Execution on n0205.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:41.607 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test02
#
# electron scattering from CH4 in T2 symmetry, static-exchange with orthogonalization
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 2
3
2.0 -1.0 1
2.0 -1.0 1
2.0 -1.0 1
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatContSym 'T2' # Scattering symmetry
LMaxK 4 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test02.g03' 'gaussian'
GetBlms
ExpOrb
GetPot
Scat 0.5
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 2 / 3 / 2.0 -1.0 1 / 2.0 -1.0 1 / 2.0 -1.0 1
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'T2'
+ Data Record LMaxK - 4
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test02.g03' 'gaussian'
----------------------------------------------------------------------
GaussianCnv - read input from Gaussian output
----------------------------------------------------------------------
Conversion using g03
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772083000000
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Command line = # HF/STO-3G SCF=TIGHT 6D 10F GFINPUT PUNCH=MO
CardFlag = T
Normal Mode flag = F
Selecting orbitals
from 1 to 5 number already selected 0
Number of orbitals selected is 5
Highest orbital read in is = 5
Time Now = 0.0114 Delta time = 0.0114 End GaussianCnv
Atoms found 5 Coordinates in Angstroms
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = 0.6254700000 0.6254700000 0.6254700000
Z = 1 ZS = 1 r = -0.6254700000 -0.6254700000 0.6254700000
Z = 1 ZS = 1 r = 0.6254700000 -0.6254700000 -0.6254700000
Z = 1 ZS = 1 r = -0.6254700000 0.6254700000 -0.6254700000
Maximum distance from expansion center is 1.0833458186
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Td
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup D2
Time Now = 0.0586 Delta time = 0.0472 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.57735 0.57735 0.57735 1 1.08335
3 -0.57735 -0.57735 0.57735 1 1.08335
4 0.57735 -0.57735 -0.57735 1 1.08335
5 -0.57735 0.57735 -0.57735 1 1.08335
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 0.81650 -0.40825 -0.40825
3 0.81650 -0.40825 0.40825
4 0.81650 0.40825 0.40825
5 0.81650 0.40825 -0.40825
Computed default value of LMaxA = 13
Determining angular grid in GetAxMax LMax = 15 LMaxA = 13 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 -1 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Td
LMax 15
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) E ( 2) T1 ( 3) T2 ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
8 11 14
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 15 1 1 1
A2 1 2 7 1 1 1
E 1 3 20 1 1 1
E 2 4 20 1 1 1
T1 1 5 27 -1 -1 1
T1 2 6 27 -1 1 -1
T1 3 7 27 1 -1 -1
T2 1 8 36 -1 -1 1
T2 2 9 36 -1 1 -1
T2 3 10 36 1 -1 -1
Time Now = 0.1928 Delta time = 0.1342 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 1) 2( 1) 3( 2) 4( 3) 5( 3) 6( 4) 7( 5) 8( 6) 9( 7)
10( 8) 11( 9) 12( 11) 13( 12)
A2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 2)
10( 3) 11( 3) 12( 4) 13( 5)
E 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
E 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
T1 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T2 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 3 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is D2
LMax 30
The dimension of each irreducable representation is
A ( 1) B1 ( 1) B2 ( 1) B3 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
3 1.000000 0.000000 0.000000 ang = 1 2 type = 2 axis = 1
4 0.000000 1.000000 0.000000 ang = 1 2 type = 2 axis = 2
irep = 1 sym =A 1 eigs = 1 1 1 1
