Execution on n0157.lr6
----------------------------------------------------------------------
ePolyScat Version E3
----------------------------------------------------------------------
Authors: R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco
https://epolyscat.droppages.com
Please cite the following two papers when reporting results obtained with this program
F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).
A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).
----------------------------------------------------------------------
Starting at 2022-01-14 17:34:42.445 (GMT -0800)
Using 20 processors
Current git commit sha-1 836b26dfd5ffae0073e0f736b518bccf827345c3
----------------------------------------------------------------------
+ Start of Input Records
#
# input file for test01
#
# electron scattering from CH4 in A1 symmetry
#
LMax 15 # maximum l to be used for wave functions
EMax 50.0 # EMax, maximum asymptotic energy in eV
EngForm # Energy formulas
0 1 # charge, formula type
3 # number of terms in the formulas
2.0 -1.0 # orbital occupation and coefficient for the K operators
2.0 -1.0
2.0 -1.0
VCorr 'PZ'
AsyPol
0.15 # SwitchD, distance where switching function is down to 0.1
1 # nterm, number of terms needed to define asymptotic potential
1 # center for polarization term 1 is for C atom
1 # ittyp type of polarization term, = 1 for spherically symmetric
# = 2 for reading in the full tensor
17.50 # value of the spherical polarizability
3 # icrtyp, flag to determine where r match is, 3 for second crossing
# or at nearest approach
0 # ilntyp, flag to determine what matching line is used, 0 - use
# l = 0 radial function as matching function
FegeEng 13.0 # Energy correction (in eV) used in the fege potential
ScatContSym 'A1' # Scattering symmetry
LMaxK 4 # Maximum l in the K matirx
Convert '/global/home/users/rlucchese/Applications/ePolyScat/tests/test01.molden2015' 'molden'
PrintBlm 4
GetBlms
SaveBlms 'test01Blms.dat'
ReadBlms 'test01Blms.dat'
ExpOrb
GetPot
Scat 0.0001 0.01 0.5
ScatContSym 'A2' # Scattering symmetry
Scat 0.0001 0.01 0.5
TotalCrossSection
LMaxK 3
TotalCrossSection
LMaxK 2
TotalCrossSection
LMaxK 1
TotalCrossSection
+ End of input reached
+ Data Record LMax - 15
+ Data Record EMax - 50.0
+ Data Record EngForm
+ 0 1 / 3 / 2.0 -1.0 / 2.0 -1.0 / 2.0 -1.0
+ Data Record VCorr - 'PZ'
+ Data Record AsyPol
+ 0.15 / 1 / 1 / 1 / 17.50 / 3 / 0
+ Data Record FegeEng - 13.0
+ Data Record ScatContSym - 'A1'
+ Data Record LMaxK - 4
+ Command Convert
+ '/global/home/users/rlucchese/Applications/ePolyScat/tests/test01.molden2015' 'molden'
----------------------------------------------------------------------
MoldenCnv - Molden (from Molpro and OpenMolcas) conversion program
----------------------------------------------------------------------
Expansion center is (in Angstroms) -
0.0000000000 0.0000000000 0.0000000000
Conversion using molden
Changing the conversion factor for Bohr to Angstroms
New Value is 0.5291772109200000
Convert from Angstroms to Bohr radii
Found 9 basis functions
Selecting orbitals
Number of orbitals selected is 5
Selecting 1 1 SymOrb = 1.1 Ene = -11.0297 Spin =Alpha Occup = 2.000000
Selecting 2 2 SymOrb = 2.1 Ene = -0.9119 Spin =Alpha Occup = 2.000000
Selecting 3 3 SymOrb = 3.1 Ene = -0.5204 Spin =Alpha Occup = 2.000000
Selecting 4 4 SymOrb = 1.2 Ene = -0.5204 Spin =Alpha Occup = 2.000000
Selecting 5 5 SymOrb = 1.3 Ene = -0.5204 Spin =Alpha Occup = 2.000000
Atoms found 5 Coordinates in Angstroms
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = 0.8845483050 0.0000000000 0.6254701047
Z = 1 ZS = 1 r = -0.8845483050 0.0000000000 0.6254701047
Z = 1 ZS = 1 r = 0.0000000000 -0.8845483050 -0.6254701047
Z = 1 ZS = 1 r = 0.0000000000 0.8845483050 -0.6254701047
