564635E+01
74.0 0.1735010642E+01
75.0 0.1718674541E+01
76.0 0.1704259781E+01
77.0 0.1691477323E+01
78.0 0.1680047317E+01
79.0 0.1669700708E+01
80.0 0.1660180767E+01
81.0 0.1651244545E+01
82.0 0.1642664230E+01
83.0 0.1634228414E+01
84.0 0.1625743248E+01
85.0 0.1617033502E+01
86.0 0.1607943499E+01
87.0 0.1598337939E+01
88.0 0.1588102596E+01
89.0 0.1577144896E+01
90.0 0.1565394359E+01
91.0 0.1552802916E+01
92.0 0.1539345098E+01
93.0 0.1525018082E+01
94.0 0.1509841615E+01
95.0 0.1493857806E+01
96.0 0.1477130776E+01
97.0 0.1459746200E+01
98.0 0.1441810702E+01
99.0 0.1423451142E+01
100.0 0.1404813781E+01
101.0 0.1386063329E+01
102.0 0.1367381887E+01
103.0 0.1348967783E+01
104.0 0.1331034317E+01
105.0 0.1313808407E+01
106.0 0.1297529161E+01
107.0 0.1282446360E+01
108.0 0.1268818892E+01
109.0 0.1256913105E+01
110.0 0.1247001127E+01
111.0 0.1239359136E+01
112.0 0.1234265590E+01
113.0 0.1231999452E+01
114.0 0.1232838376E+01
115.0 0.1237056910E+01
116.0 0.1244924689E+01
117.0 0.1256704647E+01
118.0 0.1272651251E+01
119.0 0.1293008767E+01
120.0 0.1318009568E+01
121.0 0.1347872491E+01
122.0 0.1382801252E+01
123.0 0.1422982933E+01
124.0 0.1468586536E+01
125.0 0.1519761623E+01
126.0 0.1576637055E+01
127.0 0.1639319807E+01
128.0 0.1707893909E+01
129.0 0.1782419479E+01
130.0 0.1862931878E+01
131.0 0.1949440984E+01
132.0 0.2041930581E+01
133.0 0.2140357887E+01
134.0 0.2244653201E+01
135.0 0.2354719687E+01
136.0 0.2470433288E+01
137.0 0.2591642779E+01
138.0 0.2718169951E+01
139.0 0.2849809931E+01
140.0 0.2986331636E+01
141.0 0.3127478357E+01
142.0 0.3272968476E+01
143.0 0.3422496310E+01
144.0 0.3575733072E+01
145.0 0.3732327961E+01
146.0 0.3891909359E+01
147.0 0.4054086142E+01
148.0 0.4218449095E+01
149.0 0.4384572420E+01
150.0 0.4552015336E+01
151.0 0.4720323768E+01
152.0 0.4889032106E+01
153.0 0.5057665030E+01
154.0 0.5225739401E+01
155.0 0.5392766194E+01
156.0 0.5558252484E+01
157.0 0.5721703450E+01
158.0 0.5882624412E+01
159.0 0.6040522878E+01
160.0 0.6194910596E+01
161.0 0.6345305594E+01
162.0 0.6491234213E+01
163.0 0.6632233108E+01
164.0 0.6767851217E+01
165.0 0.6897651679E+01
166.0 0.7021213713E+01
167.0 0.7138134414E+01
168.0 0.7248030496E+01
169.0 0.7350539942E+01
170.0 0.7445323576E+01
171.0 0.7532066529E+01
172.0 0.7610479613E+01
173.0 0.7680300578E+01
174.0 0.7741295257E+01
175.0 0.7793258590E+01
176.0 0.7836015517E+01
177.0 0.7869421752E+01
178.0 0.7893364408E+01
179.0 0.7907762497E+01
180.0 0.7912567283E+01
Time Now = 71.7950 Delta time = 0.0012 End EDCS
All symmetries found for E = 5.000000 eV
----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------
Title -