irep = 2 sym =B1 1 eigs = 1 1 -1 -1
irep = 3 sym =B2 1 eigs = 1 -1 -1 1
irep = 4 sym =B3 1 eigs = 1 -1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A 1 1 241 1 1 1
B1 1 2 240 1 -1 -1
B2 1 3 240 -1 -1 1
B3 1 4 240 -1 1 -1
Time Now = 0.1968 Delta time = 0.0040 End SymGen
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 6.0716362768 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 6.07164 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 6.07164 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10800E+05
2 Center at = 1.08335 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.50920E-03 0.00407
2 8 16 0.54286E-03 0.00842
3 8 24 0.66917E-03 0.01377
4 8 32 0.10153E-02 0.02189
5 8 40 0.16142E-02 0.03481
6 8 48 0.25663E-02 0.05534
7 8 56 0.40801E-02 0.08798
8 8 64 0.64868E-02 0.13987
9 8 72 0.10071E-01 0.22044
10 8 80 0.11697E-01 0.31402
11 8 88 0.12338E-01 0.41272
12 8 96 0.11651E-01 0.50593
13 8 104 0.11293E-01 0.59627
14 8 112 0.12366E-01 0.69520
15 8 120 0.14418E-01 0.81054
16 8 128 0.12423E-01 0.90993
17 8 136 0.78984E-02 0.97311
18 8 144 0.50206E-02 1.01328
19 8 152 0.36334E-02 1.04235
20 8 160 0.31364E-02 1.06744
21 8 168 0.19887E-02 1.08335
22 8 176 0.30552E-02 1.10779
23 8 184 0.32571E-02 1.13384
24 8 192 0.40150E-02 1.16596
25 8 200 0.60918E-02 1.21470
26 8 208 0.96851E-02 1.29218
27 8 216 0.15398E-01 1.41536
28 8 224 0.24481E-01 1.61121
29 8 232 0.33415E-01 1.87853
30 8 240 0.38959E-01 2.19021
31 8 248 0.46359E-01 2.56107
32 8 256 0.58081E-01 3.02572
33 8 264 0.61727E-01 3.51954
34 8 272 0.64635E-01 4.03662
35 8 280 0.66998E-01 4.57261
36 8 288 0.68947E-01 5.12418
37 8 296 0.70575E-01 5.68878
38 8 304 0.47857E-01 6.07164
Time Now = 0.2025 Delta time = 0.0057 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 13
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 13
Actual value of lmasym found = 13
Number of regions of the same l expansion (NAngReg) = 10
Angular regions
1 L = 2 from ( 1) 0.00051 to ( 7) 0.00356
2 L = 5 from ( 8) 0.00407 to ( 23) 0.01310
3 L = 6 from ( 24) 0.01377 to ( 31) 0.02088
4 L = 7 from ( 32) 0.02189 to ( 47) 0.05277
5 L = 8 from ( 48) 0.05534 to ( 55) 0.08390
6 L = 10 from ( 56) 0.08798 to ( 63) 0.13338
7 L = 11 from ( 64) 0.13987 to ( 71) 0.21037
8 L = 13 from ( 72) 0.22044 to ( 111) 0.68283
9 L = 15 from ( 112) 0.69520 to ( 232) 1.87853
10 L = 13 from ( 233) 1.91749 to ( 304) 6.07164
There are 2 angular regions for computing spherical harmonics
1 lval = 13
2 lval = 15
Maximum number of processors is 37
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 56
Proc id = 1 Last grid point = 80
Proc id = 2 Last grid point = 88
Proc id = 3 Last grid point = 104
Proc id = 4 Last grid point = 120
Proc id = 5 Last grid point = 128
Proc id = 6 Last grid point = 144
Proc id = 7 Last grid point = 152
Proc id = 8 Last grid point = 168
Proc id = 9 Last grid point = 176
Proc id = 10 Last grid point = 192
Proc id = 11 Last grid point = 200
Proc id = 12 Last grid point = 216
Proc id = 13 Last grid point = 224
Proc id = 14 Last grid point = 232
Proc id = 15 Last grid point = 248
Proc id = 16 Last grid point = 264
Proc id = 17 Last grid point = 280
Proc id = 18 Last grid point = 296
Proc id = 19 Last grid point = 304
Time Now = 0.2093 Delta time = 0.0067 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -11.029715 A1 1 at max irg = 56 r = 0.08798
2 Orig 2 Eng = -0.911921 A1 1 at max irg = 120 r = 0.81054
3 Orig 3 Eng = -0.520362 T2 1 at max irg = 136 r = 0.97311
4 Orig 4 Eng = -0.520362 T2 2 at max irg = 136 r = 0.97311
5 Orig 5 Eng = -0.520362 T2 3 at max irg = 136 r = 0.97311