Maximum distance from expansion center is 1.0833460000
+ Data Record PrintBlm - 4
+ Command GetBlms
+
----------------------------------------------------------------------
GetPGroup - determine point group from geometry
----------------------------------------------------------------------
Found point group Td
Reduce angular grid using nthd = 1 nphid = 4
Found point group for abelian subgroup C2v
Time Now = 0.0269 Delta time = 0.0269 End GetPGroup
List of unique axes
N Vector Z R
1 0.00000 0.00000 1.00000
2 0.81650 0.00000 0.57735 1 1.08335
3 -0.81650 0.00000 0.57735 1 1.08335
4 0.00000 -0.81650 -0.57735 1 1.08335
5 0.00000 0.81650 -0.57735 1 1.08335
List of corresponding x axes
N Vector
1 1.00000 0.00000 0.00000
2 0.57735 0.00000 -0.81650
3 0.57735 0.00000 0.81650
4 1.00000 0.00000 0.00000
5 1.00000 0.00000 0.00000
Computed default value of LMaxA = 13
Determining angular grid in GetAxMax LMax = 15 LMaxA = 13 LMaxAb = 30
MMax = 3 MMaxAbFlag = 1
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 -1 -1
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3
On the double L grid used for products
For axis 1 mvals:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30
For axis 2 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 3 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 4 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
For axis 5 mvals:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is Td
LMax 15
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) E ( 2) T1 ( 3) T2 ( 3)
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 7 8
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 15 1 1 1
A2 1 2 7 -1 -1 1
E 1 3 20 -1 -1 1
E 2 4 20 1 1 1
T1 1 5 27 -1 -1 1
T1 2 6 27 -1 1 -1
T1 3 7 27 1 -1 -1
T2 1 8 36 -1 1 -1
T2 2 9 36 1 -1 -1
T2 3 10 36 1 1 1
Computed BLMs
Rep A1 1 itype = 1
itype = 1 lval = 0 nm = 1
( 0) = 1.0000000000
itype = 1 lval = 3 nm = 1
( 2) = 1.0000000000
itype = 1 lval = 4 nm = 2
( 0) = 0.7637626158 ( 4) = -0.6454972244
Rep A2 1 itype = 2
Rep E 1 itype = 3
itype = 3 lval = 2 nm = 1
( -2) = 1.0000000000
itype = 3 lval = 4 nm = 1
( -2) = 1.0000000000
Rep E 2 itype = 4
itype = 4 lval = 2 nm = 1
( 0) = 1.0000000000
itype = 4 lval = 4 nm = 2
( 0) = -0.6454972244 ( 4) = -0.7637626158
Rep T1 1 itype = 5
itype = 5 lval = 3 nm = 1
( -2) = 1.0000000000
itype = 5 lval = 4 nm = 1
( -4) = 1.0000000000
Rep T1 2 itype = 6
itype = 6 lval = 3 nm = 2
( -3) = 0.6123724357 ( -1) = 0.7905694150
itype = 6 lval = 4 nm = 2
( -3) = 0.3535533906 ( -1) = -0.9354143467
Rep T1 3 itype = 7
itype = 7 lval = 3 nm = 2
( 1) = 0.7905694150 ( 3) = -0.6123724357
itype = 7 lval = 4 nm = 2
( 1) = 0.9354143467 ( 3) = 0.3535533906
Rep T2 1 itype = 8
itype = 8 lval = 1 nm = 1
( -1) = 1.0000000000
itype = 8 lval = 2 nm = 1
( -1) = 1.0000000000
itype = 8 lval = 3 nm = 2
( -3) = 0.7905694150 ( -1) = -0.6123724357
itype = 8 lval = 4 nm = 2
( -3) = 0.9354143467 ( -1) = 0.3535533906
Rep T2 2 itype = 9
itype = 9 lval = 1 nm = 1
( 1) = 1.0000000000
itype = 9 lval = 2 nm = 1
( 1) = -1.0000000000
itype = 9 lval = 3 nm = 2
( 1) = -0.6123724357 ( 3) = -0.7905694150
itype = 9 lval = 4 nm = 2
( 1) = -0.3535533906 ( 3) = 0.9354143467
Rep T2 3 itype = 10
itype = 10 lval = 1 nm = 1
( 0) = 1.0000000000
itype = 10 lval = 2 nm = 1
( 2) = -1.0000000000
itype = 10 lval = 3 nm = 1
( 0) = 1.0000000000
itype = 10 lval = 4 nm = 1
( 2) = 1.0000000000
Time Now = 0.1872 Delta time = 0.1603 End SymGen
Number of partial waves for each l in the full symmetry up to LMaxA
A1 1 0( 1) 1( 1) 2( 1) 3( 2) 4( 3) 5( 3) 6( 4) 7( 5) 8( 6) 9( 7)
10( 8) 11( 9) 12( 11) 13( 12)
A2 1 0( 0) 1( 0) 2( 0) 3( 0) 4( 0) 5( 0) 6( 1) 7( 1) 8( 1) 9( 2)
10( 3) 11( 3) 12( 4) 13( 5)