Maximum l to use from k matrices (lmax) = 4
Minimum l to compute in the expansion of the DCS (lbigl) = 0
Maximum l to use in the expansion of the DCS (lbig) = 8
Unit to write DCS in plot format (iuplt) = 0
Number of angles at which to compute the DCS (nang) = 181
Print flag (iprint) = 0
Energy to compute the EDCS at (eV) = 5.00000000
Energy (eV)= 5.0000 Energy (ryd)= 0.3674933 xk= 0.6062122
AL coefficients
-1 0.50000000000000E+01
0 0.71183959670691E+01
1 0.70887715177136E+01
2 0.10535111775026E+02
3 0.47375001124242E+01
4 0.33727857190740E+01
5 -0.27881610374674E-01
6 0.45966737064090E-01
7 0.38104050782870E-02
8 0.17109957332432E-02
For comparison
-1 5.00000 alcoef
0 7.11840 alcoef
1 7.08877 alcoef
2 10.53511 alcoef
3 4.73750 alcoef
4 3.37279 alcoef
5 -0.02788 alcoef
6 0.04597 alcoef
7 0.00381 alcoef
8 0.00171 alcoef
Total Cross Section (Angstrom^2) = 0.2504922358E+02
Momentum Transfer Cross Section (Angstrom^2) = 0.1673423130E+02
Differential Cross Section
Ang Cross Section (Angstrom^2)
0.0 0.9206265633E+01
1.0 0.9201934887E+01
2.0 0.9188954237E+01
3.0 0.9167358406E+01
4.0 0.9137205117E+01
5.0 0.9098574861E+01
6.0 0.9051570589E+01
7.0 0.8996317306E+01
8.0 0.8932961587E+01
9.0 0.8861671008E+01
10.0 0.8782633495E+01
11.0 0.8696056597E+01
12.0 0.8602166695E+01
13.0 0.8501208130E+01
14.0 0.8393442269E+01
15.0 0.8279146523E+01
16.0 0.8158613292E+01
17.0 0.8032148874E+01
18.0 0.7900072325E+01
19.0 0.7762714276E+01
20.0 0.7620415722E+01
21.0 0.7473526779E+01
22.0 0.7322405425E+01
23.0 0.7167416216E+01
24.0 0.7008928994E+01
25.0 0.6847317599E+01
26.0 0.6682958565E+01
27.0 0.6516229839E+01
28.0 0.6347509498E+01
29.0 0.6177174492E+01
30.0 0.6005599409E+01
31.0 0.5833155256E+01
32.0 0.5660208287E+01
33.0 0.5487118855E+01
34.0 0.5314240312E+01
35.0 0.5141917947E+01
36.0 0.4970487980E+01
37.0 0.4800276596E+01
38.0 0.4631599044E+01
39.0 0.4464758790E+01
40.0 0.4300046723E+01
41.0 0.4137740434E+01
42.0 0.3978103550E+01
43.0 0.3821385137E+01
44.0 0.3667819170E+01
45.0 0.3517624066E+01
46.0 0.3371002291E+01
47.0 0.3228140031E+01
48.0 0.3089206937E+01
49.0 0.2954355926E+01
50.0 0.2823723070E+01
51.0 0.2697427531E+01
52.0 0.2575571577E+01
53.0 0.2458240655E+01
54.0 0.2345503535E+01
55.0 0.2237412505E+01
56.0 0.2134003639E+01
57.0 0.2035297110E+01
58.0 0.1941297574E+01
59.0 0.1851994589E+01
60.0 0.1767363103E+01
61.0 0.1687363978E+01
62.0 0.1611944563E+01
63.0 0.1541039312E+01
64.0 0.1474570434E+01
65.0 0.1412448589E+01
66.0 0.1354573609E+01
67.0 0.1300835250E+01
68.0 0.1251113970E+01
69.0 0.1205281731E+01
70.0 0.1163202820E+01
71.0 0.1124734677E+01
72.0 0.1089728746E+01
73.0 0.1058031330E+01