Rotation coefficients for orbital 1 grp = 1 A1 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A1 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 T2 1
1 1.0000000000 2 -0.0000000000 3 0.0000000000
Rotation coefficients for orbital 4 grp = 3 T2 2
1 0.0000000000 2 1.0000000000 3 0.0000000000
Rotation coefficients for orbital 5 grp = 3 T2 3
1 -0.0000000000 2 -0.0000000000 3 1.0000000000
Number of orbital groups and degeneracis are 3
1 1 3
Number of orbital groups and number of electrons when fully occupied
3
2 2 6
Time Now = 0.2282 Delta time = 0.0189 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 3
Orbital 1 of A1 1 symmetry normalization integral = 0.99999999
Orbital 2 of A1 1 symmetry normalization integral = 0.99999913
Orbital 3 of T2 1 symmetry normalization integral = 0.99999813
Time Now = 0.2463 Delta time = 0.0181 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 10.00000000
Time Now = 0.2494 Delta time = 0.0031 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.10000000E+02 facnorm = 0.10000000E+01
Time Now = 0.2610 Delta time = 0.0116 Electronic part
Time Now = 0.2616 Delta time = 0.0006 End StPot
+ Command Scat
+ 0.5
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 0.2693 Delta time = 0.0076 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = T2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Number of integration regions used = 38
Number of partial waves (np) = 36
Number of asymptotic solutions on the right (NAsymR) = 4
Number of asymptotic solutions on the left (NAsymL) = 4
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 4
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 28
Number of orthogonality constraints (NOrthUse) = 1
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 183
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 28
Time Now = 0.2759 Delta time = 0.0066 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.00000000E+00 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.99920072E-15 Asymp Coef = -0.36951013E-10 (eV Angs^(n))
i = 2 lval = 2 1/r^n n = 3 StPot(RMax) = 0.56420525E-18 Asymp Moment = -0.94954024E-16 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = -0.72695865E-18 Asymp Moment = 0.12234492E-15 (e Angs^(n-1))
i = 4 lval = 3 1/r^n n = 4 StPot(RMax) = -0.24256633E-03 Asymp Moment = 0.34700885E+00 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.45894919E+02 -0.20000000E+01 stpote = -0.55202971E-17
i = 2 exps = -0.45894919E+02 -0.20000000E+01 stpote = -0.52969696E-17
i = 3 exps = -0.45894919E+02 -0.20000000E+01 stpote = -0.50911222E-17
i = 4 exps = -0.45894919E+02 -0.20000000E+01 stpote = -0.49096015E-17
For potential 3
Number of asymptotic regions = 14
Final point in integration = 0.10001501E+03 Angstroms
Time Now = 2.2033 Delta time = 1.9274 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.36297332E-01 0.80338345E-03 0.84299845E-04-0.18368588E-03
ROW 2
0.80338345E-03 0.77764211E-03 0.83176655E-03-0.19880030E-04
ROW 3
0.84299846E-04 0.83176655E-03-0.33389455E-04-0.76326157E-04
ROW 4
-0.18368588E-03-0.19880030E-04-0.76326157E-04 0.16112723E-04
eigenphases
-0.3629982E-01 -0.5546002E-03 0.1905345E-04 0.1314355E-02
eigenphase sum-0.355210E-01 scattering length= 0.18537
eps+pi 0.310607E+01 eps+2*pi 0.624766E+01
MaxIter = 5 c.s. = 0.12631405 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.36694590E-10
Time Now = 4.1340 Delta time = 1.9308 End ScatStab
+ Command TotalCrossSection
+
Using LMaxK 4
Continuum Symmetry T2 -
E (eV) XS(angs^2) EPS(radians)
0.500000 0.126314 -0.035521
Largest value of LMaxK found 4
Total Cross Sections
Energy Total Cross Section
0.50000 0.37894
Time Now = 4.1347 Delta time = 0.0006 Finalize