E 1 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
E 2 0( 0) 1( 0) 2( 1) 3( 1) 4( 2) 5( 3) 6( 4) 7( 5) 8( 7) 9( 8)
10( 10) 11( 12) 12( 14) 13( 16)
T1 1 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 2 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T1 3 0( 0) 1( 0) 2( 0) 3( 1) 4( 2) 5( 3) 6( 4) 7( 6) 8( 8) 9( 10)
10( 12) 11( 15) 12( 18) 13( 21)
T2 1 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 2 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
T2 3 0( 0) 1( 1) 2( 2) 3( 3) 4( 4) 5( 6) 6( 8) 7( 10) 8( 12) 9( 15)
10( 18) 11( 21) 12( 24) 13( 28)
----------------------------------------------------------------------
SymGen - generate symmetry adapted functions
----------------------------------------------------------------------
Point group is C2v
LMax 30
The dimension of each irreducable representation is
A1 ( 1) A2 ( 1) B1 ( 1) B2 ( 1)
Abelian axes
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
Symmetry operation directions
1 0.000000 0.000000 1.000000 ang = 0 1 type = 0 axis = 3
2 0.000000 1.000000 0.000000 ang = 0 1 type = 1 axis = 2
3 1.000000 0.000000 0.000000 ang = 0 1 type = 1 axis = 1
4 0.000000 0.000000 1.000000 ang = 1 2 type = 2 axis = 3
irep = 1 sym =A1 1 eigs = 1 1 1 1
irep = 2 sym =A2 1 eigs = 1 -1 -1 1
irep = 3 sym =B1 1 eigs = 1 1 -1 -1
irep = 4 sym =B2 1 eigs = 1 -1 1 -1
Number of symmetry operations in the abelian subgroup (excluding E) = 3
The operations are -
2 3 4
Rep Component Sym Num Num Found Eigenvalues of abelian sub-group
A1 1 1 256 1 1 1
A2 1 2 225 -1 -1 1
B1 1 3 240 1 -1 -1
B2 1 4 240 -1 1 -1
Computed BLMs
Rep A1 1 itype = 1
itype = 1 lval = 0 nm = 1
( 0) = 1.0000000000
itype = 1 lval = 1 nm = 1
( 0) = 1.0000000000
itype = 1 lval = 2 nm = 1
( 2) = 1.0000000000
itype = 1 lval = 2 nm = 1
( 0) = 1.0000000000
itype = 1 lval = 3 nm = 1
( 2) = 1.0000000000
itype = 1 lval = 3 nm = 1
( 0) = 1.0000000000
itype = 1 lval = 4 nm = 1
( 4) = 1.0000000000
itype = 1 lval = 4 nm = 1
( 2) = 1.0000000000
itype = 1 lval = 4 nm = 1
( 0) = 1.0000000000
Rep A2 1 itype = 2
itype = 2 lval = 2 nm = 1
( -2) = 1.0000000000
itype = 2 lval = 3 nm = 1
( -2) = 1.0000000000
itype = 2 lval = 4 nm = 1
( -2) = 1.0000000000
itype = 2 lval = 4 nm = 1
( -4) = 1.0000000000
Rep B1 1 itype = 3
itype = 3 lval = 1 nm = 1
( 1) = 1.0000000000
itype = 3 lval = 2 nm = 1
( 1) = 1.0000000000
itype = 3 lval = 3 nm = 1
( 3) = 1.0000000000
itype = 3 lval = 3 nm = 1
( 1) = 1.0000000000
itype = 3 lval = 4 nm = 1
( 3) = 1.0000000000
itype = 3 lval = 4 nm = 1
( 1) = 1.0000000000
Rep B2 1 itype = 4
itype = 4 lval = 1 nm = 1
( -1) = 1.0000000000
itype = 4 lval = 2 nm = 1
( -1) = 1.0000000000
itype = 4 lval = 3 nm = 1
( -1) = 1.0000000000
itype = 4 lval = 3 nm = 1
( -3) = 1.0000000000
itype = 4 lval = 4 nm = 1
( -1) = 1.0000000000
itype = 4 lval = 4 nm = 1
( -3) = 1.0000000000
Time Now = 0.1915 Delta time = 0.0043 End SymGen
+ Command SaveBlms
+ 'test01Blms.dat'
----------------------------------------------------------------------
SaveGeom - Write out geometry information
----------------------------------------------------------------------
+ Command ReadBlms
+ 'test01Blms.dat'
----------------------------------------------------------------------
ReadGeom - Read in geometry information
----------------------------------------------------------------------
Atoms found 5 in Bohr
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = 1.6715540404 0.0000000000 1.1819671970
Z = 1 ZS = 1 r = -1.6715540404 0.0000000000 1.1819671970
Z = 1 ZS = 1 r = 0.0000000000 -1.6715540404 -1.1819671970
Z = 1 ZS = 1 r = 0.0000000000 1.6715540404 -1.1819671970
Atoms found 5 in Angstroms
Z = 6 ZS = 6 r = 0.0000000000 0.0000000000 0.0000000000
Z = 1 ZS = 1 r = 0.8845483050 0.0000000000 0.6254701047