74.0 0.1029484441E+01
75.0 0.1003926664E+01
76.0 0.9811940112E+00
77.0 0.9611207654E+00
78.0 0.9435403212E+00
79.0 0.9282860066E+00
80.0 0.9151918890E+00
81.0 0.9040935607E+00
82.0 0.8948288999E+00
83.0 0.8872388053E+00
84.0 0.8811678999E+00
85.0 0.8764652032E+00
86.0 0.8729847662E+00
87.0 0.8705862700E+00
88.0 0.8691355828E+00
89.0 0.8685052748E+00
90.0 0.8685750884E+00
91.0 0.8692323624E+00
92.0 0.8703724079E+00
93.0 0.8718988354E+00
94.0 0.8737238312E+00
95.0 0.8757683832E+00
96.0 0.8779624544E+00
97.0 0.8802451049E+00
98.0 0.8825645607E+00
99.0 0.8848782316E+00
100.0 0.8871526761E+00
101.0 0.8893635158E+00
102.0 0.8914952994E+00
103.0 0.8935413172E+00
104.0 0.8955033680E+00
105.0 0.8973914796E+00
106.0 0.8992235842E+00
107.0 0.9010251518E+00
108.0 0.9028287830E+00
109.0 0.9046737636E+00
110.0 0.9066055841E+00
111.0 0.9086754260E+00
112.0 0.9109396184E+00
113.0 0.9134590683E+00
114.0 0.9162986668E+00
115.0 0.9195266749E+00
116.0 0.9232140928E+00
117.0 0.9274340154E+00
118.0 0.9322609779E+00
119.0 0.9377702952E+00
120.0 0.9440373988E+00
121.0 0.9511371740E+00
122.0 0.9591433020E+00
123.0 0.9681276107E+00
124.0 0.9781594364E+00
125.0 0.9893050013E+00
126.0 0.1001626810E+01
127.0 0.1015183067E+01
128.0 0.1030027121E+01
129.0 0.1046206939E+01
130.0 0.1063764607E+01
131.0 0.1082735868E+01
132.0 0.1103149704E+01
133.0 0.1125027941E+01
134.0 0.1148384915E+01
135.0 0.1173227168E+01
136.0 0.1199553195E+01
137.0 0.1227353242E+01
138.0 0.1256609143E+01
139.0 0.1287294220E+01
140.0 0.1319373222E+01
141.0 0.1352802326E+01
142.0 0.1387529176E+01
143.0 0.1423492992E+01
144.0 0.1460624713E+01
145.0 0.1498847203E+01
146.0 0.1538075500E+01
147.0 0.1578217120E+01
148.0 0.1619172404E+01
149.0 0.1660834910E+01
150.0 0.1703091854E+01
151.0 0.1745824590E+01
152.0 0.1788909127E+01
153.0 0.1832216687E+01
154.0 0.1875614290E+01
155.0 0.1918965376E+01
156.0 0.1962130451E+01
157.0 0.2004967756E+01
158.0 0.2047333951E+01
159.0 0.2089084826E+01
160.0 0.2130076012E+01
161.0 0.2170163707E+01
162.0 0.2209205397E+01
163.0 0.2247060587E+01
164.0 0.2283591521E+01
165.0 0.2318663886E+01
166.0 0.2352147515E+01
167.0 0.2383917066E+01
168.0 0.2413852672E+01
169.0 0.2441840582E+01
170.0 0.2467773753E+01
171.0 0.2491552423E+01
172.0 0.2513084641E+01
173.0 0.2532286757E+01
174.0 0.2549083870E+01
175.0 0.2563410230E+01
176.0 0.2575209590E+01
177.0 0.2584435512E+01
178.0 0.2591051612E+01
179.0 0.2595031764E+01
180.0 0.2596360233E+01
Time Now = 71.7962 Delta time = 0.0012 End EDCS
All symmetries found for E = 6.000000 eV
----------------------------------------------------------------------
EDCS - differential cross section program