Z = 1 ZS = 1 r = -0.8845483050 0.0000000000 0.6254701047
Z = 1 ZS = 1 r = 0.0000000000 -0.8845483050 -0.6254701047
Z = 1 ZS = 1 r = 0.0000000000 0.8845483050 -0.6254701047
Found Point Group =Td (C2v)
Finshed reading point group information
Reading Blms
Read symmetry types:
A1 1 A2 1 E 1 E 2 T1 1
T1 2 T1 3 T2 1 T2 2 T2 3
Finished reading Blms
From ReadBlms LMax is 15 LMaxA is 13
+ Command ExpOrb
+
In GetRMax, RMaxEps = 0.10000000E-05 RMax = 6.1321640691 Angs
----------------------------------------------------------------------
GenGrid - Generate Radial Grid
----------------------------------------------------------------------
HFacGauss 10.00000
HFacWave 10.00000
GridFac 1
MinExpFac 300.00000
Maximum R in the grid (RMax) = 6.13216 Angs
Factors to determine step sizes in the various regions:
In regions controlled by Gaussians (HFacGauss) = 10.0
In regions controlled by the wave length (HFacWave) = 10.0
Factor used to control the minimum exponent at each center (MinExpFac) = 300.0
Maximum asymptotic kinetic energy (EMAx) = 50.00000 eV
Maximum step size (MaxStep) = 0.01058 Angs
Factor to increase grid by (GridFac) = 1
1 Center at = 0.00000 Angs Alpha Max = 0.10800E+05
2 Center at = 1.08335 Angs Alpha Max = 0.30000E+03
Generated Grid
irg nin ntot step Angs R end Angs
1 8 8 0.50920E-03 0.00407
2 8 16 0.54286E-03 0.00842
3 8 24 0.66917E-03 0.01377
4 8 32 0.10153E-02 0.02189
5 8 40 0.16142E-02 0.03481
6 8 48 0.25663E-02 0.05534
7 8 56 0.40801E-02 0.08798
8 8 64 0.64868E-02 0.13987
9 8 72 0.10071E-01 0.22044
10 64 136 0.10584E-01 0.89779
11 8 144 0.84584E-02 0.96546
12 8 152 0.53694E-02 1.00841
13 8 160 0.37587E-02 1.03848
14 8 168 0.31773E-02 1.06390
15 8 176 0.24310E-02 1.08335
16 8 184 0.30552E-02 1.10779
17 8 192 0.32571E-02 1.13384
18 8 200 0.40150E-02 1.16596
19 8 208 0.60918E-02 1.21470
20 8 216 0.96851E-02 1.29218
21 64 280 0.10584E-01 1.96953
22 64 344 0.10584E-01 2.64687
23 64 408 0.10584E-01 3.32422
24 64 472 0.10584E-01 4.00157
25 64 536 0.10584E-01 4.67891
26 64 600 0.10584E-01 5.35626
27 64 664 0.10584E-01 6.03361
28 8 672 0.10584E-01 6.11828
29 8 680 0.17361E-02 6.13216
Time Now = 0.2136 Delta time = 0.0221 End GenGrid
----------------------------------------------------------------------
AngGCt - generate angular functions
----------------------------------------------------------------------
Maximum scattering l (lmax) = 15
Maximum scattering m (mmaxs) = 15
Maximum numerical integration l (lmaxi) = 30
Maximum numerical integration m (mmaxi) = 30
Maximum l to include in the asymptotic region (lmasym) = 13
Parameter used to determine the cutoff points (PCutRd) = 0.10000000E-07 au
Maximum E used to determine grid (in eV) = 50.00000
Print flag (iprnfg) = 0
lmasymtyts = 13
Actual value of lmasym found = 13
Number of regions of the same l expansion (NAngReg) = 10
Angular regions
1 L = 2 from ( 1) 0.00051 to ( 7) 0.00356
2 L = 5 from ( 8) 0.00407 to ( 23) 0.01310
3 L = 6 from ( 24) 0.01377 to ( 31) 0.02088
4 L = 7 from ( 32) 0.02189 to ( 47) 0.05277
5 L = 8 from ( 48) 0.05534 to ( 55) 0.08390
6 L = 10 from ( 56) 0.08798 to ( 63) 0.13338
7 L = 11 from ( 64) 0.13987 to ( 71) 0.21037
8 L = 13 from ( 72) 0.22044 to ( 119) 0.71787
9 L = 15 from ( 120) 0.72845 to ( 264) 1.80019
10 L = 13 from ( 265) 1.81077 to ( 680) 6.13216
There are 2 angular regions for computing spherical harmonics
1 lval = 13
2 lval = 15
Maximum number of processors is 84
Last grid points by processor WorkExp = 1.500
Proc id = -1 Last grid point = 1
Proc id = 0 Last grid point = 80
Proc id = 1 Last grid point = 112
Proc id = 2 Last grid point = 144
Proc id = 3 Last grid point = 168
Proc id = 4 Last grid point = 200
Proc id = 5 Last grid point = 224
Proc id = 6 Last grid point = 248
Proc id = 7 Last grid point = 280
Proc id = 8 Last grid point = 312
Proc id = 9 Last grid point = 352
Proc id = 10 Last grid point = 384
Proc id = 11 Last grid point = 416
Proc id = 12 Last grid point = 448
Proc id = 13 Last grid point = 480
Proc id = 14 Last grid point = 520
Proc id = 15 Last grid point = 552
Proc id = 16 Last grid point = 584
Proc id = 17 Last grid point = 616
Proc id = 18 Last grid point = 648
Proc id = 19 Last grid point = 680
Time Now = 0.2286 Delta time = 0.0150 End AngGCt
----------------------------------------------------------------------
RotOrb - Determine rotation of degenerate orbitals
----------------------------------------------------------------------
R of maximum density
1 Orig 1 Eng = -11.029700 A1 1 at max irg = 56 r = 0.08798
2 Orig 2 Eng = -0.911900 A1 1 at max irg = 120 r = 0.72845
3 Orig 3 Eng = -0.520400 T2 1 at max irg = 152 r = 1.00841
4 Orig 4 Eng = -0.520400 T2 2 at max irg = 152 r = 1.00841
5 Orig 5 Eng = -0.520400 T2 3 at max irg = 152 r = 1.00841
Rotation coefficients for orbital 1 grp = 1 A1 1
1 1.0000000000
Rotation coefficients for orbital 2 grp = 2 A1 1
1 1.0000000000
Rotation coefficients for orbital 3 grp = 3 T2 1
1 0.0000000000 2 0.0000000000 3 1.0000000000
Rotation coefficients for orbital 4 grp = 3 T2 2
1 -0.0000000000 2 1.0000000000 3 -0.0000000000
Rotation coefficients for orbital 5 grp = 3 T2 3
1 1.0000000000 2 0.0000000000 3 -0.0000000000
Number of orbital groups and degeneracis are 3
1 1 3
Number of orbital groups and number of electrons when fully occupied
3
2 2 6
Time Now = 0.2479 Delta time = 0.0193 End RotOrb
----------------------------------------------------------------------
ExpOrb - Single Center Expansion Program
----------------------------------------------------------------------
First orbital group to expand (mofr) = 1
Last orbital group to expand (moto) = 3
Orbital 1 of A1 1 symmetry normalization integral = 1.00000000
Orbital 2 of A1 1 symmetry normalization integral = 0.99999901
Orbital 3 of T2 1 symmetry normalization integral = 0.99999809
Time Now = 0.2736 Delta time = 0.0257 End ExpOrb
+ Command GetPot
+
----------------------------------------------------------------------
Den - Electron density construction program
----------------------------------------------------------------------
Total density = 10.00000000
Time Now = 0.2774 Delta time = 0.0038 End Den
----------------------------------------------------------------------
StPot - Compute the static potential from the density
----------------------------------------------------------------------
vasymp = 0.10000000E+02 facnorm = 0.10000000E+01
Time Now = 0.3009 Delta time = 0.0235 Electronic part
Time Now = 0.3024 Delta time = 0.0015 End StPot
----------------------------------------------------------------------
vcppol - VCP polarization potential program
----------------------------------------------------------------------
Time Now = 0.3116 Delta time = 0.0092 End VcpPol
----------------------------------------------------------------------
AsyPol - Program to match polarization potential to asymptotic form
----------------------------------------------------------------------
Switching distance (SwitchD) = 0.15000
Number of terms in the asymptotic polarization potential (nterm) = 1
Term = 1 At center = 1
Explicit coordinates = 0.00000000E+00 0.00000000E+00 0.00000000E+00
Type = 1
Polarizability = 0.17500000E+02 au
Last center is at (RCenterX) = 0.00000 Angs
Radial matching parameter (icrtyp) = 3
Matching line type (ilntyp) = 0
Matching point is at r = 2.3036330683 Angs
Matching uses curve crossing (iMatchType = 1)
First nonzero weight at(RFirstWt) R = 1.80019 Angs
Last point of the switching region (RLastWt) R= 2.81621 Angs
Total asymptotic potential is 0.17500000E+02 a.u.