----------------------------------------------------------------------
Title -
Maximum l to use from k matrices (lmax) = 4
Minimum l to compute in the expansion of the DCS (lbigl) = 0
Maximum l to use in the expansion of the DCS (lbig) = 8
Unit to write DCS in plot format (iuplt) = 0
Number of angles at which to compute the DCS (nang) = 181
Print flag (iprint) = 0
Energy to compute the EDCS at (eV) = 6.00000000
Energy (eV)= 6.0000 Energy (ryd)= 0.4409919 xk= 0.6640722
AL coefficients
-1 0.60000000000000E+01
0 0.56321174691137E+01
1 0.61792773087505E+01
2 0.74743056721572E+01
3 0.39704169283673E+01
4 0.17677198834635E+01
5 -0.63870237301738E-01
6 0.41850451230563E-01
7 0.36728673281220E-02
8 0.16893167734380E-02
For comparison
-1 6.00000 alcoef
0 5.63212 alcoef
1 6.17928 alcoef
2 7.47431 alcoef
3 3.97042 alcoef
4 1.76772 alcoef
5 -0.06387 alcoef
6 0.04185 alcoef
7 0.00367 alcoef
8 0.00169 alcoef
Total Cross Section (Angstrom^2) = 0.1981909554E+02
Momentum Transfer Cross Section (Angstrom^2) = 0.1257092242E+02
Differential Cross Section
Ang Cross Section (Angstrom^2)
0.0 0.7002723473E+01
1.0 0.6999730585E+01
2.0 0.6990759302E+01
3.0 0.6975831734E+01
4.0 0.6954984644E+01
5.0 0.6928269304E+01
6.0 0.6895751310E+01
7.0 0.6857510333E+01
8.0 0.6813639828E+01
9.0 0.6764246686E+01
10.0 0.6709450841E+01
11.0 0.6649384833E+01
12.0 0.6584193320E+01
13.0 0.6514032558E+01
14.0 0.6439069831E+01
15.0 0.6359482859E+01
16.0 0.6275459162E+01
17.0 0.6187195397E+01
18.0 0.6094896669E+01
19.0 0.5998775822E+01
20.0 0.5899052705E+01
21.0 0.5795953422E+01
22.0 0.5689709573E+01
23.0 0.5580557480E+01
24.0 0.5468737411E+01
25.0 0.5354492795E+01
26.0 0.5238069448E+01
27.0 0.5119714788E+01
28.0 0.4999677068E+01
29.0 0.4878204614E+01
30.0 0.4755545074E+01
31.0 0.4631944685E+01
32.0 0.4507647555E+01
33.0 0.4382894966E+01
34.0 0.4257924700E+01
35.0 0.4132970386E+01
36.0 0.4008260879E+01
37.0 0.3884019661E+01
38.0 0.3760464277E+01
39.0 0.3637805793E+01
40.0 0.3516248301E+01
41.0 0.3395988441E+01
42.0 0.3277214968E+01
43.0 0.3160108351E+01
44.0 0.3044840406E+01
45.0 0.2931573968E+01
46.0 0.2820462593E+01
47.0 0.2711650309E+01
48.0 0.2605271388E+01
49.0 0.2501450167E+01
50.0 0.2400300898E+01
51.0 0.2301927639E+01
52.0 0.2206424178E+01
53.0 0.2113873991E+01
54.0 0.2024350238E+01
55.0 0.1937915792E+01
56.0 0.1854623298E+01
57.0 0.1774515273E+01
58.0 0.1697624224E+01
59.0 0.1623972814E+01
60.0 0.1553574040E+01
61.0 0.1486431455E+01
62.0 0.1422539405E+01
63.0 0.1361883303E+01
64.0 0.1304439920E+01
65.0 0.1250177702E+01
66.0 0.1199057116E+01
67.0 0.1151031005E+01
68.0 0.1106044972E+01
69.0 0.1064037778E+01