Time Now = 0.3210 Delta time = 0.0094 End AsyPol
+ Command Scat
+ 0.0001 0.01 0.5
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E-03 eV ( 0.36749326E-05 AU)
Time Now = 0.3281 Delta time = 0.0071 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 49
Number of partial waves (np) = 15
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 12
Time Now = 0.3341 Delta time = 0.0061 Energy independent setup
Compute solution for E = 0.0001000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.99920072E-15 Asymp Coef = -0.38446643E-10 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.69388939E-17 Asymp Moment = -0.11771398E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.86736174E-18 Asymp Moment = -0.15038363E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.95695230E-12 Asymp Moment = -0.16591689E-09 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.37410468E-17
i = 2 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.37711792E-17
i = 3 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.38303796E-17
i = 4 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.39165422E-17
For potential 3
i = 1 lvals = 6 6 stpote = -0.21684043E-18 second term = 0.00000000E+00
i = 2 lvals = 5 5 stpote = 0.19024451E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = -0.14150058E-18 second term = 0.00000000E+00
i = 4 lvals = 6 6 stpote = -0.21534604E-19 second term = 0.00000000E+00
Number of asymptotic regions = 7
Final point in integration = 0.12399415E+04 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 1.8441 Delta time = 1.5099 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.46212575E-02 0.19928491E-06-0.10456513E-09
ROW 2
0.19928491E-06 0.12151952E-05-0.77622387E-07
ROW 3
-0.10456549E-09-0.77622387E-07 0.47643838E-06
eigenphases
0.4683705E-06 0.1223255E-05 0.4621225E-02
eigenphase sum 0.462292E-02 scattering length= -1.70522
eps+pi 0.314622E+01 eps+2*pi 0.628781E+01
MaxIter = 5 c.s. = 10.22454170 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.62775565E-10
Time Now = 3.2411 Delta time = 1.3971 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E-01 eV ( 0.36749326E-03 AU)
Time Now = 3.2504 Delta time = 0.0093 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 49
Number of partial waves (np) = 15
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 12
Time Now = 3.2565 Delta time = 0.0061 Energy independent setup
Compute solution for E = 0.0100000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.99920072E-15 Asymp Coef = -0.38446643E-10 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.69388939E-17 Asymp Moment = -0.11771398E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.86736174E-18 Asymp Moment = -0.15038363E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.95695230E-12 Asymp Moment = -0.16591689E-09 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.28733481E-17
i = 2 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.28836257E-17
i = 3 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.29041896E-17
i = 4 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.29349959E-17
For potential 3
i = 1 lvals = 6 6 stpote = -0.21684043E-18 second term = 0.00000000E+00
i = 2 lvals = 5 5 stpote = 0.19024451E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = -0.14150058E-18 second term = 0.00000000E+00
i = 4 lvals = 6 6 stpote = -0.21534604E-19 second term = 0.00000000E+00
Number of asymptotic regions = 7
Final point in integration = 0.39213236E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 4.7588 Delta time = 1.5024 End SolveHomo
REAL PART - Final K matrix
ROW 1
0.33775970E-01 0.19715331E-04-0.11091462E-06
ROW 2
0.19715321E-04 0.12824215E-03-0.80681664E-05
ROW 3
-0.11091460E-06-0.80681664E-05 0.57998329E-04
eigenphases
0.5708340E-04 0.1291455E-03 0.3376315E-01
eigenphase sum 0.339494E-01 scattering length= -1.25273
eps+pi 0.317554E+01 eps+2*pi 0.631713E+01
MaxIter = 6 c.s. = 5.45583404 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.73027985E-09
Time Now = 6.6290 Delta time = 1.8702 End ScatStab
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 6.6383 Delta time = 0.0093 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A1 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 49
Number of partial waves (np) = 15
Number of asymptotic solutions on the right (NAsymR) = 3
Number of asymptotic solutions on the left (NAsymL) = 3
First solution on left to compute is (NAsymLF) = 1
Last solution on left to compute is (NAsymLL) = 3
Maximum in the asymptotic region (lpasym) = 13
Number of partial waves in the asymptotic region (npasym) = 12
Number of orthogonality constraints (NOrthUse) = 0
Number of different asymptotic potentials = 3
Maximum number of asymptotic partial waves = 196
Found polarization potential
Maximum l used in usual function (lmax) = 15
Maximum m used in usual function (LMax) = 15
Maxamum l used in expanding static potential (lpotct) = 30
Maximum l used in exapnding the exchange potential (lmaxab) = 30
Higest l included in the expansion of the wave function (lnp) = 15
Higest l included in the K matrix (lna) = 4
Highest l used at large r (lpasym) = 13
Higest l used in the asymptotic potential (lpzb) = 26
Maximum L used in the homogeneous solution (LMaxHomo) = 13
Number of partial waves in the homogeneous solution (npHomo) = 12
Time Now = 6.6444 Delta time = 0.0061 Energy independent setup
Compute solution for E = 0.5000000000 eV
Found fege potential
Charge on the molecule (zz) = 0.0
Assumed asymptotic polarization is 0.17500000E+02 au
stpote at the end of the grid
For potential 1
i = 1 lval = 0 1/r^n n = 4 StPot(RMax) = -0.99920072E-15 Asymp Coef = -0.38446643E-10 (eV Angs^(n))
i = 2 lval = 1 1/r^n n = 2 StPot(RMax) = 0.69388939E-17 Asymp Moment = -0.11771398E-15 (e Angs^(n-1))
i = 3 lval = 2 1/r^n n = 3 StPot(RMax) = 0.86736174E-18 Asymp Moment = -0.15038363E-15 (e Angs^(n-1))
i = 4 lval = 2 1/r^n n = 3 StPot(RMax) = 0.95695230E-12 Asymp Moment = -0.16591689E-09 (e Angs^(n-1))
For potential 2
i = 1 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.46227960E-17
i = 2 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.46377739E-17
i = 3 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.46674221E-17
i = 4 exps = -0.46352443E+02 -0.20000000E+01 stpote = -0.47110998E-17
For potential 3
i = 1 lvals = 6 6 stpote = -0.21684043E-18 second term = 0.00000000E+00
i = 2 lvals = 5 5 stpote = 0.19024451E-18 second term = 0.00000000E+00
i = 3 lvals = 6 6 stpote = -0.14150058E-18 second term = 0.00000000E+00
i = 4 lvals = 6 6 stpote = -0.21534604E-19 second term = 0.00000000E+00
Number of asymptotic regions = 12
Final point in integration = 0.14749137E+03 Angstroms
Last asymptotic region is special region for dipole potential
Time Now = 8.1484 Delta time = 1.5040 End SolveHomo
REAL PART - Final K matrix
ROW 1
-0.11332590E+00 0.17183552E-02-0.64814651E-04
ROW 2
0.17183552E-02 0.65348411E-02-0.41132874E-03
ROW 3
-0.64814652E-04-0.41132874E-03 0.29028036E-02
eigenphases
-0.1128688E+00 0.2856932E-02 0.6605268E-02
eigenphase sum-0.103407E+00 scattering length= 0.54135
eps+pi 0.303819E+01 eps+2*pi 0.617978E+01
MaxIter = 6 c.s. = 1.21964977 rmsk= 0.00000000 Abs eps 0.10000000E-05 Rel eps 0.30428469E-08
Time Now = 10.9580 Delta time = 2.8096 End ScatStab
+ Data Record ScatContSym - 'A2'
+ Command Scat
+ 0.0001 0.01 0.5
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E-03 eV ( 0.36749326E-05 AU)