70.0 0.1024941761E+01
71.0 0.9886832604E+00
72.0 0.9551830663E+00
73.0 0.9243568717E+00
74.0 0.8961157388E+00
75.0 0.8703665719E+00
76.0 0.8470125969E+00
77.0 0.8259538454E+00
78.0 0.8070876415E+00
79.0 0.7903090886E+00
80.0 0.7755115563E+00
81.0 0.7625871634E+00
82.0 0.7514272565E+00
83.0 0.7419228819E+00
84.0 0.7339652488E+00
85.0 0.7274461824E+00
86.0 0.7222585650E+00
87.0 0.7182967629E+00
88.0 0.7154570380E+00
89.0 0.7136379427E+00
90.0 0.7127406954E+00
91.0 0.7126695365E+00
92.0 0.7133320624E+00
93.0 0.7146395374E+00
94.0 0.7165071804E+00
95.0 0.7188544279E+00
96.0 0.7216051701E+00
97.0 0.7246879601E+00
98.0 0.7280361953E+00
99.0 0.7315882716E+00
100.0 0.7352877073E+00
101.0 0.7390832388E+00
102.0 0.7429288872E+00
103.0 0.7467839951E+00
104.0 0.7506132341E+00
105.0 0.7543865839E+00
106.0 0.7580792817E+00
107.0 0.7616717450E+00
108.0 0.7651494650E+00
109.0 0.7685028749E+00
110.0 0.7717271916E+00
111.0 0.7748222329E+00
112.0 0.7777922110E+00
113.0 0.7806455037E+00
114.0 0.7833944050E+00
115.0 0.7860548559E+00
116.0 0.7886461580E+00
117.0 0.7911906703E+00
118.0 0.7937134926E+00
119.0 0.7962421355E+00
120.0 0.7988061810E+00
121.0 0.8014369340E+00
122.0 0.8041670670E+00
123.0 0.8070302616E+00
124.0 0.8100608463E+00
125.0 0.8132934353E+00
126.0 0.8167625688E+00
127.0 0.8205023573E+00
128.0 0.8245461322E+00
129.0 0.8289261050E+00
130.0 0.8336730363E+00
131.0 0.8388159176E+00
132.0 0.8443816669E+00
133.0 0.8503948411E+00
134.0 0.8568773655E+00
135.0 0.8638482831E+00
136.0 0.8713235259E+00
137.0 0.8793157072E+00
138.0 0.8878339396E+00
139.0 0.8968836767E+00
140.0 0.9064665819E+00
141.0 0.9165804241E+00
142.0 0.9272190008E+00
143.0 0.9383720907E+00
144.0 0.9500254336E+00
145.0 0.9621607408E+00
146.0 0.9747557339E+00
147.0 0.9877842122E+00
148.0 0.1001216150E+01
149.0 0.1015017819E+01
150.0 0.1029151944E+01
151.0 0.1043577877E+01
152.0 0.1058251804E+01
153.0 0.1073126971E+01
154.0 0.1088153935E+01
155.0 0.1103280836E+01
156.0 0.1118453688E+01
157.0 0.1133616686E+01
158.0 0.1148712532E+01
159.0 0.1163682770E+01
160.0 0.1178468136E+01
161.0 0.1193008910E+01
162.0 0.1207245285E+01
163.0 0.1221117729E+01
164.0 0.1234567354E+01
165.0 0.1247536282E+01
166.0 0.1259968005E+01
167.0 0.1271807746E+01
168.0 0.1283002798E+01
169.0 0.1293502865E+01
170.0 0.1303260380E+01
171.0 0.1312230808E+01
172.0 0.1320372939E+01
173.0 0.1327649144E+01
174.0 0.1334025626E+01
175.0 0.1339472637E+01
176.0 0.1343964666E+01
177.0 0.1347480615E+01
178.0 0.1350003926E+01
179.0 0.1351522696E+01
180.0 0.1352029752E+01
Time Now = 71.7974 Delta time = 0.0012 End EDCS
Time Now = 71.7977 Delta time = 0.0002 Finalize