Time Now = 10.9673 Delta time = 0.0093 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 49
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.10000000E-01 eV ( 0.36749326E-03 AU)
Time Now = 10.9775 Delta time = 0.0102 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 49
No asymptotic partial waves with this value of LMaxK
----------------------------------------------------------------------
Fege - FEGE exchange potential construction program
----------------------------------------------------------------------
Off set energy for computing fege eta (ecor) = 0.13000000E+02 eV
Do E = 0.50000000E+00 eV ( 0.18374663E-01 AU)
Time Now = 10.9877 Delta time = 0.0102 End Fege
----------------------------------------------------------------------
ScatStab - Iterative exchange scattering program (rev. 04/25/2005)
----------------------------------------------------------------------
Unit for output of final k matrices (iukmat) = 60
Symmetry type of scattering solution (symtps) = A2 1
Form of the Green's operator used (iGrnType) = 0
Flag for dipole operator (DipoleFlag) = F
Maximum l for computed scattering solutions (LMaxK) = 4
Maximum number of iterations (itmax) = 15
Convergence criterion on change in rmsq k matrix (cutkdf) = 0.10000000E-05
Maximum l to include in potential (lpotct) = -1
No exchange flag = F
Runge Kutta factor used (RungeKuttaFac) = 4
Error estimate for integrals used in convergence test (EpsIntError) = 0.10000000E-07
General print flag (iprnfg) = 0
Number of integration regions (NIntRegionR) = 40
Factor for number of points in asymptotic region (HFacWaveAsym) = 10.0
Asymptotic cutoff (EpsAsym) = 0.10000000E-06
Asymptotic cutoff type (iAsymCond) = 1
Use fixed asymptotic polarization = 0.17500000E+02 au
Number of integration regions used = 49
No asymptotic partial waves with this value of LMaxK
+ Command TotalCrossSection
+
Using LMaxK 4
Continuum Symmetry A1 -
E (eV) XS(angs^2) EPS(radians)
0.000100 10.224542 0.004623
0.010000 5.455834 0.033949
0.500000 1.219650 -0.103407
Continuum Symmetry A2 -
E (eV) XS(angs^2) EPS(radians)
0.000100 0.000000 0.000000
0.010000 0.000000 0.000000
0.500000 0.000000 0.000000
Largest value of LMaxK found 4
Total Cross Sections
Energy Total Cross Section
0.00010 10.22454
0.01000 5.45583
0.50000 1.21965
+ Data Record LMaxK - 3
+ Command TotalCrossSection
+
Using LMaxK 3
Continuum Symmetry A1 -
E (eV) XS(angs^2) EPS(radians)
0.000100 10.224542 0.004622
0.010000 5.455817 0.033891
0.500000 1.218810 -0.106309
Continuum Symmetry A2 -
E (eV) XS(angs^2) EPS(radians)
0.000100 0.000000 0.000000
0.010000 0.000000 0.000000
0.500000 0.000000 0.000000
Largest value of LMaxK found 3
Total Cross Sections
Energy Total Cross Section
0.00010 10.22454
0.01000 5.45582
0.50000 1.21881
+ Data Record LMaxK - 2
+ Command TotalCrossSection
+
Using LMaxK 2
Continuum Symmetry A1 -
E (eV) XS(angs^2) EPS(radians)
0.000100 10.224541 0.004621
0.010000 5.455735 0.033763
0.500000 1.214162 -0.112844
Continuum Symmetry A2 -
E (eV) XS(angs^2) EPS(radians)
0.000100 0.000000 0.000000
0.010000 0.000000 0.000000
0.500000 0.000000 0.000000
Largest value of LMaxK found 0
Total Cross Sections
Energy Total Cross Section
0.00010 10.22454
0.01000 5.45573
0.50000 1.21416
+ Data Record LMaxK - 1
+ Command TotalCrossSection
+
Using LMaxK 1
Continuum Symmetry A1 -
E (eV) XS(angs^2) EPS(radians)
0.000100 10.224541 0.004621
0.010000 5.455735 0.033763
0.500000 1.214162 -0.112844
Continuum Symmetry A2 -
E (eV) XS(angs^2) EPS(radians)
0.000100 0.000000 0.000000
0.010000 0.000000 0.000000
0.500000 0.000000 0.000000
Largest value of LMaxK found 0
Total Cross Sections
Energy Total Cross Section
0.00010 10.22454
0.01000 5.45573
0.50000 1.21416
Time Now = 10.9901 Delta time = 0.0024 Finalize